Compare commits

...

6 Commits

Author SHA1 Message Date
Dhruv Nair
fcc59d01a9 update 2024-11-23 17:15:18 +01:00
Dhruv Nair
21b09979dc update 2024-11-22 13:21:32 +01:00
Dhruv Nair
79380ca719 update 2024-11-20 19:41:08 +01:00
Dhruv Nair
10275feacd update 2024-11-20 13:57:41 +01:00
Dhruv Nair
30dd9f6845 update 2024-11-18 17:50:51 +01:00
Dhruv Nair
27f81bd54f update 2024-11-18 17:30:24 +01:00
5 changed files with 170 additions and 63 deletions

View File

@@ -3572,16 +3572,36 @@ class MochiAttnProcessor2_0:
encoder_value.transpose(1, 2),
)
sequence_length = query.size(2)
encoder_sequence_length = encoder_query.size(2)
batch_size, heads, sequence_length, dim = query.shape
encoder_sequence_length = encoder_query.shape[2]
total_length = sequence_length + encoder_sequence_length
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
# Zero out tokens based on the attention mask
# query = query * attention_mask[:, None, :, None]
# key = key * attention_mask[:, None, :, None]
# value = value * attention_mask[:, None, :, None]
query = query.view(1, query.size(1), -1, query.size(-1))
key = key.view(1, key.size(1), -1, key.size(-1))
value = value.view(1, value.size(1), -1, key.size(-1))
select_index = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
query = torch.index_select(query, 2, select_index)
key = torch.index_select(key, 2, select_index)
value = torch.index_select(value, 2, select_index)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3).squeeze(0)
output = torch.zeros(
batch_size * total_length, dim * heads, device=hidden_states.device, dtype=hidden_states.dtype
)
output.scatter_(0, select_index.unsqueeze(1).expand(-1, dim * heads), hidden_states)
hidden_states = output.view(batch_size, total_length, dim * heads)
hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
(sequence_length, encoder_sequence_length), dim=1

View File

@@ -262,7 +262,6 @@ class PatchEmbed(nn.Module):
height, width = latent.shape[-2:]
else:
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
latent = self.proj(latent)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC

View File

@@ -256,7 +256,9 @@ class MochiRMSNormZero(nn.Module):
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
hidden_states = self.norm(hidden_states) * (1 + scale_msa[:, None])
scale_msa = scale_msa.float()
_hidden_states = self.norm(hidden_states).float() * (1 + scale_msa[:, None])
hidden_states = _hidden_states.to(hidden_states.dtype)
return hidden_states, gate_msa, scale_mlp, gate_mlp
@@ -538,7 +540,7 @@ class RMSNorm(nn.Module):
hidden_states = hidden_states.to(self.weight.dtype)
hidden_states = hidden_states * self.weight
else:
hidden_states = hidden_states.to(input_dtype)
hidden_states = hidden_states # .to(input_dtype)
return hidden_states

