mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
205 Commits
cli-fix
...
muellerzr-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ea44f69be3 | ||
|
|
a785992c1d | ||
|
|
35cc66dc4c | ||
|
|
57084dacc5 | ||
|
|
70611a1068 | ||
|
|
98388670d2 | ||
|
|
9e9ed353a2 | ||
|
|
7833ed957b | ||
|
|
85c4a326e0 | ||
|
|
0bab9d6be7 | ||
|
|
2e2684f014 | ||
|
|
31adeb41cd | ||
|
|
a7b9634e95 | ||
|
|
6b6b4bcffe | ||
|
|
beb1c017ad | ||
|
|
06ee4db3e7 | ||
|
|
84bbd2f4ce | ||
|
|
600ef8a4dc | ||
|
|
984d340534 | ||
|
|
a2071a1837 | ||
|
|
d9f71ab3c3 | ||
|
|
dd4b731e68 | ||
|
|
31b211bfe3 | ||
|
|
610a71d7d4 | ||
|
|
c104482b9c | ||
|
|
c7a84ba2f4 | ||
|
|
8b1e3ec93e | ||
|
|
4e57aeff1f | ||
|
|
af92869d9b | ||
|
|
0bae6e447c | ||
|
|
0368483b61 | ||
|
|
ddb9d8548c | ||
|
|
49979753e1 | ||
|
|
a3904d7e34 | ||
|
|
7bfc1ee1b2 | ||
|
|
71c046102b | ||
|
|
83b112a145 | ||
|
|
8690e8b9d6 | ||
|
|
7db8c3ec40 | ||
|
|
9b7acc7cf2 | ||
|
|
a216b0bb7f | ||
|
|
150142c537 | ||
|
|
35f45ecd71 | ||
|
|
d5dd8df3b4 | ||
|
|
3e0d128da7 | ||
|
|
a536e775fb | ||
|
|
3b01d72a64 | ||
|
|
e2a4a46e99 | ||
|
|
eda560d34c | ||
|
|
adbb04864d | ||
|
|
effe4b9784 | ||
|
|
5b51ad0052 | ||
|
|
10b4e354b6 | ||
|
|
ea6938aea5 | ||
|
|
8ef0d9deff | ||
|
|
fa2abfdb03 | ||
|
|
1d3ef67b09 | ||
|
|
0f0b531827 | ||
|
|
e8284281c1 | ||
|
|
715a7da1b2 | ||
|
|
14d224d4e6 | ||
|
|
540399f540 | ||
|
|
f088027e93 | ||
|
|
c6e08ecd46 | ||
|
|
4ad7a1f5fd | ||
|
|
1f81fbe274 | ||
|
|
589931ca79 | ||
|
|
675be88f00 | ||
|
|
df4ad6f4ac | ||
|
|
bc90c28bc9 | ||
|
|
f040c27d4c | ||
|
|
138fac703a | ||
|
|
468ae09ed8 | ||
|
|
3fca52022f | ||
|
|
c375903db5 | ||
|
|
b9d52fca1d | ||
|
|
2ada094bff | ||
|
|
f1f542bdd4 | ||
|
|
a9c403c001 | ||
|
|
e7b9a0762b | ||
|
|
8eb17315c8 | ||
|
|
c71c19c5e6 | ||
|
|
adc31940a9 | ||
|
|
963ee05d16 | ||
|
|
668e34c6e0 | ||
|
|
25d7bb3ea6 | ||
|
|
394b8fb996 | ||
|
|
a1d55e14ba | ||
|
|
e5564d45bf | ||
|
|
2921a20194 | ||
|
|
3376252d71 | ||
|
|
16170c69ae | ||
|
|
4408047ac5 | ||
|
|
34fab8b511 | ||
|
|
298ce67999 | ||
|
|
d2e7a19fd5 | ||
|
|
cd3082008e | ||
|
|
f3209b5b55 | ||
|
|
96399c3ec6 | ||
|
|
10d3220abe | ||
|
|
f69511ecc6 | ||
|
|
d2b10b1f4f | ||
|
|
23a2cd3337 | ||
|
|
4edde134f6 | ||
|
|
074a7cc3c5 | ||
|
|
6bfd13f07a | ||
|
|
eeb70033a6 | ||
|
|
c4a4750cb3 | ||
|
|
a6375d4101 | ||
|
|
8e1b7a084a | ||
|
|
6946facf69 | ||
|
|
130dd936bb | ||
|
|
a899e42fc7 | ||
|
|
f96e4a16ad | ||
|
|
9c6e9684a2 | ||
|
|
2e4841ef1e | ||
|
|
8bea943714 | ||
|
|
614d0c64e9 | ||
|
|
b1a2c0d577 | ||
|
|
06ee907b73 | ||
|
|
896fb6d8d7 | ||
|
|
7f51f286a5 | ||
|
|
829f6defa4 | ||
|
|
24bdf4b215 | ||
|
|
95e0c3757d | ||
|
|
6cf0be5d3d | ||
|
|
ec068f9b5b | ||
|
|
0240d4191a | ||
|
|
04717fd861 | ||
|
|
6fd458e99d | ||
|
|
1066fe4cbc | ||
|
|
d38f69ea25 | ||
|
|
0a1c13af79 | ||
|
|
0028c34432 | ||
|
|
d457beed92 | ||
|
|
1d9a6a81b9 | ||
|
|
4e0984db6c | ||
|
|
83bc6c94ea | ||
|
|
0d68ddf327 | ||
|
|
7d887118b9 | ||
|
|
b63c956860 | ||
|
|
716b2062bf | ||
|
|
5fd6825d25 | ||
|
|
e0fae6fd73 | ||
|
|
ec1aded12e | ||
|
|
151a56b80e | ||
|
|
a3faf3f260 | ||
|
|
867a2b0cf9 | ||
|
|
98730c5dd7 | ||
|
|
7ebd359446 | ||
|
|
d3881f35b7 | ||
|
|
48207d6689 | ||
|
|
2f6f426f66 | ||
|
|
a0542c1917 | ||
|
|
a8ad6664c2 | ||
|
|
14f7b545bd | ||
|
|
07cd20041c | ||
|
|
6ddbf6222c | ||
|
|
3ff39e8e86 | ||
|
|
6be43bd855 | ||
|
|
dc89434bdc | ||
|
|
4d633bfe9a | ||
|
|
174cf868ea | ||
|
|
413604405f | ||
|
|
bc108e1533 | ||
|
|
86555c9f59 | ||
|
|
983dec3bf7 | ||
|
|
f9fa8a868c | ||
|
|
05be622b1c | ||
|
|
352d96eb82 | ||
|
|
3511a9623f | ||
|
|
42cae93b94 | ||
|
|
a2ecce26bc | ||
|
|
9e00b727ad | ||
|
|
f7a4626f4b | ||
