mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
18 Commits
custom-cod
...
convert-ca
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
046ae26d1e | ||
|
|
6308b16aba | ||
|
|
1b00c4e554 | ||
|
|
4b48de0c41 | ||
|
|
832071b468 | ||
|
|
12390a204c | ||
|
|
6732aa3a28 | ||
|
|
aad9d41c54 | ||
|
|
8e060da4ef | ||
|
|
86daa3518d | ||
|
|
b82edd9404 | ||
|
|
7119e087ba | ||
|
|
962ceec438 | ||
|
|
4a00ef579a | ||
|
|
5cc31912a2 | ||
|
|
1f4120eed1 | ||
|
|
068abab096 | ||
|
|
872799e029 |
@@ -1,7 +1,7 @@
|
||||
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
|
||||
import argparse
|
||||
from contextlib import nullcontext
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
@@ -18,23 +18,56 @@ from diffusers import (
|
||||
StableCascadeDecoderPipeline,
|
||||
StableCascadePriorPipeline,
|
||||
)
|
||||
from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers
|
||||
from diffusers.models import StableCascadeUNet
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
parser = argparse.ArgumentParser(description="Convert Stable Cascade model weights to a diffusers pipeline")
|
||||
parser.add_argument("--model_path", type=str, default="../StableCascade", help="Location of Stable Cascade weights")
|
||||
parser.add_argument("--model_path", type=str, help="Location of Stable Cascade weights")
|
||||
parser.add_argument("--stage_c_name", type=str, default="stage_c.safetensors", help="Name of stage c checkpoint file")
|
||||
parser.add_argument("--stage_b_name", type=str, default="stage_b.safetensors", help="Name of stage b checkpoint file")
|
||||
parser.add_argument("--skip_stage_c", action="store_true", help="Skip converting stage c")
|
||||
parser.add_argument("--skip_stage_b", action="store_true", help="Skip converting stage b")
|
||||
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
|
||||
parser.add_argument("--save_org", type=str, default="diffusers", help="Hub organization to save the pipelines to")
|
||||
parser.add_argument(
|
||||
"--prior_output_path", default="stable-cascade-prior", type=str, help="Hub organization to save the pipelines to"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--decoder_output_path",
|
||||
type=str,
|
||||
default="stable-cascade-decoder",
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--combined_output_path",
|
||||
type=str,
|
||||
default="stable-cascade-combined",
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument("--save_combined", action="store_true")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
|
||||
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.skip_stage_b and args.skip_stage_c:
|
||||
raise ValueError("At least one stage should be converted")
|
||||
if (args.skip_stage_b or args.skip_stage_c) and args.save_combined:
|
||||
raise ValueError("Cannot skip stages when creating a combined pipeline")
|
||||
|
||||
model_path = args.model_path
|
||||
|
||||
device = "cpu"
|
||||
if args.variant == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
# set paths to model weights
|
||||
prior_checkpoint_path = f"{model_path}/{args.stage_c_name}"
|
||||
@@ -52,164 +85,134 @@ tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b1
|
||||
feature_extractor = CLIPImageProcessor()
|
||||
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
|
||||
|
||||
# Prior
|
||||
if args.use_safetensors:
|
||||
orig_state_dict = load_file(prior_checkpoint_path, device=device)
|
||||
else:
|
||||
orig_state_dict = torch.load(prior_checkpoint_path, map_location=device)
|
||||
|
||||
state_dict = {}
|
||||
for key in orig_state_dict.keys():
|
||||
if key.endswith("in_proj_weight"):
|
||||
weights = orig_state_dict[key].chunk(3, 0)
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
|
||||
elif key.endswith("in_proj_bias"):
|
||||
weights = orig_state_dict[key].chunk(3, 0)
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
|
||||
elif key.endswith("out_proj.weight"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
|
||||
elif key.endswith("out_proj.bias"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
|
||||
else:
|
||||
state_dict[key] = orig_state_dict[key]
|
||||
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
prior_model = StableCascadeUNet(
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=1,
|
||||
conditioning_dim=2048,
|
||||
block_out_channels=[2048, 2048],
|
||||
num_attention_heads=[32, 32],
|
||||
down_num_layers_per_block=[8, 24],
|
||||
up_num_layers_per_block=[24, 8],
|
||||
down_blocks_repeat_mappers=[1, 1],
|
||||
up_blocks_repeat_mappers=[1, 1],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_in_channels=1280,
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_image_in_channels=768,
|
||||
clip_seq=4,
|
||||
kernel_size=3,
|
||||
dropout=[0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca", "crp"],
|
||||
switch_level=[False],
|
||||
)
|
||||
load_model_dict_into_meta(prior_model, state_dict)
|
||||
|
||||
# scheduler for prior and decoder
|
||||
scheduler = DDPMWuerstchenScheduler()
|
||||
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
||||
|
||||
# Prior pipeline
|
||||
prior_pipeline = StableCascadePriorPipeline(
|
||||
prior=prior_model,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
scheduler=scheduler,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
prior_pipeline.save_pretrained(f"{args.save_org}/StableCascade-prior", push_to_hub=args.push_to_hub)
|
||||
|
||||
# Decoder
|
||||
if args.use_safetensors:
|
||||
orig_state_dict = load_file(decoder_checkpoint_path, device=device)
|
||||
else:
|
||||
orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device)
|
||||
|
||||
state_dict = {}
|
||||
for key in orig_state_dict.keys():
|
||||
if key.endswith("in_proj_weight"):
|
||||
weights = orig_state_dict[key].chunk(3, 0)
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
|
||||
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
|
||||
elif key.endswith("in_proj_bias"):
|
||||
weights = orig_state_dict[key].chunk(3, 0)
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
|
||||
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
|
||||
elif key.endswith("out_proj.weight"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
|
||||
elif key.endswith("out_proj.bias"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
|
||||
# rename clip_mapper to clip_txt_pooled_mapper
|
||||
elif key.endswith("clip_mapper.weight"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
|
||||
elif key.endswith("clip_mapper.bias"):
|
||||
weights = orig_state_dict[key]
|
||||
state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
|
||||
else:
|
||||
state_dict[key] = orig_state_dict[key]
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
decoder = StableCascadeUNet(
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=2,
|
||||
conditioning_dim=1280,
|
||||
block_out_channels=[320, 640, 1280, 1280],
|
||||
down_num_layers_per_block=[2, 6, 28, 6],
|
||||
up_num_layers_per_block=[6, 28, 6, 2],
|
||||
down_blocks_repeat_mappers=[1, 1, 1, 1],
|
||||
up_blocks_repeat_mappers=[3, 3, 2, 2],
|
||||
num_attention_heads=[0, 0, 20, 20],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_seq=4,
|
||||
effnet_in_channels=16,
|
||||
pixel_mapper_in_channels=3,
|
||||
kernel_size=3,
|
||||
dropout=[0, 0, 0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca"],
|
||||
)
|
||||
load_model_dict_into_meta(decoder, state_dict)
|
||||
|
||||
# VQGAN from Wuerstchen-V2
|
||||
vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan")
|
||||
|
||||
# Decoder pipeline
|
||||
decoder_pipeline = StableCascadeDecoderPipeline(
|
||||
decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler
|
||||
)
|
||||
decoder_pipeline.save_pretrained(f"{args.save_org}/StableCascade-decoder", push_to_hub=args.push_to_hub)
|
||||
|
||||
# Stable Cascade combined pipeline
|
||||
stable_cascade_pipeline = StableCascadeCombinedPipeline(
|
||||
# Decoder
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
decoder=decoder,
|
||||
scheduler=scheduler,
|
||||
vqgan=vqmodel,
|
||||
if not args.skip_stage_c:
|
||||
# Prior
|
||||
prior_text_encoder=text_encoder,
|
||||
prior_tokenizer=tokenizer,
|
||||
prior_prior=prior_model,
|
||||
prior_scheduler=scheduler,
|
||||
prior_image_encoder=image_encoder,
|
||||
prior_feature_extractor=feature_extractor,
|
||||
)
|
||||
stable_cascade_pipeline.save_pretrained(f"{args.save_org}/StableCascade", push_to_hub=args.push_to_hub)
|
||||
if args.use_safetensors:
|
||||
prior_orig_state_dict = load_file(prior_checkpoint_path, device=device)
|
||||
else:
|
||||
prior_orig_state_dict = torch.load(prior_checkpoint_path, map_location=device)
|
||||
|
||||
prior_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(prior_orig_state_dict)
|
||||
|
||||
with ctx():
|
||||
prior_model = StableCascadeUNet(
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=1,
|
||||
conditioning_dim=2048,
|
||||
block_out_channels=[2048, 2048],
|
||||
num_attention_heads=[32, 32],
|
||||
down_num_layers_per_block=[8, 24],
|
||||
up_num_layers_per_block=[24, 8],
|
||||
down_blocks_repeat_mappers=[1, 1],
|
||||
up_blocks_repeat_mappers=[1, 1],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_in_channels=1280,
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_image_in_channels=768,
|
||||
clip_seq=4,
|
||||
kernel_size=3,
|
||||
dropout=[0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca", "crp"],
|
||||
switch_level=[False],
|
||||
)
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(prior_model, prior_state_dict)
|
||||
else:
|
||||
prior_model.load_state_dict(prior_state_dict)
|
||||
|
||||
# Prior pipeline
|
||||
prior_pipeline = StableCascadePriorPipeline(
|
||||
prior=prior_model,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
scheduler=scheduler,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
prior_pipeline.to(dtype).save_pretrained(
|
||||
args.prior_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
|
||||
if not args.skip_stage_b:
|
||||
# Decoder
|
||||
if args.use_safetensors:
|
||||
decoder_orig_state_dict = load_file(decoder_checkpoint_path, device=device)
|
||||
else:
|
||||
decoder_orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device)
|
||||
|
||||
decoder_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(decoder_orig_state_dict)
|
||||
with ctx():
|
||||
decoder = StableCascadeUNet(
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=2,
|
||||
conditioning_dim=1280,
|
||||
block_out_channels=[320, 640, 1280, 1280],
|
||||
down_num_layers_per_block=[2, 6, 28, 6],
|
||||
up_num_layers_per_block=[6, 28, 6, 2],
|
||||
down_blocks_repeat_mappers=[1, 1, 1, 1],
|
||||
up_blocks_repeat_mappers=[3, 3, 2, 2],
|
||||
num_attention_heads=[0, 0, 20, 20],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_seq=4,
|
||||
effnet_in_channels=16,
|
||||
pixel_mapper_in_channels=3,
|
||||
kernel_size=3,
|
||||
dropout=[0, 0, 0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca"],
|
||||
)
|
||||
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(decoder, decoder_state_dict)
|
||||
else:
|
||||
decoder.load_state_dict(decoder_state_dict)
|
||||
|
||||
# VQGAN from Wuerstchen-V2
|
||||
vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan")
|
||||
|
||||
# Decoder pipeline
|
||||
decoder_pipeline = StableCascadeDecoderPipeline(
|
||||
decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler
|
||||
)
|
||||
decoder_pipeline.to(dtype).save_pretrained(
|
||||
args.decoder_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
|
||||
if args.save_combined:
|
||||
# Stable Cascade combined pipeline
|
||||
stable_cascade_pipeline = StableCascadeCombinedPipeline(
|
||||
# Decoder
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
decoder=decoder,
|
||||
scheduler=scheduler,
|
||||
vqgan=vqmodel,
|
||||
# Prior
|
||||
prior_text_encoder=text_encoder,
|
||||
prior_tokenizer=tokenizer,
|
||||
prior_prior=prior_model,
|
||||
prior_scheduler=scheduler,
|
||||
prior_image_encoder=image_encoder,
|
||||
prior_feature_extractor=feature_extractor,
|
||||
)
|
||||
stable_cascade_pipeline.to(dtype).save_pretrained(
|
||||
args.combined_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
|
||||
226
scripts/convert_stable_cascade_lite.py
Normal file
226
scripts/convert_stable_cascade_lite.py
Normal file
@@ -0,0 +1,226 @@
|
||||
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
|
||||
import argparse
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
CLIPConfig,
|
||||
CLIPImageProcessor,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPVisionModelWithProjection,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
DDPMWuerstchenScheduler,
|
||||
StableCascadeCombinedPipeline,
|
||||
StableCascadeDecoderPipeline,
|
||||
StableCascadePriorPipeline,
|
||||
)
|
||||
from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers
|
||||
from diffusers.models import StableCascadeUNet
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
parser = argparse.ArgumentParser(description="Convert Stable Cascade model weights to a diffusers pipeline")
|
||||
parser.add_argument("--model_path", type=str, help="Location of Stable Cascade weights")
|
||||
parser.add_argument(
|
||||
"--stage_c_name", type=str, default="stage_c_lite.safetensors", help="Name of stage c checkpoint file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stage_b_name", type=str, default="stage_b_lite.safetensors", help="Name of stage b checkpoint file"
|
||||
)
|
||||
parser.add_argument("--skip_stage_c", action="store_true", help="Skip converting stage c")
|
||||
parser.add_argument("--skip_stage_b", action="store_true", help="Skip converting stage b")
|
||||
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
|
||||
parser.add_argument(
|
||||
"--prior_output_path",
|
||||
default="stable-cascade-prior-lite",
|
||||
type=str,
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--decoder_output_path",
|
||||
type=str,
|
||||
default="stable-cascade-decoder-lite",
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--combined_output_path",
|
||||
type=str,
|
||||
default="stable-cascade-combined-lite",
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument("--save_combined", action="store_true")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
|
||||
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.skip_stage_b and args.skip_stage_c:
|
||||
raise ValueError("At least one stage should be converted")
|
||||
if (args.skip_stage_b or args.skip_stage_c) and args.save_combined:
|
||||
raise ValueError("Cannot skip stages when creating a combined pipeline")
|
||||
|
||||
model_path = args.model_path
|
||||
|
||||
device = "cpu"
|
||||
if args.variant == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
# set paths to model weights
|
||||
prior_checkpoint_path = f"{model_path}/{args.stage_c_name}"
|
||||
decoder_checkpoint_path = f"{model_path}/{args.stage_b_name}"
|
||||
|
||||
# Clip Text encoder and tokenizer
|
||||
config = CLIPConfig.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
||||
config.text_config.projection_dim = config.projection_dim
|
||||
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
||||
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", config=config.text_config
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
||||
|
||||
# image processor
|
||||
feature_extractor = CLIPImageProcessor()
|
||||
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
|
||||
# scheduler for prior and decoder
|
||||
scheduler = DDPMWuerstchenScheduler()
|
||||
|
||||
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
||||
|
||||
if not args.skip_stage_c:
|
||||
# Prior
|
||||
if args.use_safetensors:
|
||||
prior_orig_state_dict = load_file(prior_checkpoint_path, device=device)
|
||||
else:
|
||||
prior_orig_state_dict = torch.load(prior_checkpoint_path, map_location=device)
|
||||
|
||||
prior_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(prior_orig_state_dict)
|
||||
with ctx():
|
||||
prior_model = StableCascadeUNet(
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=1,
|
||||
conditioning_dim=1536,
|
||||
block_out_channels=[1536, 1536],
|
||||
num_attention_heads=[24, 24],
|
||||
down_num_layers_per_block=[4, 12],
|
||||
up_num_layers_per_block=[12, 4],
|
||||
down_blocks_repeat_mappers=[1, 1],
|
||||
up_blocks_repeat_mappers=[1, 1],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_in_channels=1280,
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_image_in_channels=768,
|
||||
clip_seq=4,
|
||||
kernel_size=3,
|
||||
dropout=[0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca", "crp"],
|
||||
switch_level=[False],
|
||||
)
|
||||
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(prior_model, prior_state_dict)
|
||||
else:
|
||||
prior_model.load_state_dict(prior_state_dict)
|
||||
|
||||
# Prior pipeline
|
||||
prior_pipeline = StableCascadePriorPipeline(
|
||||
prior=prior_model,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
scheduler=scheduler,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
prior_pipeline.to(dtype).save_pretrained(
|
||||
args.prior_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
|
||||
if not args.skip_stage_b:
|
||||
# Decoder
|
||||
if args.use_safetensors:
|
||||
decoder_orig_state_dict = load_file(decoder_checkpoint_path, device=device)
|
||||
else:
|
||||
decoder_orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device)
|
||||
|
||||
decoder_state_dict = convert_stable_cascade_unet_single_file_to_diffusers(decoder_orig_state_dict)
|
||||
|
||||
with ctx():
|
||||
decoder = StableCascadeUNet(
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
timestep_ratio_embedding_dim=64,
|
||||
patch_size=2,
|
||||
conditioning_dim=1280,
|
||||
block_out_channels=[320, 576, 1152, 1152],
|
||||
down_num_layers_per_block=[2, 4, 14, 4],
|
||||
up_num_layers_per_block=[4, 14, 4, 2],
|
||||
down_blocks_repeat_mappers=[1, 1, 1, 1],
|
||||
up_blocks_repeat_mappers=[2, 2, 2, 2],
|
||||
num_attention_heads=[0, 9, 18, 18],
|
||||
block_types_per_layer=[
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
||||
],
|
||||
clip_text_pooled_in_channels=1280,
|
||||
clip_seq=4,
|
||||
effnet_in_channels=16,
|
||||
pixel_mapper_in_channels=3,
|
||||
kernel_size=3,
|
||||
dropout=[0, 0, 0.1, 0.1],
|
||||
self_attn=True,
|
||||
timestep_conditioning_type=["sca"],
|
||||
)
|
||||
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(decoder, decoder_state_dict)
|
||||
else:
|
||||
decoder.load_state_dict(decoder_state_dict)
|
||||
|
||||
# VQGAN from Wuerstchen-V2
|
||||
vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan")
|
||||
|
||||
# Decoder pipeline
|
||||
decoder_pipeline = StableCascadeDecoderPipeline(
|
||||
decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler
|
||||
)
|
||||
decoder_pipeline.to(dtype).save_pretrained(
|
||||
args.decoder_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
|
||||
if args.save_combined:
|
||||
# Stable Cascade combined pipeline
|
||||
stable_cascade_pipeline = StableCascadeCombinedPipeline(
|
||||
# Decoder
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
decoder=decoder,
|
||||
scheduler=scheduler,
|
||||
vqgan=vqmodel,
|
||||
# Prior
|
||||
prior_text_encoder=text_encoder,
|
||||
prior_tokenizer=tokenizer,
|
||||
prior_prior=prior_model,
|
||||
prior_scheduler=scheduler,
|
||||
prior_image_encoder=image_encoder,
|
||||
prior_feature_extractor=feature_extractor,
|
||||
)
|
||||
stable_cascade_pipeline.to(dtype).save_pretrained(
|
||||
args.combined_output_path, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
Reference in New Issue
Block a user