View File

@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
from typing import Any, Dict, Optional, Tuple
import torch
@@ -26,12 +27,50 @@ from ..attention_processor import Attention, MochiAttnProcessor2_0
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous, LuminaLayerNormContinuous, MochiRMSNormZero, RMSNorm
from ..normalization import (
AdaLayerNormContinuous,
LuminaLayerNormContinuous,
MochiRMSNormZero,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MochiRMSNorm(nn.Module):
def __init__(self, dim, eps: float, elementwise_affine: bool = True):
super().__init__()
self.eps = eps
if isinstance(dim, numbers.Integral):
dim = (dim,)
self.dim = torch.Size(dim)
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.weight = None
def forward(self, hidden_states, scale=None):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
if scale is not None:
hidden_states = hidden_states * scale
if self.weight is not None:
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
hidden_states = hidden_states * self.weight
else:
hidden_states = hidden_states.to(input_dtype)
return hidden_states
@maybe_allow_in_graph
class MochiTransformerBlock(nn.Module):
r"""
@@ -103,11 +142,11 @@ class MochiTransformerBlock(nn.Module):
)
# TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm2_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm2 = MochiRMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm2_context = MochiRMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm3 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm3_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm3 = MochiRMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm3_context = MochiRMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
self.ff_context = None
@@ -119,8 +158,8 @@ class MochiTransformerBlock(nn.Module):
bias=False,
)
self.norm4 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm4_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm4 = MochiRMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm4_context = MochiRMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
def forward(
self,
@@ -128,6 +167,7 @@ class MochiTransformerBlock(nn.Module):
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[torch.Tensor] = None,
joint_attention_mask=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
@@ -136,28 +176,45 @@ class MochiTransformerBlock(nn.Module):
encoder_hidden_states, temb
)
else:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb).to(
encoder_hidden_states.dtype
)
attn_hidden_states, context_attn_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attention_mask=joint_attention_mask,
)
hidden_states = hidden_states + self.norm2(attn_hidden_states) * torch.tanh(gate_msa).unsqueeze(1)
norm_hidden_states = self.norm3(hidden_states) * (1 + scale_mlp.unsqueeze(1))
# hidden_states = hidden_states + self.norm2(attn_hidden_states) * torch.tanh(gate_msa).unsqueeze(1)
# norm_hidden_states = self.norm3(hidden_states) * (1 + scale_mlp.unsqueeze(1))
# ff_output = self.ff(norm_hidden_states)
# hidden_states = hidden_states + self.norm4(ff_output) * torch.tanh(gate_mlp).unsqueeze(1)
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).float()))
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + self.norm4(ff_output) * torch.tanh(gate_mlp).unsqueeze(1)
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))
if not self.context_pre_only:
# encoder_hidden_states = encoder_hidden_states + self.norm2_context(
# context_attn_hidden_states
# ) * torch.tanh(enc_gate_msa).unsqueeze(1)
# norm_encoder_hidden_states = self.norm3_context(encoder_hidden_states) * (1 + enc_scale_mlp.unsqueeze(1))
# context_ff_output = self.ff_context(norm_encoder_hidden_states)
# encoder_hidden_states = encoder_hidden_states + self.norm4_context(context_ff_output) * torch.tanh(
# enc_gate_mlp
# ).unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + self.norm2_context(
context_attn_hidden_states
) * torch.tanh(enc_gate_msa).unsqueeze(1)
norm_encoder_hidden_states = self.norm3_context(encoder_hidden_states) * (1 + enc_scale_mlp.unsqueeze(1))
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
)
norm_encoder_hidden_states = self.norm3_context(
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).float())
)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + self.norm4_context(context_ff_output) * torch.tanh(
enc_gate_mlp
).unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + self.norm4_context(
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
)
return hidden_states, encoder_hidden_states
@@ -308,7 +365,11 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin):
)
self.norm_out = AdaLayerNormContinuous(
inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm"
inner_dim,
inner_dim,
elementwise_affine=False,
eps=1e-6,
norm_type="layer_norm",
)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
@@ -324,6 +385,7 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin):
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_attention_mask: torch.Tensor,
joint_attention_mask=None,
return_dict: bool = True,
) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
@@ -333,7 +395,10 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin):
post_patch_width = width // p
temb, encoder_hidden_states = self.time_embed(
timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype
timestep,
encoder_hidden_states,
encoder_attention_mask,
hidden_dtype=hidden_states.dtype,
)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
@@ -373,8 +438,8 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin):
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_mask=joint_attention_mask,
)
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