|
|
f4a44b7707 | ||
|
|
3bc3b48c10 | ||
|
|
581d8aacf7 | ||
|
|
ba1bfac20b | ||
|
|
5edd0b34fa | ||
|
|
3a28e36aa1 | ||
|
|
3393c01c9d | ||
|
|
1fa8dbc63a | ||
|
|
0ab6dc0f23 | ||
|
|
b2030a249c | ||
|
|
67bef2027c | ||
|
|
aa676c641f | ||
|
|
e6df8edadc | ||
|
|
80cfaebaa1 | ||
|
|
ba82414106 | ||
|
|
fe5f035f79 | ||
|
|
b3d10d6d65 | ||
|
|
b82f9f5666 | ||
|
|
6a5ba1b719 | ||
|
|
4d40c9140c | ||
|
|
0ab63ff647 | ||
|
|
db33af065b | ||
|
|
1096f88e2b | ||
|
|
cef4a51223 | ||
|
|
edf5ba6a17 | ||
|
|
9941f1f61b | ||
|
|
46a9db0336 | ||
|
|
370146e4e0 | ||
|
|
5cd45c24bf | ||
|
|
67b3fe0aae |
56
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
56
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -57,50 +57,54 @@ body:
|
||||
description: |
|
||||
Your issue will be replied to more quickly if you can figure out the right person to tag with @.
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
|
||||
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
|
||||
a core maintainer will ping the right person.
|
||||
|
||||
|
||||
Please tag a maximum of 2 people.
|
||||
|
||||
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...):
|
||||
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...): @sayakpaul @DN6
|
||||
|
||||
Questions on pipelines:
|
||||
- Stable Diffusion @yiyixuxu @DN6 @sayakpaul
|
||||
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6
|
||||
- Kandinsky @yiyixuxu
|
||||
- ControlNet @sayakpaul @yiyixuxu @DN6
|
||||
- T2I Adapter @sayakpaul @yiyixuxu @DN6
|
||||
- IF @DN6
|
||||
- Text-to-Video / Video-to-Video @DN6 @sayakpaul
|
||||
- Wuerstchen @DN6
|
||||
- Stable Diffusion @yiyixuxu @asomoza
|
||||
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6
|
||||
- Stable Diffusion 3: @yiyixuxu @sayakpaul @DN6 @asomoza
|
||||
- Kandinsky @yiyixuxu
|
||||
- ControlNet @sayakpaul @yiyixuxu @DN6
|
||||
- T2I Adapter @sayakpaul @yiyixuxu @DN6
|
||||
- IF @DN6
|
||||
- Text-to-Video / Video-to-Video @DN6 @sayakpaul
|
||||
- Wuerstchen @DN6
|
||||
- Other: @yiyixuxu @DN6
|
||||
- Improving generation quality: @asomoza
|
||||
|
||||
Questions on models:
|
||||
- UNet @DN6 @yiyixuxu @sayakpaul
|
||||
- VAE @sayakpaul @DN6 @yiyixuxu
|
||||
- Transformers/Attention @DN6 @yiyixuxu @sayakpaul @DN6
|
||||
- UNet @DN6 @yiyixuxu @sayakpaul
|
||||
- VAE @sayakpaul @DN6 @yiyixuxu
|
||||
- Transformers/Attention @DN6 @yiyixuxu @sayakpaul
|
||||
|
||||
Questions on Schedulers: @yiyixuxu
|
||||
Questions on single file checkpoints: @DN6
|
||||
|
||||
Questions on LoRA: @sayakpaul
|
||||
Questions on Schedulers: @yiyixuxu
|
||||
|
||||
Questions on Textual Inversion: @sayakpaul
|
||||
Questions on LoRA: @sayakpaul
|
||||
|
||||
Questions on Training:
|
||||
- DreamBooth @sayakpaul
|
||||
- Text-to-Image Fine-tuning @sayakpaul
|
||||
- Textual Inversion @sayakpaul
|
||||
- ControlNet @sayakpaul
|
||||
Questions on Textual Inversion: @sayakpaul
|
||||
|
||||
Questions on Tests: @DN6 @sayakpaul @yiyixuxu
|
||||
Questions on Training:
|
||||
- DreamBooth @sayakpaul
|
||||
- Text-to-Image Fine-tuning @sayakpaul
|
||||
- Textual Inversion @sayakpaul
|
||||
- ControlNet @sayakpaul
|
||||
|
||||
Questions on Tests: @DN6 @sayakpaul @yiyixuxu
|
||||
|
||||
Questions on Documentation: @stevhliu
|
||||
|
||||
Questions on JAX- and MPS-related things: @pcuenca
|
||||
|
||||
Questions on audio pipelines: @DN6
|
||||
|
||||
Questions on audio pipelines: @sanchit-gandhi
|
||||
|
||||
|
||||
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
||||
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -38,9 +38,9 @@ members/contributors who may be interested in your PR.
|
||||
|
||||
Core library:
|
||||
|
||||
- Schedulers: @yiyixuxu
|
||||
- Pipelines: @sayakpaul @yiyixuxu @DN6
|
||||
- Training examples: @sayakpaul
|
||||
- Schedulers: @yiyixuxu
|
||||
- Pipelines and pipeline callbacks: @yiyixuxu and @asomoza
|
||||
- Training examples: @sayakpaul
|
||||
- Docs: @stevhliu and @sayakpaul
|
||||
- JAX and MPS: @pcuenca
|
||||
- Audio: @sanchit-gandhi
|
||||
@@ -48,7 +48,7 @@ Core library:
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @pacman100
|
||||
- deepspeed: HF Trainer/Accelerate: @SunMarc
|
||||
|
||||
HF projects:
|
||||
|
||||
|
||||
16
.github/workflows/benchmark.yml
vendored
16
.github/workflows/benchmark.yml
vendored
@@ -13,13 +13,15 @@ env:
|
||||
|
||||
jobs:
|
||||
torch_pipelines_cuda_benchmark_tests:
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
|
||||
name: Torch Core Pipelines CUDA Benchmarking Tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1
|
||||
runs-on: [single-gpu, nvidia-gpu, a10, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
image: diffusers/diffusers-pytorch-compile-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
@@ -50,4 +52,14 @@ jobs:
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: benchmark_test_reports
|
||||
path: benchmarks/benchmark_outputs
|
||||
path: benchmarks/benchmark_outputs
|
||||
|
||||
- name: Report success status
|
||||
if: ${{ success() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_benchmarking_status.py --status=success
|
||||
|
||||
- name: Report failure status
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_benchmarking_status.py --status=failure
|
||||
9
.github/workflows/build_docker_images.yml
vendored
9
.github/workflows/build_docker_images.yml
vendored
@@ -25,17 +25,17 @@ jobs:
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v3
|
||||
|
||||
|
||||
- name: Find Changed Dockerfiles
|
||||
id: file_changes
|
||||
uses: jitterbit/get-changed-files@v1
|
||||
with:
|
||||
format: 'space-delimited'
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
|
||||
- name: Build Changed Docker Images
|
||||
run: |
|
||||
CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
|
||||
@@ -52,7 +52,7 @@ jobs:
|
||||
build-and-push-docker-images:
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
if: github.event_name != 'pull_request'
|
||||
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
@@ -69,6 +69,7 @@ jobs:
|
||||
- diffusers-flax-tpu
|
||||
- diffusers-onnxruntime-cpu
|
||||
- diffusers-onnxruntime-cuda
|
||||
- diffusers-doc-builder
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
|
||||
2
.github/workflows/build_documentation.yml
vendored
2
.github/workflows/build_documentation.yml
vendored
@@ -21,7 +21,7 @@ jobs:
|
||||
package: diffusers
|
||||
notebook_folder: diffusers_doc
|
||||
languages: en ko zh ja pt
|
||||
|
||||
custom_container: diffusers/diffusers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
||||
1
.github/workflows/build_pr_documentation.yml
vendored
1
.github/workflows/build_pr_documentation.yml
vendored
@@ -20,3 +20,4 @@ jobs:
|
||||
install_libgl1: true
|
||||
package: diffusers
|
||||
languages: en ko zh ja pt
|
||||
custom_container: diffusers/diffusers-doc-builder
|
||||
|
||||
102
.github/workflows/mirror_community_pipeline.yml
vendored
Normal file
102
.github/workflows/mirror_community_pipeline.yml
vendored
Normal file
@@ -0,0 +1,102 @@
|
||||
name: Mirror Community Pipeline
|
||||
|
||||
on:
|
||||
# Push changes on the main branch
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- 'examples/community/**.py'
|
||||
|
||||
# And on tag creation (e.g. `v0.28.1`)
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
# Manual trigger with ref input
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
ref:
|
||||
description: "Either 'main' or a tag ref"
|
||||
required: true
|
||||
default: 'main'
|
||||
|
||||
jobs:
|
||||
mirror_community_pipeline:
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
# Checkout to correct ref
|
||||
# If workflow dispatch
|
||||
# If ref is 'main', set:
|
||||
# CHECKOUT_REF=refs/heads/main
|
||||
# PATH_IN_REPO=main
|
||||
# Else it must be a tag. Set:
|
||||
# CHECKOUT_REF=refs/tags/{tag}
|
||||
# PATH_IN_REPO={tag}
|
||||
# If not workflow dispatch
|
||||
# If ref is 'refs/heads/main' => set 'main'
|
||||
# Else it must be a tag => set {tag}
|
||||
- name: Set checkout_ref and path_in_repo
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
|
||||
if [ -z "${{ github.event.inputs.ref }}" ]; then
|
||||
echo "Error: Missing ref input"
|
||||
exit 1
|
||||
elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
|
||||
echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
fi
|
||||
elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
# e.g. refs/tags/v0.28.1 -> v0.28.1
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
|
||||
fi
|
||||
- name: Print env vars
|
||||
run: |
|
||||
echo "CHECKOUT_REF: ${{ env.CHECKOUT_REF }}"
|
||||
echo "PATH_IN_REPO: ${{ env.PATH_IN_REPO }}"
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: ${{ env.CHECKOUT_REF }}
|
||||
|
||||
# Setup + install dependencies
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade huggingface_hub
|
||||
|
||||
# Check secret is set
|
||||
- name: whoami
|
||||
run: huggingface-cli whoami
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
||||
|
||||
# Push to HF! (under subfolder based on checkout ref)
|
||||
# https://huggingface.co/datasets/diffusers/community-pipelines-mirror
|
||||
- name: Mirror community pipeline to HF
|
||||
run: huggingface-cli upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
|
||||
env:
|
||||
PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
||||
|
||||
- name: Report success status
|
||||
if: ${{ success() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=success
|
||||
|
||||
- name: Report failure status
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
|
||||
2
.github/workflows/nightly_tests.yml
vendored
2
.github/workflows/nightly_tests.yml
vendored
@@ -59,7 +59,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
|
||||
@@ -11,12 +11,12 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.8'
|
||||
|
||||
|
||||
- name: Notify Slack about the release
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}
|
||||
|
||||
1
.github/workflows/pr_dependency_test.yml
vendored
1
.github/workflows/pr_dependency_test.yml
vendored
@@ -33,4 +33,3 @@ jobs:
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
pytest tests/others/test_dependencies.py
|
||||
|
||||
18
.github/workflows/pr_test_peft_backend.yml
vendored
18
.github/workflows/pr_test_peft_backend.yml
vendored
@@ -111,3 +111,21 @@ jobs:
|
||||
-s -v \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests/lora/
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v \
|
||||
--make-reports=tests_models_lora_${{ matrix.config.report }} \
|
||||
tests/models/ -k "lora"
|
||||
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
cat reports/tests_${{ matrix.config.report }}_failures_short.txt
|
||||
cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: pr_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
21
.github/workflows/push_tests.yml
vendored
21
.github/workflows/push_tests.yml
vendored
@@ -62,7 +62,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
@@ -71,12 +71,6 @@ jobs:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
- name: Tailscale
|
||||
uses: huggingface/tailscale-action@v1
|
||||
with:
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
@@ -95,18 +89,11 @@ jobs:
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
- name: Tailscale Wait
|
||||
if: ${{ failure() || runner.debug == '1' }}
|
||||
uses: huggingface/tailscale-action@v1
|
||||
with:
|
||||
waitForSSH: true
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
@@ -202,12 +189,17 @@ jobs:
|
||||
-s -v -k "not Flax and not Onnx and not PEFTLoRALoading" \
|
||||
--make-reports=tests_peft_cuda \
|
||||
tests/lora/
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "lora and not Flax and not Onnx and not PEFTLoRALoading" \
|
||||
--make-reports=tests_peft_cuda_models_lora \
|
||||
tests/models/
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
cat reports/tests_peft_cuda_stats.txt
|
||||
cat reports/tests_peft_cuda_failures_short.txt
|
||||
cat reports/tests_peft_cuda_models_lora_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
@@ -338,6 +330,7 @@ jobs:
|
||||
- name: Run example tests on GPU
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
RUN_COMPILE: yes
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
- name: Failure short reports
|
||||
|
||||
12
.github/workflows/pypi_publish.yaml
vendored
12
.github/workflows/pypi_publish.yaml
vendored
@@ -29,7 +29,7 @@ jobs:
|
||||
LATEST_BRANCH=$(python utils/fetch_latest_release_branch.py)
|
||||
echo "Latest branch: $LATEST_BRANCH"
|
||||
echo "latest_branch=$LATEST_BRANCH" >> $GITHUB_ENV
|
||||
|
||||
|
||||
- name: Set latest branch output
|
||||
id: set_latest_branch
|
||||
run: echo "::set-output name=latest_branch::${{ env.latest_branch }}"
|
||||
@@ -43,27 +43,27 @@ jobs:
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
|
||||
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.8"
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -U setuptools wheel twine
|
||||
pip install -U torch --index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -U transformers
|
||||
|
||||
|
||||
- name: Build the dist files
|
||||
run: python setup.py bdist_wheel && python setup.py sdist
|
||||
|
||||
|
||||
- name: Publish to the test PyPI
|
||||
env:
|
||||
TWINE_USERNAME: ${{ secrets.TEST_PYPI_USERNAME }}
|
||||
TWINE_PASSWORD: ${{ secrets.TEST_PYPI_PASSWORD }}
|
||||
run: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
|
||||
run: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
|
||||
|
||||
- name: Test installing diffusers and importing
|
||||
run: |
|
||||
|
||||
73
.github/workflows/run_tests_from_a_pr.yml
vendored
Normal file
73
.github/workflows/run_tests_from_a_pr.yml
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
name: Check running SLOW tests from a PR (only GPU)
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
docker_image:
|
||||
default: 'diffusers/diffusers-pytorch-cuda'
|
||||
description: 'Name of the Docker image'
|
||||
required: true
|
||||
branch:
|
||||
description: 'PR Branch to test on'
|
||||
required: true
|
||||
test:
|
||||
description: 'Tests to run (e.g.: `tests/models`).'
|
||||
required: true
|
||||
|
||||
env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
IS_GITHUB_CI: "1"
|
||||
HF_HOME: /mnt/cache
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 600
|
||||
RUN_SLOW: yes
|
||||
|
||||
jobs:
|
||||
run_tests:
|
||||
name: "Run a test on our runner from a PR"
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
steps:
|
||||
- name: Validate test files input
|
||||
id: validate_test_files
|
||||
env:
|
||||
PY_TEST: ${{ github.event.inputs.test }}
|
||||
run: |
|
||||
if [[ ! "$PY_TEST" =~ ^tests/ ]]; then
|
||||
echo "Error: The input string must start with 'tests/'."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
|
||||
echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ "$PY_TEST" == *";"* ]]; then
|
||||
echo "Error: The input string must not contain ';'."
|
||||
exit 1
|
||||
fi
|
||||
echo "$PY_TEST"
|
||||
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.inputs.branch }}
|
||||
repository: ${{ github.event.pull_request.head.repo.full_name }}
|
||||
|
||||
|
||||
- name: Install pytest
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft
|
||||
|
||||
- name: Run tests
|
||||
env:
|
||||
PY_TEST: ${{ github.event.inputs.test }}
|
||||
run: |
|
||||
pytest "$PY_TEST"
|
||||
4
.github/workflows/ssh-runner.yml
vendored
4
.github/workflows/ssh-runner.yml
vendored
@@ -25,7 +25,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
@@ -38,7 +38,7 @@ jobs:
|
||||
nvidia-smi
|
||||
|
||||
- name: Tailscale # In order to be able to SSH when a test fails
|
||||
uses: huggingface/tailscale-action@v1
|
||||
uses: huggingface/tailscale-action@main
|
||||
with:
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
|
||||
15
.github/workflows/trufflehog.yml
vendored
Normal file
15
.github/workflows/trufflehog.yml
vendored
Normal file
@@ -0,0 +1,15 @@
|
||||
on:
|
||||
push:
|
||||
|
||||
name: Secret Leaks
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@main
|
||||
@@ -245,7 +245,7 @@ The official training examples are maintained by the Diffusers' core maintainers
|
||||
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
|
||||
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
|
||||
|
||||
Both official training and research examples consist of a directory that contains one or more training scripts, a requirements.txt file, and a README.md file. In order for the user to make use of the
|
||||
Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
|
||||
training examples, it is required to clone the repository:
|
||||
|
||||
```bash
|
||||
@@ -255,7 +255,8 @@ git clone https://github.com/huggingface/diffusers
|
||||
as well as to install all additional dependencies required for training:
|
||||
|
||||
```bash
|
||||
pip install -r /examples/<your-example-folder>/requirements.txt
|
||||
cd diffusers
|
||||
pip install -r examples/<your-example-folder>/requirements.txt
|
||||
```
|
||||
|
||||
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
|
||||
@@ -502,4 +503,4 @@ $ git push --set-upstream origin your-branch-for-syncing
|
||||
|
||||
### Style guide
|
||||
|
||||
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
|
||||
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
|
||||
@@ -63,14 +63,14 @@ Let's walk through more detailed design decisions for each class.
