mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-24 12:35:59 +08:00
Compare commits
15 Commits
cuda-128-g
...
modular-kl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a81893c407 | ||
|
|
eb221d5bc1 | ||
|
|
a232cd9d30 | ||
|
|
1c500c8eeb | ||
|
|
f49c68cecf | ||
|
|
5c1fc4489f | ||
|
|
e13377e841 | ||
|
|
dea47aa24c | ||
|
|
c10041e57e | ||
|
|
e1e162918d | ||
|
|
d2953678ad | ||
|
|
3c7494a651 | ||
|
|
9357d8f4f7 | ||
|
|
fb2cb18f73 | ||
|
|
618a8a9897 |
@@ -1,8 +1,8 @@
|
||||
FROM nvidia/cuda:12.8.0-runtime-ubuntu22.04
|
||||
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ARG PYTHON_VERSION=3.11
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
@@ -32,12 +32,10 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
# Install torch, torchvision, and torchaudio together to ensure compatibility
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--index-url https://download.pytorch.org/whl/cu128
|
||||
torchaudio
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
FROM nvidia/cuda:12.8.0-runtime-ubuntu22.04
|
||||
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ARG PYTHON_VERSION=3.11
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
@@ -32,12 +32,10 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
# Install torch, torchvision, and torchaudio together to ensure compatibility
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--index-url https://download.pytorch.org/whl/cu128
|
||||
torchaudio
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
|
||||
@@ -413,6 +413,9 @@ else:
|
||||
_import_structure["modular_pipelines"].extend(
|
||||
[
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2KleinAutoBlocks",
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2KleinModularPipeline",
|
||||
"Flux2ModularPipeline",
|
||||
"FluxAutoBlocks",
|
||||
"FluxKontextAutoBlocks",
|
||||
@@ -1146,6 +1149,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .modular_pipelines import (
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
FluxAutoBlocks,
|
||||
FluxKontextAutoBlocks,
|
||||
|
||||
@@ -406,7 +406,6 @@ class LongCatImageTransformer2DModel(
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_repeated_blocks = ["LongCatImageTransformerBlock", "LongCatImageSingleTransformerBlock"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
|
||||
@@ -54,7 +54,10 @@ else:
|
||||
]
|
||||
_import_structure["flux2"] = [
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2KleinAutoBlocks",
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2ModularPipeline",
|
||||
"Flux2KleinModularPipeline",
|
||||
]
|
||||
_import_structure["qwenimage"] = [
|
||||
"QwenImageAutoBlocks",
|
||||
@@ -81,7 +84,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .components_manager import ComponentsManager
|
||||
from .flux import FluxAutoBlocks, FluxKontextAutoBlocks, FluxKontextModularPipeline, FluxModularPipeline
|
||||
from .flux2 import Flux2AutoBlocks, Flux2ModularPipeline
|
||||
from .flux2 import (
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
)
|
||||
from .modular_pipeline import (
|
||||
AutoPipelineBlocks,
|
||||
BlockState,
|
||||
|
||||
@@ -43,7 +43,7 @@ else:
|
||||
"Flux2ProcessImagesInputStep",
|
||||
"Flux2TextInputStep",
|
||||
]
|
||||
_import_structure["modular_blocks"] = [
|
||||
_import_structure["modular_blocks_flux2"] = [
|
||||
"ALL_BLOCKS",
|
||||
"AUTO_BLOCKS",
|
||||
"REMOTE_AUTO_BLOCKS",
|
||||
@@ -51,10 +51,11 @@ else:
|
||||
"IMAGE_CONDITIONED_BLOCKS",
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2AutoVaeEncoderStep",
|
||||
"Flux2BeforeDenoiseStep",
|
||||
"Flux2CoreDenoiseStep",
|
||||
"Flux2VaeEncoderSequentialStep",
|
||||
]
|
||||
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline"]
|
||||
_import_structure["modular_blocks_flux2_klein"] = ["Flux2KleinAutoBlocks", "Flux2KleinBaseAutoBlocks"]
|
||||
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline", "Flux2KleinModularPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -85,7 +86,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
Flux2ProcessImagesInputStep,
|
||||
Flux2TextInputStep,
|
||||
)
|
||||
from .modular_blocks import (
|
||||
from .modular_blocks_flux2 import (
|
||||
ALL_BLOCKS,
|
||||
AUTO_BLOCKS,
|
||||
IMAGE_CONDITIONED_BLOCKS,
|
||||
@@ -93,10 +94,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
TEXT2IMAGE_BLOCKS,
|
||||
Flux2AutoBlocks,
|
||||
Flux2AutoVaeEncoderStep,
|
||||
Flux2BeforeDenoiseStep,
|
||||
Flux2CoreDenoiseStep,
|
||||
Flux2VaeEncoderSequentialStep,
|
||||
)
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
from .modular_blocks_flux2_klein import (
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
)
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -129,17 +129,9 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
InputParam("num_inference_steps", default=50),
|
||||
InputParam("timesteps"),
|
||||
InputParam("sigmas"),
|
||||
InputParam("guidance_scale", default=4.0),
|
||||
InputParam("latents", type_hint=torch.Tensor),
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam("height", type_hint=int),
|
||||
InputParam("width", type_hint=int),
|
||||
InputParam(
|
||||
"batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -151,13 +143,12 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
type_hint=int,
|
||||
description="The number of denoising steps to perform at inference time",
|
||||
),
|
||||
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
block_state.device = components._execution_device
|
||||
device = components._execution_device
|
||||
|
||||
scheduler = components.scheduler
|
||||
|
||||
@@ -183,7 +174,7 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps,
|
||||
block_state.device,
|
||||
device,
|
||||
timesteps=timesteps,
|
||||
sigmas=sigmas,
|
||||
mu=mu,
|
||||
@@ -191,11 +182,6 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
block_state.timesteps = timesteps
|
||||
block_state.num_inference_steps = num_inference_steps
|
||||
|
||||
batch_size = block_state.batch_size * block_state.num_images_per_prompt
|
||||
guidance = torch.full([1], block_state.guidance_scale, device=block_state.device, dtype=torch.float32)
|
||||
guidance = guidance.expand(batch_size)
|
||||
block_state.guidance = guidance
|
||||
|
||||
components.scheduler.set_begin_index(0)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
@@ -353,7 +339,6 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="prompt_embeds", required=True),
|
||||
InputParam(name="latent_ids"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -365,12 +350,6 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
|
||||
),
|
||||
OutputParam(
|
||||
name="latent_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for image latents, used for RoPE calculation.",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
@@ -403,6 +382,72 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseRoPEInputsStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that prepares the 4D RoPE position IDs for Flux2-Klein base model denoising. Should be placed after text encoder and latent preparation steps."
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="prompt_embeds", required=True),
|
||||
InputParam(name="negative_prompt_embeds", required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
name="txt_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
|
||||
),
|
||||
OutputParam(
|
||||
name="negative_txt_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for negative text tokens, used for RoPE calculation.",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _prepare_text_ids(x: torch.Tensor, t_coord: Optional[torch.Tensor] = None):
|
||||
"""Prepare 4D position IDs for text tokens."""
|
||||
B, L, _ = x.shape
|
||||
out_ids = []
|
||||
|
||||
for i in range(B):
|
||||
t = torch.arange(1) if t_coord is None else t_coord[i]
|
||||
h = torch.arange(1)
|
||||
w = torch.arange(1)
|
||||
seq_l = torch.arange(L)
|
||||
|
||||
coords = torch.cartesian_prod(t, h, w, seq_l)
|
||||
out_ids.append(coords)
|
||||
|
||||
return torch.stack(out_ids)
|
||||
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
prompt_embeds = block_state.prompt_embeds
|
||||
device = prompt_embeds.device
|
||||
|
||||
block_state.txt_ids = self._prepare_text_ids(prompt_embeds)
|
||||
block_state.txt_ids = block_state.txt_ids.to(device)
|
||||
|
||||
block_state.negative_txt_ids = None
|
||||
if block_state.negative_prompt_embeds is not None:
|
||||
block_state.negative_txt_ids = self._prepare_text_ids(block_state.negative_prompt_embeds)
|
||||
block_state.negative_txt_ids = block_state.negative_txt_ids.to(device)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@@ -506,3 +551,42 @@ class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2PrepareGuidanceStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that prepares the guidance scale tensor for Flux2 inference"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("guidance_scale", default=4.0),
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam(
|
||||
"batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
device = components._execution_device
|
||||
batch_size = block_state.batch_size * block_state.num_images_per_prompt
|
||||
guidance = torch.full([1], block_state.guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(batch_size)
|
||||
block_state.guidance = guidance
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -29,29 +29,16 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
class Flux2UnpackLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLFlux2),
|
||||
ComponentSpec(
|
||||
"image_processor",
|
||||
Flux2ImageProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
|
||||
return "Step that unpacks the latents from the denoising step"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("output_type", default="pil"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
@@ -70,9 +57,9 @@ class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"images",
|
||||
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
|
||||
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
|
||||
"latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoise latents from denoising step, unpacked with position IDs.",
|
||||
)
|
||||
]
|
||||
|
||||
@@ -107,6 +94,62 @@ class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
|
||||
return torch.stack(x_list, dim=0)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
latents = block_state.latents
|
||||
latent_ids = block_state.latent_ids
|
||||
|
||||
latents = self._unpack_latents_with_ids(latents, latent_ids)
|
||||
|
||||
block_state.latents = latents
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLFlux2),
|
||||
ComponentSpec(
|
||||
"image_processor",
|
||||
Flux2ImageProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("output_type", default="pil"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoised latents from the denoising step",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"images",
|
||||
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
|
||||
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
|
||||
)
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _unpatchify_latents(latents):
|
||||
"""Convert patchified latents back to regular format."""
|
||||
@@ -121,26 +164,20 @@ class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
block_state = self.get_block_state(state)
|
||||
vae = components.vae
|
||||
|
||||
if block_state.output_type == "latent":
|
||||
block_state.images = block_state.latents
|
||||
else:
|
||||
latents = block_state.latents
|
||||
latent_ids = block_state.latent_ids
|
||||
latents = block_state.latents
|
||||
|
||||
latents = self._unpack_latents_with_ids(latents, latent_ids)
|
||||
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
|
||||
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents * latents_bn_std + latents_bn_mean
|
||||
|
||||
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
|
||||
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents * latents_bn_std + latents_bn_mean
|
||||
latents = self._unpatchify_latents(latents)
|
||||
|
||||
latents = self._unpatchify_latents(latents)
|
||||
|
||||
block_state.images = vae.decode(latents, return_dict=False)[0]
|
||||
block_state.images = components.image_processor.postprocess(
|
||||
block_state.images, output_type=block_state.output_type
|
||||
)
|
||||
block_state.images = vae.decode(latents, return_dict=False)[0]
|
||||
block_state.images = components.image_processor.postprocess(
|
||||
block_state.images, output_type=block_state.output_type
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -16,6 +16,8 @@ from typing import Any, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...guiders import ClassifierFreeGuidance
|
||||
from ...models import Flux2Transformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging
|
||||
@@ -25,8 +27,8 @@ from ..modular_pipeline import (
|
||||
ModularPipelineBlocks,
|
||||
PipelineState,
|
||||
)
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
@@ -134,6 +136,229 @@ class Flux2LoopDenoiser(ModularPipelineBlocks):
|
||||
return components, block_state
|
||||
|
||||
|
||||
# same as Flux2LoopDenoiser but guidance=None
|
||||
class Flux2KleinLoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [ComponentSpec("transformer", Flux2Transformer2DModel)]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Step within the denoising loop that denoises the latents for Flux2. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `Flux2DenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("joint_attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to denoise. Shape: (B, seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latent_ids",
|
||||
type_hint=torch.Tensor,
|
||||
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
|
||||
),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"txt_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"latent_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for latent tokens (T, H, W, L)",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
latents = block_state.latents
|
||||
latent_model_input = latents.to(components.transformer.dtype)
|
||||
img_ids = block_state.latent_ids
|
||||
|
||||
image_latents = getattr(block_state, "image_latents", None)
|
||||
if image_latents is not None:
|
||||
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
|
||||
image_latent_ids = block_state.image_latent_ids
|
||||
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
|
||||
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
noise_pred = components.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep / 1000,
|
||||
guidance=None,
|
||||
encoder_hidden_states=block_state.prompt_embeds,
|
||||
txt_ids=block_state.txt_ids,
|
||||
img_ids=img_ids,
|
||||
joint_attention_kwargs=block_state.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
noise_pred = noise_pred[:, : latents.size(1)]
|
||||
block_state.noise_pred = noise_pred
|
||||
|
||||
return components, block_state
|
||||
|
||||
|
||||
# support CFG for Flux2-Klein base model
|
||||
class Flux2KleinBaseLoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("transformer", Flux2Transformer2DModel),
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 4.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Step within the denoising loop that denoises the latents for Flux2. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `Flux2DenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("joint_attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to denoise. Shape: (B, seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latent_ids",
|
||||
type_hint=torch.Tensor,
|
||||
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
|
||||
),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"negative_prompt_embeds",
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="Negative text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"txt_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"negative_txt_ids",
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for negative text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"latent_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for latent tokens (T, H, W, L)",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
latents = block_state.latents
|
||||
latent_model_input = latents.to(components.transformer.dtype)
|
||||
img_ids = block_state.latent_ids
|
||||
|
||||
image_latents = getattr(block_state, "image_latents", None)
|
||||
if image_latents is not None:
|
||||
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
|
||||
image_latent_ids = block_state.image_latent_ids
|
||||
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
|
||||
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
guider_inputs = {
|
||||
"encoder_hidden_states": (
|
||||
getattr(block_state, "prompt_embeds", None),
|
||||
getattr(block_state, "negative_prompt_embeds", None),
|
||||
),
|
||||
"txt_ids": (
|
||||
getattr(block_state, "txt_ids", None),
|
||||
getattr(block_state, "negative_txt_ids", None),
|
||||
),
|
||||
}
|
||||
|
||||
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
|
||||
guider_state = components.guider.prepare_inputs(guider_inputs)
|
||||
|
||||
for guider_state_batch in guider_state:
|
||||
components.guider.prepare_models(components.transformer)
|
||||
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
|
||||
|
||||
noise_pred = components.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep / 1000,
|
||||
guidance=None,
|
||||
img_ids=img_ids,
|
||||
joint_attention_kwargs=block_state.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
**cond_kwargs,
|
||||
)[0]
|
||||
guider_state_batch.noise_pred = noise_pred[:, : latents.size(1)]
|
||||
components.guider.cleanup_models(components.transformer)
|
||||
|
||||
# perform guidance
|
||||
block_state.noise_pred = components.guider(guider_state)[0]
|
||||
|
||||
return components, block_state
|
||||
|
||||
|
||||
class Flux2LoopAfterDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@@ -250,3 +475,35 @@ class Flux2DenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinDenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
block_classes = [Flux2KleinLoopDenoiser, Flux2LoopAfterDenoiser]
|
||||
block_names = ["denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoises the latents for Flux2. \n"
|
||||
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `Flux2KleinLoopDenoiser`\n"
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinBaseDenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
block_classes = [Flux2KleinBaseLoopDenoiser, Flux2LoopAfterDenoiser]
|
||||
block_names = ["denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoises the latents for Flux2. \n"
|
||||
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `Flux2KleinBaseLoopDenoiser`\n"
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
@@ -15,13 +15,15 @@
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
|
||||
from transformers import AutoProcessor, Mistral3ForConditionalGeneration, Qwen2TokenizerFast, Qwen3ForCausalLM
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...guiders import ClassifierFreeGuidance
|
||||
from ...models import AutoencoderKLFlux2
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -79,10 +81,8 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(10, 20, 30), required=False),
|
||||
InputParam("joint_attention_kwargs"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -99,14 +99,7 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
prompt_embeds = getattr(block_state, "prompt_embeds", None)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
|
||||
"Please make sure to only forward one of the two."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
@@ -165,10 +158,6 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
|
||||
block_state.device = components._execution_device
|
||||
|
||||
if block_state.prompt_embeds is not None:
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
@@ -205,7 +194,6 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -222,15 +210,8 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
prompt_embeds = getattr(block_state, "prompt_embeds", None)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
|
||||
"Please make sure to only forward one of the two."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}")
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
@@ -244,10 +225,6 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
|
||||
block_state.device = components._execution_device
|
||||
|
||||
if block_state.prompt_embeds is not None:
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
@@ -270,6 +247,289 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinTextEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("text_encoder", Qwen3ForCausalLM),
|
||||
ComponentSpec("tokenizer", Qwen2TokenizerFast),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
|
||||
def _get_qwen3_prompt_embeds(
|
||||
text_encoder: Qwen3ForCausalLM,
|
||||
tokenizer: Qwen2TokenizerFast,
|
||||
prompt: Union[str, List[str]],
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
max_sequence_length: int = 512,
|
||||
hidden_states_layers: List[int] = (9, 18, 27),
|
||||
):
|
||||
dtype = text_encoder.dtype if dtype is None else dtype
|
||||
device = text_encoder.device if device is None else device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
all_input_ids = []
|
||||
all_attention_masks = []
|
||||
|
||||
for single_prompt in prompt:
|
||||
messages = [{"role": "user", "content": single_prompt}]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=False,
|
||||
)
|
||||
inputs = tokenizer(
|
||||
text,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_sequence_length,
|
||||
)
|
||||
|
||||
all_input_ids.append(inputs["input_ids"])
|
||||
all_attention_masks.append(inputs["attention_mask"])
|
||||
|
||||
input_ids = torch.cat(all_input_ids, dim=0).to(device)
|
||||
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
|
||||
|
||||
# Forward pass through the model
|
||||
output = text_encoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
output_hidden_states=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
# Only use outputs from intermediate layers and stack them
|
||||
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
|
||||
out = out.to(dtype=dtype, device=device)
|
||||
|
||||
batch_size, num_channels, seq_len, hidden_dim = out.shape
|
||||
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(block_state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("text_encoder", Qwen3ForCausalLM),
|
||||
ComponentSpec("tokenizer", Qwen2TokenizerFast),
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 4.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
OutputParam(
|
||||
"negative_prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Negative text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
|
||||
def _get_qwen3_prompt_embeds(
|
||||
text_encoder: Qwen3ForCausalLM,
|
||||
tokenizer: Qwen2TokenizerFast,
|
||||
prompt: Union[str, List[str]],
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
max_sequence_length: int = 512,
|
||||
hidden_states_layers: List[int] = (9, 18, 27),
|
||||
):
|
||||
dtype = text_encoder.dtype if dtype is None else dtype
|
||||
device = text_encoder.device if device is None else device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
all_input_ids = []
|
||||
all_attention_masks = []
|
||||
|
||||
for single_prompt in prompt:
|
||||
messages = [{"role": "user", "content": single_prompt}]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=False,
|
||||
)
|
||||
inputs = tokenizer(
|
||||
text,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_sequence_length,
|
||||
)
|
||||
|
||||
all_input_ids.append(inputs["input_ids"])
|
||||
all_attention_masks.append(inputs["attention_mask"])
|
||||
|
||||
input_ids = torch.cat(all_input_ids, dim=0).to(device)
|
||||
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
|
||||
|
||||
# Forward pass through the model
|
||||
output = text_encoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
output_hidden_states=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
# Only use outputs from intermediate layers and stack them
|
||||
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
|
||||
out = out.to(dtype=dtype, device=device)
|
||||
|
||||
batch_size, num_channels, seq_len, hidden_dim = out.shape
|
||||
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(block_state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
|
||||
if components.requires_unconditional_embeds:
|
||||
negative_prompt = [""] * len(prompt)
|
||||
block_state.negative_prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
else:
|
||||
block_state.negative_prompt_embeds = None
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2VaeEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ class Flux2TextInputStep(ModularPipelineBlocks):
|
||||
required=True,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated text embeddings from Mistral3. Can be generated from text_encoder step.",
|
||||
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -89,6 +89,90 @@ class Flux2TextInputStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseTextInputStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"This step:\n"
|
||||
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
|
||||
" 2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
|
||||
),
|
||||
InputParam(
|
||||
"negative_prompt_embeds",
|
||||
required=False,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"batch_size",
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
|
||||
),
|
||||
OutputParam(
|
||||
"dtype",
|
||||
type_hint=torch.dtype,
|
||||
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
|
||||
),
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="Text embeddings used to guide the image generation",
|
||||
),
|
||||
OutputParam(
|
||||
"negative_prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="Negative text embeddings used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
block_state.batch_size = block_state.prompt_embeds.shape[0]
|
||||
block_state.dtype = block_state.prompt_embeds.dtype
|
||||
|
||||
_, seq_len, _ = block_state.prompt_embeds.shape
|
||||
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
|
||||
block_state.prompt_embeds = block_state.prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
if block_state.negative_prompt_embeds is not None:
|
||||
_, seq_len, _ = block_state.negative_prompt_embeds.shape
|
||||
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.repeat(
|
||||
1, block_state.num_images_per_prompt, 1
|
||||
)
|
||||
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2ProcessImagesInputStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
|
||||
@@ -12,16 +12,22 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from .before_denoise import (
|
||||
Flux2PrepareGuidanceStep,
|
||||
Flux2PrepareImageLatentsStep,
|
||||
Flux2PrepareLatentsStep,
|
||||
Flux2RoPEInputsStep,
|
||||
Flux2SetTimestepsStep,
|
||||
)
|
||||
from .decoders import Flux2DecodeStep
|
||||
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
|
||||
from .denoise import Flux2DenoiseStep
|
||||
from .encoders import (
|
||||
Flux2RemoteTextEncoderStep,
|
||||
@@ -41,7 +47,6 @@ Flux2VaeEncoderBlocks = InsertableDict(
|
||||
[
|
||||
("preprocess", Flux2ProcessImagesInputStep()),
|
||||
("encode", Flux2VaeEncoderStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
@@ -72,33 +77,56 @@ class Flux2AutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
)
|
||||
|
||||
|
||||
Flux2BeforeDenoiseBlocks = InsertableDict(
|
||||
Flux2CoreDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2TextInputStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2BeforeDenoiseStep(SequentialPipelineBlocks):
|
||||
class Flux2CoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
block_classes = Flux2BeforeDenoiseBlocks.values()
|
||||
block_names = Flux2BeforeDenoiseBlocks.keys()
|
||||
block_classes = Flux2CoreDenoiseBlocks.values()
|
||||
block_names = Flux2CoreDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Before denoise step that prepares the inputs for the denoise step in Flux2 generation."
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-dev.\n"
|
||||
" - `Flux2TextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2PrepareGuidanceStep` (prepare_guidance) prepares the guidance tensor for the denoising step.\n"
|
||||
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
|
||||
" - `Flux2DenoiseStep` (denoise) iteratively denoises the latents.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", Flux2TextEncoderStep()),
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("before_denoise", Flux2BeforeDenoiseStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("vae_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("denoise", Flux2CoreDenoiseStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -107,10 +135,8 @@ AUTO_BLOCKS = InsertableDict(
|
||||
REMOTE_AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", Flux2RemoteTextEncoderStep()),
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("before_denoise", Flux2BeforeDenoiseStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("vae_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("denoise", Flux2CoreDenoiseStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -130,6 +156,16 @@ class Flux2AutoBlocks(SequentialPipelineBlocks):
|
||||
"- For image-conditioned generation, you need to provide `image` (list of PIL images)."
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
TEXT2IMAGE_BLOCKS = InsertableDict(
|
||||
[
|
||||
@@ -137,8 +173,10 @@ TEXT2IMAGE_BLOCKS = InsertableDict(
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -152,8 +190,10 @@ IMAGE_CONDITIONED_BLOCKS = InsertableDict(
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -0,0 +1,232 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from .before_denoise import (
|
||||
Flux2KleinBaseRoPEInputsStep,
|
||||
Flux2PrepareImageLatentsStep,
|
||||
Flux2PrepareLatentsStep,
|
||||
Flux2RoPEInputsStep,
|
||||
Flux2SetTimestepsStep,
|
||||
)
|
||||
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
|
||||
from .denoise import Flux2KleinBaseDenoiseStep, Flux2KleinDenoiseStep
|
||||
from .encoders import (
|
||||
Flux2KleinBaseTextEncoderStep,
|
||||
Flux2KleinTextEncoderStep,
|
||||
Flux2VaeEncoderStep,
|
||||
)
|
||||
from .inputs import (
|
||||
Flux2KleinBaseTextInputStep,
|
||||
Flux2ProcessImagesInputStep,
|
||||
Flux2TextInputStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
################
|
||||
# VAE encoder
|
||||
################
|
||||
|
||||
Flux2KleinVaeEncoderBlocks = InsertableDict(
|
||||
[
|
||||
("preprocess", Flux2ProcessImagesInputStep()),
|
||||
("encode", Flux2VaeEncoderStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinVaeEncoderSequentialStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
block_classes = Flux2KleinVaeEncoderBlocks.values()
|
||||
block_names = Flux2KleinVaeEncoderBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "VAE encoder step that preprocesses and encodes the image inputs into their latent representations."
|
||||
|
||||
|
||||
class Flux2KleinAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [Flux2KleinVaeEncoderSequentialStep]
|
||||
block_names = ["img_conditioning"]
|
||||
block_trigger_inputs = ["image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"VAE encoder step that encodes the image inputs into their latent representations.\n"
|
||||
"This is an auto pipeline block that works for image conditioning tasks.\n"
|
||||
" - `Flux2KleinVaeEncoderSequentialStep` is used when `image` is provided.\n"
|
||||
" - If `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
###
|
||||
### Core denoise
|
||||
###
|
||||
|
||||
Flux2KleinCoreDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2TextInputStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2KleinDenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
block_classes = Flux2KleinCoreDenoiseBlocks.values()
|
||||
block_names = Flux2KleinCoreDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-Klein (distilled model).\n"
|
||||
" - `Flux2KleinTextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
|
||||
" - `Flux2KleinDenoiseStep` (denoise) iteratively denoises the latents.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
Flux2KleinBaseCoreDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2KleinBaseTextInputStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_rope_inputs", Flux2KleinBaseRoPEInputsStep()),
|
||||
("denoise", Flux2KleinBaseDenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinBaseCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = Flux2KleinBaseCoreDenoiseBlocks.values()
|
||||
block_names = Flux2KleinBaseCoreDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Core denoise step that performs the denoising process for Flux2-Klein (base model)."
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-Klein (base model).\n"
|
||||
" - `Flux2KleinBaseTextInputStep` (input) standardizes the text inputs (prompt_embeds + negative_prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2KleinBaseRoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids + negative_txt_ids) for the denoising step.\n"
|
||||
" - `Flux2KleinBaseDenoiseStep` (denoise) iteratively denoises the latents using Classifier-Free Guidance.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
###
|
||||
### Auto blocks
|
||||
###
|
||||
class Flux2KleinAutoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = [
|
||||
Flux2KleinTextEncoderStep(),
|
||||
Flux2KleinAutoVaeEncoderStep(),
|
||||
Flux2KleinCoreDenoiseStep(),
|
||||
Flux2DecodeStep(),
|
||||
]
|
||||
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein.\n"
|
||||
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
|
||||
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
class Flux2KleinBaseAutoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = [
|
||||
Flux2KleinBaseTextEncoderStep(),
|
||||
Flux2KleinAutoVaeEncoderStep(),
|
||||
Flux2KleinBaseCoreDenoiseStep(),
|
||||
Flux2DecodeStep(),
|
||||
]
|
||||
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein (base model).\n"
|
||||
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
|
||||
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
@@ -13,6 +13,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from ...loaders import Flux2LoraLoaderMixin
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import ModularPipeline
|
||||
@@ -55,3 +57,56 @@ class Flux2ModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
if getattr(self, "transformer", None):
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
return num_channels_latents
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
"""
|
||||
A ModularPipeline for Flux2-Klein.