View File

@@ -17,10 +17,11 @@ from typing import Callable, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from transformers import T5EncoderModel, T5TokenizerFast
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...models.autoencoders import AutoencoderKL
from ...models.autoencoders import AutoencoderKLMochi
from ...models.transformers import MochiTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
@@ -55,7 +56,7 @@ EXAMPLE_DOC_STRING = """
>>> pipe.enable_model_cpu_offload()
>>> pipe.enable_vae_tiling()
>>> prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
>>> frames = pipe(prompt, num_inference_steps=28, guidance_scale=3.5).frames[0]
>>> frames = pipe(prompt, num_inference_steps=50, guidance_scale=3.5).frames[0]
>>> export_to_video(frames, "mochi.mp4")
```
"""
@@ -163,8 +164,8 @@ class MochiPipeline(DiffusionPipeline):
Conditional Transformer architecture to denoise the encoded video latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
vae ([`AutoencoderKLMochi`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
@@ -183,7 +184,7 @@ class MochiPipeline(DiffusionPipeline):
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
vae: AutoencoderKLMochi,
text_encoder: T5EncoderModel,
tokenizer: T5TokenizerFast,
transformer: MochiTransformer3DModel,
@@ -197,17 +198,11 @@ class MochiPipeline(DiffusionPipeline):
transformer=transformer,
scheduler=scheduler,
)
# TODO: determine these scaling factors from model parameters
self.vae_spatial_scale_factor = 8
self.vae_temporal_scale_factor = 6
self.patch_size = 2
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_scale_factor)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
self.default_height = 480
self.default_width = 848
self.vae_scale_factor_spatial = vae.spatial_compression_ratio if hasattr(self, "vae") else 8
self.vae_scale_factor_temporal = vae.temporal_compression_ratio if hasattr(self, "vae") else 6
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
# Adapted from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
@@ -245,7 +240,7 @@ class MochiPipeline(DiffusionPipeline):
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
@@ -340,7 +335,12 @@ class MochiPipeline(DiffusionPipeline):
dtype=dtype,
)
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
)
def check_inputs(
self,
@@ -424,6 +424,13 @@ class MochiPipeline(DiffusionPipeline):
"""
self.vae.disable_tiling()
def prepare_joint_attention_mask(self, prompt_attention_mask, latents):
batch_size, channels, latent_frames, latent_height, latent_width = latents.shape
num_latents = latent_frames * latent_height * latent_width
num_visual_tokens = num_latents // (self.transformer.config.patch_size**2)
mask = F.pad(prompt_attention_mask, (num_visual_tokens, 0), value=True)
return mask
def prepare_latents(
self,
batch_size,
@@ -436,9 +443,9 @@ class MochiPipeline(DiffusionPipeline):
generator,
latents=None,
):
height = height // self.vae_spatial_scale_factor
width = width // self.vae_spatial_scale_factor
num_frames = (num_frames - 1) // self.vae_temporal_scale_factor + 1
height = height // self.vae_scale_factor_spatial
width = width // self.vae_scale_factor_spatial
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (batch_size, num_channels_latents, num_frames, height, width)
@@ -478,7 +485,7 @@ class MochiPipeline(DiffusionPipeline):
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: int = 19,
num_inference_steps: int = 28,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 4.5,
num_videos_per_prompt: Optional[int] = 1,
@@ -501,13 +508,13 @@ class MochiPipeline(DiffusionPipeline):
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to `self.default_height`):
height (`int`, *optional*, defaults to `self.transformer.config.sample_height * self.vae.spatial_compression_ratio`):
The height in pixels of the generated image. This is set to 480 by default for the best results.
width (`int`, *optional*, defaults to `self.default_width`):
width (`int`, *optional*, defaults to `self.transformer.config.sample_width * self.vae.spatial_compression_ratio`):
The width in pixels of the generated image. This is set to 848 by default for the best results.
num_frames (`int`, defaults to `19`):
The number of video frames to generate
num_inference_steps (`int`, *optional*, defaults to 50):
num_inference_steps (`int`, *optional*, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
@@ -567,8 +574,8 @@ class MochiPipeline(DiffusionPipeline):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
height = height or self.default_height
width = width or self.default_width
height = height or 480 # self.transformer.config.sample_height * self.vae_scaling_factor_spatial
width = width or 848 # self.transformer.config.sample_width * self.vae_scaling_factor_spatial
# 1. Check inputs. Raise error if not correct
self.check_inputs(
@@ -594,7 +601,6 @@ class MochiPipeline(DiffusionPipeline):
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Prepare text embeddings
(
prompt_embeds,
@@ -613,9 +619,9 @@ class MochiPipeline(DiffusionPipeline):
max_sequence_length=max_sequence_length,
device=device,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# if self.do_classifier_free_guidance:
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
@@ -637,6 +643,9 @@ class MochiPipeline(DiffusionPipeline):
sigmas = linear_quadratic_schedule(num_inference_steps, threshold_noise)
sigmas = np.array(sigmas)
joint_attention_mask = self.prepare_joint_attention_mask(prompt_attention_mask, latents)
negative_joint_attention_mask = self.prepare_joint_attention_mask(negative_prompt_attention_mask, latents)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
@@ -653,21 +662,34 @@ class MochiPipeline(DiffusionPipeline):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
noise_pred_text = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
encoder_attention_mask=prompt_attention_mask,
joint_attention_mask=joint_attention_mask,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=negative_prompt_embeds,
timestep=timestep,
encoder_attention_mask=negative_prompt_attention_mask,
joint_attention_mask=negative_joint_attention_mask,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
@@ -693,7 +715,6 @@ class MochiPipeline(DiffusionPipeline):
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
video = latents
else: