Compare commits

...

8 Commits

Author SHA1 Message Date
Dhruv Nair
d1fa0301bc Merge branch 'fast-gpu-tests' of https://github.com/huggingface/diffusers into fast-gpu-tests 2025-02-27 08:51:36 +01:00
Dhruv Nair
cca8e144b7 update 2025-02-27 08:51:25 +01:00
Sayak Paul
fac5514e90 Merge branch 'main' into fast-gpu-tests 2025-02-27 09:10:16 +05:30
Dhruv Nair
828dd32464 Merge branch 'main' into fast-gpu-test-fixes 2025-02-26 18:27:56 +01:00
Dhruv Nair
721501c754 update 2025-02-26 18:24:02 +01:00
Dhruv Nair
4756522e55 update 2025-02-26 18:23:11 +01:00
Dhruv Nair
d108c18f50 update 2025-02-26 04:34:56 +01:00
Dhruv Nair
e2d2650117 update 2025-02-25 13:50:21 +01:00
4 changed files with 13 additions and 9 deletions

View File

@@ -11,6 +11,8 @@ on:
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
workflow_dispatch:
concurrency:

View File

@@ -1169,17 +1169,16 @@ class ModelTesterMixin:
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
max_size = int(self.model_split_percents[0] * model_size)
# Force disk offload by setting very small CPU memory
max_memory = {0: max_size, "cpu": int(0.1 * max_size)}
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
with self.assertRaises(ValueError):
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This errors out because it's missing an offload folder
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = self.model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)

View File

@@ -30,6 +30,7 @@ class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = OmniGenTransformer2DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
model_split_percents = [0.1, 0.1, 0.1]
@property
def dummy_input(self):
@@ -73,9 +74,9 @@ class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase):
"num_attention_heads": 4,
"num_key_value_heads": 4,
"intermediate_size": 32,
"num_layers": 1,
"num_layers": 20,
"pad_token_id": 0,
"vocab_size": 100,
"vocab_size": 1000,
"in_channels": 4,
"time_step_dim": 4,
"rope_scaling": {"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))},

View File

@@ -33,6 +33,7 @@ enable_full_determinism()
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
@@ -67,7 +68,7 @@ class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
@@ -107,6 +108,7 @@ class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
@@ -141,7 +143,7 @@ class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 2,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,