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
if config_dict is not None and "is_distilled" in config_dict and config_dict["is_distilled"]:
|
||||
return "Flux2KleinAutoBlocks"
|
||||
else:
|
||||
return "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
@property
|
||||
def default_height(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_width(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_sample_size(self):
|
||||
return 128
|
||||
|
||||
@property
|
||||
def vae_scale_factor(self):
|
||||
vae_scale_factor = 8
|
||||
if getattr(self, "vae", None) is not None:
|
||||
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
return vae_scale_factor
|
||||
|
||||
@property
|
||||
def num_channels_latents(self):
|
||||
num_channels_latents = 32
|
||||
if getattr(self, "transformer", None):
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
return num_channels_latents
|
||||
|
||||
@property
|
||||
def requires_unconditional_embeds(self):
|
||||
if hasattr(self.config, "is_distilled") and self.config.is_distilled:
|
||||
return False
|
||||
|
||||
requires_unconditional_embeds = False
|
||||
if hasattr(self, "guider") and self.guider is not None:
|
||||
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
|
||||
|
||||
return requires_unconditional_embeds
|
||||
|
||||
@@ -59,6 +59,7 @@ MODULAR_PIPELINE_MAPPING = OrderedDict(
|
||||
("flux", "FluxModularPipeline"),
|
||||
("flux-kontext", "FluxKontextModularPipeline"),
|
||||
("flux2", "Flux2ModularPipeline"),
|
||||
("flux2-klein", "Flux2KleinModularPipeline"),
|
||||
("qwenimage", "QwenImageModularPipeline"),
|
||||
("qwenimage-edit", "QwenImageEditModularPipeline"),
|
||||
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),
|
||||
|
||||
@@ -22,7 +22,6 @@ import flax
|
||||
import jax.numpy as jnp
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import logging
|
||||
from .scheduling_utils_flax import (
|
||||
CommonSchedulerState,
|
||||
FlaxKarrasDiffusionSchedulers,
|
||||
@@ -33,9 +32,6 @@ from .scheduling_utils_flax import (
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@flax.struct.dataclass
|
||||
class DDIMSchedulerState:
|
||||
common: CommonSchedulerState
|
||||
@@ -129,10 +125,6 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
|
||||
prediction_type: str = "epsilon",
|
||||
dtype: jnp.dtype = jnp.float32,
|
||||
):
|
||||
logger.warning(
|
||||
"Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
|
||||
"recommend migrating to PyTorch classes or pinning your version of Diffusers."
|
||||
)
|
||||
self.dtype = dtype
|
||||
|
||||
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDIMSchedulerState:
|
||||
@@ -160,10 +152,7 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
|
||||
)
|
||||
|
||||
def scale_model_input(
|
||||
self,
|
||||
state: DDIMSchedulerState,
|
||||
sample: jnp.ndarray,
|
||||
timestep: Optional[int] = None,
|
||||
self, state: DDIMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
|
||||
) -> jnp.ndarray:
|
||||
"""
|
||||
Args:
|
||||
@@ -201,9 +190,7 @@ class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
|
||||
def _get_variance(self, state: DDIMSchedulerState, timestep, prev_timestep):
|
||||
alpha_prod_t = state.common.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = jnp.where(
|
||||
prev_timestep >= 0,
|
||||
state.common.alphas_cumprod[prev_timestep],
|
||||
state.final_alpha_cumprod,
|
||||
prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod
|
||||
)
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
@@ -99,7 +99,7 @@ def betas_for_alpha_bar(
|
||||
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||||
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
|
||||
def rescale_zero_terminal_snr(betas):
|
||||
"""
|
||||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||||
|
||||
@@ -187,14 +187,14 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
prediction_type: str = "epsilon",
|
||||
clip_sample_range: float = 1.0,
|
||||
timestep_spacing: Literal["leading", "trailing"] = "leading",
|
||||
timestep_spacing: str = "leading",
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -210,15 +210,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -264,11 +256,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
) -> None:
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -320,10 +308,20 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
eta (`float`):
|
||||
The weight of noise for added noise in diffusion step.
|
||||
use_clipped_model_output (`bool`, defaults to `False`):
|
||||
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
||||
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
||||
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
||||
`use_clipped_model_output` has no effect.
|
||||
variance_noise (`torch.Tensor`):
|
||||
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
||||
itself. Useful for methods such as [`CycleDiffusion`].