|
||||
Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
|
||||
|
||||
The following design principles are followed:
|
||||
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as it’s done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [#Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
|
||||
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as it’s done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
|
||||
- Pipelines all inherit from [`DiffusionPipeline`].
|
||||
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
|
||||
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
|
||||
- Pipelines should be used **only** for inference.
|
||||
- Pipelines should be very readable, self-explanatory, and easy to tweak.
|
||||
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
|
||||
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
|
||||
- Pipelines are **not** intended to be feature-complete user interfaces. For feature-complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
|
||||
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
|
||||
- Pipelines should be named after the task they are intended to solve.
|
||||
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
|
||||
@@ -81,7 +81,7 @@ Models are designed as configurable toolboxes that are natural extensions of [Py
|
||||
|
||||
The following design principles are followed:
|
||||
- Models correspond to **a type of model architecture**. *E.g.* the [`UNet2DConditionModel`] class is used for all UNet variations that expect 2D image inputs and are conditioned on some context.
|
||||
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py), [`transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py), etc...
|
||||
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unets/unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py), [`transformers/transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_2d.py), etc...
|
||||
- Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modeling files and shows that models do not really follow the single-file policy.
|
||||
- Models intend to expose complexity, just like PyTorch's `Module` class, and give clear error messages.
|
||||
- Models all inherit from `ModelMixin` and `ConfigMixin`.
|
||||
@@ -90,7 +90,7 @@ The following design principles are followed:
|
||||
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
|
||||
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
|
||||
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
|
||||
readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
|
||||
### Schedulers
|
||||
|
||||
@@ -100,11 +100,11 @@ The following design principles are followed:
|
||||
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
|
||||
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
|
||||
- One scheduler Python file corresponds to one scheduler algorithm (as might be defined in a paper).
|
||||
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
|
||||
- If schedulers share similar functionalities, we can make use of the `# Copied from` mechanism.
|
||||
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
|
||||
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./docs/source/en/using-diffusers/schedulers.md).
|
||||
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
|
||||
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
|
||||
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
|
||||
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
|
||||
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
|
||||
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
|
||||
24
README.md
24
README.md
@@ -20,21 +20,11 @@ limitations under the License.
|
||||
<br>
|
||||
<p>
|
||||
<p align="center">
|
||||
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/diffusers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
|
||||
</a>
|
||||
<a href="https://pepy.tech/project/diffusers">
|
||||
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month">
|
||||
</a>
|
||||
<a href="CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg">
|
||||
</a>
|
||||
<a href="https://twitter.com/diffuserslib">
|
||||
<img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"></a>
|
||||
<a href="https://github.com/huggingface/diffusers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"></a>
|
||||
<a href="https://pepy.tech/project/diffusers"><img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month"></a>
|
||||
<a href="CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg"></a>
|
||||
<a href="https://twitter.com/diffuserslib"><img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib"></a>
|
||||
</p>
|
||||
|
||||
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
|
||||
@@ -77,7 +67,7 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
|
||||
|
||||
## Quickstart
|
||||
|
||||
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 22000+ checkpoints):
|
||||
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 27.000+ checkpoints):
|
||||
|
||||
```python
|
||||
from diffusers import DiffusionPipeline
|
||||
@@ -219,7 +209,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
|
||||
- https://github.com/deep-floyd/IF
|
||||
- https://github.com/bentoml/BentoML
|
||||
- https://github.com/bmaltais/kohya_ss
|
||||
- +9000 other amazing GitHub repositories 💪
|
||||
- +12.000 other amazing GitHub repositories 💪
|
||||
|
||||
Thank you for using us ❤️.
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ def main():
|
||||
print(f"****** Running file: {file} ******")
|
||||
|
||||
# Run with canonical settings.
|
||||
if file != "benchmark_text_to_image.py":
|
||||
if file != "benchmark_text_to_image.py" and file != "benchmark_ip_adapters.py":
|
||||
command = f"python {file}"
|
||||
run_command(command.split())
|
||||
|
||||
@@ -49,6 +49,10 @@ def main():
