Compare commits

...

6 Commits

Author SHA1 Message Date
DN6
cb69798b3d update 2025-10-27 18:11:28 +05:30
DN6
0229976ab5 update 2025-10-23 16:08:35 +05:30
Dhruv Nair
8f1b207ffd Merge branch 'main' into vace-fix 2025-10-23 15:11:28 +05:30
DN6
99308efb55 update 2025-10-03 16:48:43 +05:30
DN6
5015ce4fc7 update 2025-10-03 16:44:23 +05:30
DN6
5ed984cc47 update 2025-10-03 14:42:58 +05:30
2 changed files with 137 additions and 25 deletions

View File

@@ -152,34 +152,36 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
transformer ([`WanVACETransformer3DModel`]):
Conditional Transformer to denoise the input latents.
transformer_2 ([`WanVACETransformer3DModel`], *optional*):
Conditional Transformer to denoise the input latents during the low-noise stage. In two-stage denoising,
`transformer` handles high-noise stages and `transformer_2` handles low-noise stages. If not provided, only
`transformer` is used.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
transformer ([`WanVACETransformer3DModel`], *optional*):
Conditional Transformer to denoise the input latents during the high-noise stage. In two-stage denoising,
`transformer` handles high-noise stages and `transformer_2` handles low-noise stages. At least one of
`transformer` or `transformer_2` must be provided.
transformer_2 ([`WanVACETransformer3DModel`], *optional*):
Conditional Transformer to denoise the input latents during the low-noise stage. In two-stage denoising,
`transformer` handles high-noise stages and `transformer_2` handles low-noise stages. At least one of
`transformer` or `transformer_2` must be provided.
boundary_ratio (`float`, *optional*, defaults to `None`):
Ratio of total timesteps to use as the boundary for switching between transformers in two-stage denoising.
The actual boundary timestep is calculated as `boundary_ratio * num_train_timesteps`. When provided,
`transformer` handles timesteps >= boundary_timestep and `transformer_2` handles timesteps <
boundary_timestep. If `None`, only `transformer` is used for the entire denoising process.
boundary_timestep. If `None`, only the available transformer is used for the entire denoising process.
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
model_cpu_offload_seq = "text_encoder->transformer->transformer_2->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
_optional_components = ["transformer_2"]
_optional_components = ["transformer", "transformer_2"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
transformer: WanVACETransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
transformer: WanVACETransformer3DModel = None,
transformer_2: WanVACETransformer3DModel = None,
boundary_ratio: Optional[float] = None,
):
@@ -336,7 +338,15 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
reference_images=None,
guidance_scale_2=None,
):
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
if self.transformer is not None:
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
elif self.transformer_2 is not None:
base = self.vae_scale_factor_spatial * self.transformer_2.config.patch_size[1]
else:
raise ValueError(
"`transformer` or `transformer_2` component must be set in order to run inference with this pipeline"
)
if height % base != 0 or width % base != 0:
raise ValueError(f"`height` and `width` have to be divisible by {base} but are {height} and {width}.")
@@ -414,7 +424,11 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
device: Optional[torch.device] = None,
):
if video is not None:
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
base = self.vae_scale_factor_spatial * (
self.transformer.config.patch_size[1]
if self.transformer is not None
else self.transformer_2.config.patch_size[1]
)
video_height, video_width = self.video_processor.get_default_height_width(video[0])
if video_height * video_width > height * width:
@@ -589,7 +603,11 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
"Generating with more than one video is not yet supported. This may be supported in the future."
)
transformer_patch_size = self.transformer.config.patch_size[1]
transformer_patch_size = (
self.transformer.config.patch_size[1]
if self.transformer is not None
else self.transformer_2.config.patch_size[1]
)
mask_list = []
for mask_, reference_images_batch in zip(mask, reference_images):
@@ -844,20 +862,25 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
batch_size = prompt_embeds.shape[0]
vae_dtype = self.vae.dtype
transformer_dtype = self.transformer.dtype
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
vace_layers = (
self.transformer.config.vace_layers
if self.transformer is not None
else self.transformer_2.config.vace_layers
)
if isinstance(conditioning_scale, (int, float)):
conditioning_scale = [conditioning_scale] * len(self.transformer.config.vace_layers)
conditioning_scale = [conditioning_scale] * len(vace_layers)
if isinstance(conditioning_scale, list):
if len(conditioning_scale) != len(self.transformer.config.vace_layers):
if len(conditioning_scale) != len(vace_layers):
raise ValueError(
f"Length of `conditioning_scale` {len(conditioning_scale)} does not match number of layers {len(self.transformer.config.vace_layers)}."
f"Length of `conditioning_scale` {len(conditioning_scale)} does not match number of layers {len(vace_layers)}."
)
conditioning_scale = torch.tensor(conditioning_scale)
if isinstance(conditioning_scale, torch.Tensor):
if conditioning_scale.size(0) != len(self.transformer.config.vace_layers):
if conditioning_scale.size(0) != len(vace_layers):
raise ValueError(
f"Length of `conditioning_scale` {conditioning_scale.size(0)} does not match number of layers {len(self.transformer.config.vace_layers)}."
f"Length of `conditioning_scale` {conditioning_scale.size(0)} does not match number of layers {len(vace_layers)}."
)
conditioning_scale = conditioning_scale.to(device=device, dtype=transformer_dtype)
@@ -900,7 +923,11 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
conditioning_latents = torch.cat([conditioning_latents, mask], dim=1)
conditioning_latents = conditioning_latents.to(transformer_dtype)
num_channels_latents = self.transformer.config.in_channels
num_channels_latents = (
self.transformer.config.in_channels
if self.transformer is not None
else self.transformer_2.config.in_channels
)
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
@@ -968,7 +995,7 @@ class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
noise_pred = noise_uncond + current_guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

View File

@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
@@ -19,9 +20,15 @@ import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanVACEPipeline, WanVACETransformer3DModel
from diffusers import (
AutoencoderKLWan,
FlowMatchEulerDiscreteScheduler,
UniPCMultistepScheduler,
WanVACEPipeline,
WanVACETransformer3DModel,
)
from ...testing_utils import enable_full_determinism
from ...testing_utils import enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@@ -212,3 +219,81 @@ class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
)
def test_save_load_float16(self):
pass
def test_inference_with_only_transformer(self):
components = self.get_dummy_components()
components["transformer_2"] = None
components["boundary_ratio"] = 0.0
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
video = pipe(**inputs).frames[0]
assert video.shape == (17, 3, 16, 16)
def test_inference_with_only_transformer_2(self):
components = self.get_dummy_components()
components["transformer_2"] = components["transformer"]
components["transformer"] = None
# FlowMatchEulerDiscreteScheduler doesn't support running low noise only scheduler
# because starting timestep t == 1000 == boundary_timestep
components["scheduler"] = UniPCMultistepScheduler(
prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0
)
components["boundary_ratio"] = 1.0
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
video = pipe(**inputs).frames[0]
assert video.shape == (17, 3, 16, 16)
def test_save_load_optional_components(self, expected_max_difference=1e-4):
optional_component = ["transformer"]
components = self.get_dummy_components()
components["transformer_2"] = components["transformer"]
# FlowMatchEulerDiscreteScheduler doesn't support running low noise only scheduler
# because starting timestep t == 1000 == boundary_timestep
components["scheduler"] = UniPCMultistepScheduler(
prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0
)
for component in optional_component:
components[component] = None
components["boundary_ratio"] = 1.0
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for component in optional_component:
assert getattr(pipe_loaded, component) is None, f"`{component}` did not stay set to None after loading."
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
assert max_diff < expected_max_difference, "Outputs exceed expecpted maximum difference"