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or
|
||||
`tuple`.
|
||||
@@ -337,8 +335,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
# 1. get previous step value (=t+1)
|
||||
prev_timestep = timestep
|
||||
timestep = min(
|
||||
timestep - self.config.num_train_timesteps // self.num_inference_steps,
|
||||
self.config.num_train_timesteps - 1,
|
||||
timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1
|
||||
)
|
||||
|
||||
# 2. compute alphas, betas
|
||||
@@ -381,5 +378,5 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
return (prev_sample, pred_original_sample)
|
||||
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
||||
|
||||
def __len__(self) -> int:
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -226,7 +226,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
time_shift_type: Literal["exponential"] = "exponential",
|
||||
sigma_min: Optional[float] = None,
|
||||
sigma_max: Optional[float] = None,
|
||||
shift_terminal: Optional[float] = None,
|
||||
) -> None:
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
@@ -246,8 +245,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
if shift_terminal is not None and not use_flow_sigmas:
|
||||
raise ValueError("`shift_terminal` is only supported when `use_flow_sigmas=True`.")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
@@ -316,12 +313,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._begin_index = begin_index
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[float] = None,
|
||||
):
|
||||
self, num_inference_steps: int, device: Optional[Union[str, torch.device]] = None, mu: Optional[float] = None
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -330,24 +323,13 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed
|
||||
automatically.
|
||||
mu (`float`, *optional*):
|
||||
Optional mu parameter for dynamic shifting when using exponential time shift type.
|
||||
"""
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`")
|
||||
|
||||
if sigmas is not None:
|
||||
if not self.config.use_flow_sigmas:
|
||||
raise ValueError(
|
||||
"Passing `sigmas` is only supported when `use_flow_sigmas=True`. "
|
||||
"Please set `use_flow_sigmas=True` during scheduler initialization."
|
||||
)
|
||||
num_inference_steps = len(sigmas)
|
||||
|
||||
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
||||
if mu is not None:
|
||||
assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
|
||||
self.config.flow_shift = np.exp(mu)
|
||||
if self.config.timestep_spacing == "linspace":
|
||||
timesteps = (
|
||||
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
|
||||
@@ -372,9 +354,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
||||
)
|
||||
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
if self.config.use_karras_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -394,8 +375,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -410,8 +389,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_beta_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -426,18 +403,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_flow_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)[:-1]
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
else:
|
||||
sigmas = self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas)
|
||||
if self.config.shift_terminal:
|
||||
sigmas = self.stretch_shift_to_terminal(sigmas)
|
||||
eps = 1e-6
|
||||
if np.fabs(sigmas[0] - 1) < eps:
|
||||
# to avoid inf torch.log(alpha_si) in multistep_uni_p_bh_update during first/second update
|
||||
sigmas[0] -= eps
|
||||
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
||||
sigmas = 1.0 - alphas
|
||||
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
||||
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = sigmas[-1]
|
||||
@@ -449,8 +417,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
else:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
||||
@@ -480,43 +446,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.time_shift
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
if self.config.time_shift_type == "exponential":
|
||||
return self._time_shift_exponential(mu, sigma, t)
|
||||
elif self.config.time_shift_type == "linear":
|
||||
return self._time_shift_linear(mu, sigma, t)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.stretch_shift_to_terminal
|
||||
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
|
||||
value.
|
||||
|
||||
Reference:
|
||||
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
|
||||
|
||||
Args:
|
||||
t (`torch.Tensor`):
|
||||
A tensor of timesteps to be stretched and shifted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
|
||||
"""
|
||||
one_minus_z = 1 - t
|
||||
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
|
||||
stretched_t = 1 - (one_minus_z / scale_factor)
|
||||
return stretched_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_exponential
|
||||
def _time_shift_exponential(self, mu, sigma, t):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_linear
|
||||
def _time_shift_linear(self, mu, sigma, t):
|
||||
return mu / (mu + (1 / t - 1) ** sigma)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||||
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
|
||||
@@ -17,6 +17,51 @@ class Flux2AutoBlocks(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinBaseAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2ModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -0,0 +1,91 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import pytest
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
)
|
||||
|
||||
from ...testing_utils import floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
|
||||
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
|
||||
inputs["image"] = init_image
|
||||
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
@pytest.mark.skip(reason="batched inference is currently not supported")
|
||||
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
|
||||
return
|
||||
@@ -0,0 +1,91 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import pytest
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
)
|
||||
|
||||
from ...testing_utils import floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
|
||||
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
|
||||
inputs["image"] = init_image
|
||||
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
@pytest.mark.skip(reason="batched inference is currently not supported")
|
||||
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
|
||||
return
|
||||
Reference in New Issue
Block a user