|
||||
|
||||
# Run variants.
|
||||
for file in python_files:
|
||||
# See: https://github.com/pytorch/pytorch/issues/129637
|
||||
if file == "benchmark_ip_adapters.py":
|
||||
continue
|
||||
|
||||
if file == "benchmark_text_to_image.py":
|
||||
for ckpt in ALL_T2I_CKPTS:
|
||||
command = f"python {file} --ckpt {ckpt}"
|
||||
|
||||
52
docker/diffusers-doc-builder/Dockerfile
Normal file
52
docker/diffusers-doc-builder/Dockerfile
Normal file
@@ -0,0 +1,52 @@
|
||||
FROM ubuntu:20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libsndfile1-dev \
|
||||
python3.10 \
|
||||
python3-pip \
|
||||
libgl1 \
|
||||
zip \
|
||||
wget \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
matplotlib \
|
||||
setuptools==69.5.1
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@@ -40,7 +40,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers
|
||||
|
||||
@@ -41,8 +41,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers
|
||||
|
||||
@@ -40,7 +40,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers
|
||||
|
||||
@@ -40,7 +40,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers
|
||||
|
||||
@@ -16,30 +16,31 @@ RUN apt install -y bash \
|
||||
ca-certificates \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
python3.10 \
|
||||
python3.9 \
|
||||
python3.9-dev \
|
||||
python3-pip \
|
||||
python3.10-venv && \
|
||||
python3.9-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
RUN python3.9 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
RUN python3.9 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.9 -m uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark && \
|
||||
python3.10 -m pip install --no-cache-dir \
|
||||
python3.9 -m pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers
|
||||
|
||||
@@ -40,7 +40,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers matplotlib
|
||||
|
||||
@@ -39,7 +39,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
|
||||
@@ -39,7 +39,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
|
||||
@@ -21,6 +21,8 @@
|
||||
title: Load LoRAs for inference
|
||||
- local: tutorials/fast_diffusion
|
||||
title: Accelerate inference of text-to-image diffusion models
|
||||
- local: tutorials/inference_with_big_models
|
||||
title: Working with big models
|
||||
title: Tutorials
|
||||
- sections:
|
||||
- local: using-diffusers/loading
|
||||
@@ -29,10 +31,8 @@
|
||||
title: Load community pipelines and components
|
||||
- local: using-diffusers/schedulers
|
||||
title: Load schedulers and models
|
||||
- local: using-diffusers/using_safetensors
|
||||
title: Load safetensors
|
||||
- local: using-diffusers/other-formats
|
||||
title: Load different Stable Diffusion formats
|
||||
title: Model files and layouts
|
||||
- local: using-diffusers/loading_adapters
|
||||
title: Load adapters
|
||||
- local: using-diffusers/push_to_hub
|
||||
@@ -59,6 +59,8 @@
|
||||
title: Distributed inference with multiple GPUs
|
||||
- local: using-diffusers/merge_loras
|
||||
title: Merge LoRAs
|
||||
- local: using-diffusers/scheduler_features
|
||||
title: Scheduler features
|
||||
- local: using-diffusers/callback
|
||||
title: Pipeline callbacks
|
||||
- local: using-diffusers/reusing_seeds
|
||||
@@ -68,6 +70,10 @@
|
||||
- local: using-diffusers/weighted_prompts
|
||||
title: Prompt techniques
|
||||
title: Inference techniques
|
||||
- sections:
|
||||
- local: advanced_inference/outpaint
|
||||
title: Outpainting
|
||||
title: Advanced inference
|
||||
- sections:
|
||||
- local: using-diffusers/sdxl
|
||||
title: Stable Diffusion XL
|
||||
@@ -77,6 +83,8 @@
|
||||
title: Kandinsky
|
||||
- local: using-diffusers/ip_adapter
|
||||
title: IP-Adapter
|
||||
- local: using-diffusers/pag
|
||||
title: PAG
|
||||
- local: using-diffusers/controlnet
|
||||
title: ControlNet
|
||||
- local: using-diffusers/t2i_adapter
|
||||
@@ -93,6 +101,8 @@
|
||||
title: Trajectory Consistency Distillation-LoRA
|
||||
- local: using-diffusers/svd
|
||||
title: Stable Video Diffusion
|
||||
- local: using-diffusers/marigold_usage
|
||||
title: Marigold Computer Vision
|
||||
title: Specific pipeline examples
|
||||
- sections:
|
||||
- local: training/overview
|
||||
@@ -101,7 +111,8 @@
|
||||
title: Create a dataset for training
|
||||
- local: training/adapt_a_model
|
||||
title: Adapt a model to a new task
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: training/unconditional_training
|
||||
title: Unconditional image generation
|
||||
- local: training/text2image
|
||||
@@ -119,8 +130,8 @@
|
||||
- local: training/instructpix2pix
|
||||
title: InstructPix2Pix
|
||||
title: Models
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: training/text_inversion
|
||||
title: Textual Inversion
|
||||
- local: training/dreambooth
|
||||
@@ -134,7 +145,6 @@
|
||||
- local: training/ddpo
|
||||
title: Reinforcement learning training with DDPO
|
||||
title: Methods
|
||||
isExpanded: false
|
||||
title: Training
|
||||
- sections:
|
||||
- local: optimization/fp16
|
||||
@@ -181,7 +191,8 @@
|
||||
title: Evaluating Diffusion Models
|
||||
title: Conceptual Guides
|
||||
- sections:
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/configuration
|
||||
title: Configuration
|
||||
- local: api/logging
|
||||
@@ -189,8 +200,8 @@
|
||||
- local: api/outputs
|
||||
title: Outputs
|
||||
title: Main Classes
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/loaders/ip_adapter
|
||||
title: IP-Adapter
|
||||
- local: api/loaders/lora
|
||||
@@ -204,8 +215,8 @@
|
||||
- local: api/loaders/peft
|
||||
title: PEFT
|
||||
title: Loaders
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/models/overview
|
||||
title: Overview
|
||||
- local: api/models/unet
|
||||
@@ -231,16 +242,30 @@
|
||||
- local: api/models/consistency_decoder_vae
|
||||
title: ConsistencyDecoderVAE
|
||||
- local: api/models/transformer2d
|
||||
title: Transformer2D
|
||||
title: Transformer2DModel
|
||||
- local: api/models/pixart_transformer2d
|
||||
title: PixArtTransformer2DModel
|
||||
- local: api/models/dit_transformer2d
|
||||
title: DiTTransformer2DModel
|
||||
- local: api/models/hunyuan_transformer2d
|
||||
title: HunyuanDiT2DModel
|
||||
- local: api/models/lumina_nextdit2d
|
||||
title: LuminaNextDiT2DModel
|
||||
- local: api/models/transformer_temporal
|
||||
title: Transformer Temporal
|
||||
title: TransformerTemporalModel
|
||||
- local: api/models/sd3_transformer2d
|
||||
title: SD3Transformer2DModel
|
||||
- local: api/models/prior_transformer
|
||||
title: Prior Transformer
|
||||
title: PriorTransformer
|
||||
- local: api/models/controlnet
|
||||
title: ControlNet
|
||||
title: ControlNetModel
|
||||
- local: api/models/controlnet_hunyuandit
|
||||
title: HunyuanDiT2DControlNetModel
|
||||
- local: api/models/controlnet_sd3
|
||||
title: SD3ControlNetModel
|
||||
title: Models
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/pipelines/overview
|
||||
title: Overview
|
||||
- local: api/pipelines/amused
|
||||
@@ -261,6 +286,10 @@
|
||||
title: Consistency Models
|
||||
- local: api/pipelines/controlnet
|
||||
title: ControlNet
|
||||
- local: api/pipelines/controlnet_hunyuandit
|
||||
title: ControlNet with Hunyuan-DiT
|
||||
- local: api/pipelines/controlnet_sd3
|
||||
title: ControlNet with Stable Diffusion 3
|
||||
- local: api/pipelines/controlnet_sdxl
|
||||
title: ControlNet with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnetxs
|
||||
@@ -279,6 +308,8 @@
|
||||
title: DiffEdit
|
||||
- local: api/pipelines/dit
|
||||
title: DiT
|
||||
- local: api/pipelines/hunyuandit
|
||||
title: Hunyuan-DiT
|
||||
- local: api/pipelines/i2vgenxl
|
||||
title: I2VGen-XL
|
||||
- local: api/pipelines/pix2pix
|
||||
@@ -295,10 +326,16 @@
|
||||
title: Latent Diffusion
|
||||
- local: api/pipelines/ledits_pp
|
||||
title: LEDITS++
|
||||
- local: api/pipelines/lumina
|
||||
title: Lumina-T2X
|
||||
- local: api/pipelines/marigold
|
||||
title: Marigold
|
||||
- local: api/pipelines/panorama
|
||||
title: MultiDiffusion
|
||||
- local: api/pipelines/musicldm
|
||||
title: MusicLDM
|
||||
- local: api/pipelines/pag
|
||||
title: PAG
|
||||
- local: api/pipelines/paint_by_example
|
||||
title: Paint by Example
|
||||
- local: api/pipelines/pia
|
||||
@@ -334,6 +371,8 @@
|
||||
title: Safe Stable Diffusion
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_2
|
||||
title: Stable Diffusion 2
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_3
|
||||
title: Stable Diffusion 3
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
|
||||
title: Stable Diffusion XL
|
||||
- local: api/pipelines/stable_diffusion/sdxl_turbo
|
||||
@@ -366,8 +405,8 @@
|
||||
- local: api/pipelines/wuerstchen
|
||||
title: Wuerstchen
|
||||
title: Pipelines
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/schedulers/overview
|
||||
title: Overview
|
||||
- local: api/schedulers/cm_stochastic_iterative
|
||||
@@ -398,6 +437,10 @@
|
||||
title: EulerAncestralDiscreteScheduler
|
||||
- local: api/schedulers/euler
|
||||
title: EulerDiscreteScheduler
|
||||
- local: api/schedulers/flow_match_euler_discrete
|
||||
title: FlowMatchEulerDiscreteScheduler
|
||||
- local: api/schedulers/flow_match_heun_discrete
|
||||
title: FlowMatchHeunDiscreteScheduler
|
||||
- local: api/schedulers/heun
|
||||
title: HeunDiscreteScheduler
|
||||
- local: api/schedulers/ipndm
|
||||
@@ -427,8 +470,8 @@
|
||||
- local: api/schedulers/vq_diffusion
|
||||
title: VQDiffusionScheduler
|
||||
title: Schedulers
|
||||
isExpanded: false
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: api/internal_classes_overview
|
||||
title: Overview
|
||||
- local: api/attnprocessor
|
||||
@@ -444,5 +487,4 @@
|
||||
- local: api/video_processor
|
||||
title: Video Processor
|
||||
title: Internal classes
|
||||
isExpanded: false
|
||||
title: API
|
||||
|
||||
231
docs/source/en/advanced_inference/outpaint.md
Normal file
231
docs/source/en/advanced_inference/outpaint.md
Normal file
@@ -0,0 +1,231 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Outpainting
|
||||
|
||||
Outpainting extends an image beyond its original boundaries, allowing you to add, replace, or modify visual elements in an image while preserving the original image. Like [inpainting](../using-diffusers/inpaint), you want to fill the white area (in this case, the area outside of the original image) with new visual elements while keeping the original image (represented by a mask of black pixels). There are a couple of ways to outpaint, such as with a [ControlNet](https://hf.co/blog/OzzyGT/outpainting-controlnet) or with [Differential Diffusion](https://hf.co/blog/OzzyGT/outpainting-differential-diffusion).
|
||||
|
||||
This guide will show you how to outpaint with an inpainting model, ControlNet, and a ZoeDepth estimator.
|
||||
|
||||
Before you begin, make sure you have the [controlnet_aux](https://github.com/huggingface/controlnet_aux) library installed so you can use the ZoeDepth estimator.
|
||||
|
||||
```py
|
||||
!pip install -q controlnet_aux
|
||||
```
|
||||
|
||||
## Image preparation
|
||||
|
||||
Start by picking an image to outpaint with and remove the background with a Space like [BRIA-RMBG-1.4](https://hf.co/spaces/briaai/BRIA-RMBG-1.4).
|
||||
|
||||
<iframe
|
||||
src="https://briaai-bria-rmbg-1-4.hf.space"
|
||||
frameborder="0"
|
||||
width="850"
|
||||
height="450"
|
||||
></iframe>
|
||||
|
||||
For example, remove the background from this image of a pair of shoes.
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/original-jordan.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/no-background-jordan.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">background removed</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
[Stable Diffusion XL (SDXL)](../using-diffusers/sdxl) models work best with 1024x1024 images, but you can resize the image to any size as long as your hardware has enough memory to support it. The transparent background in the image should also be replaced with a white background. Create a function (like the one below) that scales and pastes the image onto a white background.
|
||||
|
||||
```py
|
||||
import random
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from controlnet_aux import ZoeDetector
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
ControlNetModel,
|
||||
StableDiffusionXLControlNetPipeline,
|
||||
StableDiffusionXLInpaintPipeline,
|
||||
)
|
||||
|
||||
def scale_and_paste(original_image):
|
||||
aspect_ratio = original_image.width / original_image.height
|
||||
|
||||
if original_image.width > original_image.height:
|
||||
new_width = 1024
|
||||
new_height = round(new_width / aspect_ratio)
|
||||
else:
|
||||
new_height = 1024
|
||||
new_width = round(new_height * aspect_ratio)
|
||||
|
||||
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
|
||||
white_background = Image.new("RGBA", (1024, 1024), "white")
|
||||
x = (1024 - new_width) // 2
|
||||
y = (1024 - new_height) // 2
|
||||
white_background.paste(resized_original, (x, y), resized_original)
|
||||
|
||||
return resized_original, white_background
|
||||
|
||||
original_image = Image.open(
|
||||
requests.get(
|
||||
"https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/no-background-jordan.png",
|
||||
stream=True,
|
||||
).raw
|
||||
).convert("RGBA")
|
||||
resized_img, white_bg_image = scale_and_paste(original_image)
|
||||
```
|
||||
|
||||
To avoid adding unwanted extra details, use the ZoeDepth estimator to provide additional guidance during generation and to ensure the shoes remain consistent with the original image.
|
||||
|
||||
```py
|
||||
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
image_zoe = zoe(white_bg_image, detect_resolution=512, image_resolution=1024)
|
||||
image_zoe
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/zoedepth-jordan.png"/>
|
||||
</div>
|
||||
|
||||
## Outpaint
|
||||
|
||||
Once your image is ready, you can generate content in the white area around the shoes with [controlnet-inpaint-dreamer-sdxl](https://hf.co/destitech/controlnet-inpaint-dreamer-sdxl), a SDXL ControlNet trained for inpainting.
|
||||
|
||||
Load the inpainting ControlNet, ZoeDepth model, VAE and pass them to the [`StableDiffusionXLControlNetPipeline`]. Then you can create an optional `generate_image` function (for convenience) to outpaint an initial image.
|
||||
|
||||
```py
|
||||
controlnets = [
|
||||
ControlNetModel.from_pretrained(
|
||||
"destitech/controlnet-inpaint-dreamer-sdxl", torch_dtype=torch.float16, variant="fp16"
|
||||
),
|
||||
ControlNetModel.from_pretrained(
|
||||
"diffusers/controlnet-zoe-depth-sdxl-1.0", torch_dtype=torch.float16
|
||||
),
|
||||
]
|
||||
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
||||
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
"SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16", controlnet=controlnets, vae=vae
|
||||
).to("cuda")
|
||||
|
||||
def generate_image(prompt, negative_prompt, inpaint_image, zoe_image, seed: int = None):
|
||||
if seed is None:
|
||||
seed = random.randint(0, 2**32 - 1)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
image = pipeline(
|
||||
prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
image=[inpaint_image, zoe_image],
|
||||
guidance_scale=6.5,
|
||||
num_inference_steps=25,
|
||||
generator=generator,
|
||||
controlnet_conditioning_scale=[0.5, 0.8],
|
||||
control_guidance_end=[0.9, 0.6],
|
||||
).images[0]
|
||||
|
||||
return image
|
||||
|
||||
prompt = "nike air jordans on a basketball court"
|
||||
negative_prompt = ""
|
||||
|
||||
temp_image = generate_image(prompt, negative_prompt, white_bg_image, image_zoe, 908097)
|
||||
```
|
||||
|
||||
Paste the original image over the initial outpainted image. You'll improve the outpainted background in a later step.
|
||||
|
||||
```py
|
||||
x = (1024 - resized_img.width) // 2
|
||||
y = (1024 - resized_img.height) // 2
|
||||
temp_image.paste(resized_img, (x, y), resized_img)
|
||||
temp_image
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/initial-outpaint.png"/>
|
||||
</div>
|
||||
|
||||
> [!TIP]
|
||||
> Now is a good time to free up some memory if you're running low!
|
||||
>
|
||||
> ```py
|
||||
> pipeline=None
|
||||
> torch.cuda.empty_cache()
|
||||
> ```
|
||||
|
||||
Now that you have an initial outpainted image, load the [`StableDiffusionXLInpaintPipeline`] with the [RealVisXL](https://hf.co/SG161222/RealVisXL_V4.0) model to generate the final outpainted image with better quality.
|
||||
|
||||
```py
|
||||
pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
|
||||
"OzzyGT/RealVisXL_V4.0_inpainting",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
vae=vae,
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Prepare a mask for the final outpainted image. To create a more natural transition between the original image and the outpainted background, blur the mask to help it blend better.
|
||||
|
||||
```py
|
||||
mask = Image.new("L", temp_image.size)
|
||||
mask.paste(resized_img.split()[3], (x, y))
|
||||
mask = ImageOps.invert(mask)
|
||||
final_mask = mask.point(lambda p: p > 128 and 255)
|
||||
mask_blurred = pipeline.mask_processor.blur(final_mask, blur_factor=20)
|
||||
mask_blurred
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/blurred-mask.png"/>
|
||||
</div>
|
||||
|
||||
Create a better prompt and pass it to the `generate_outpaint` function to generate the final outpainted image. Again, paste the original image over the final outpainted background.
|
||||
|
||||
```py
|
||||
def generate_outpaint(prompt, negative_prompt, image, mask, seed: int = None):
|
||||
if seed is None:
|
||||
seed = random.randint(0, 2**32 - 1)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
image = pipeline(
|
||||
prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
image=image,
|
||||
mask_image=mask,
|
||||
guidance_scale=10.0,
|
||||
strength=0.8,
|
||||
num_inference_steps=30,
|
||||
generator=generator,
|
||||
).images[0]
|
||||
|
||||
return image
|
||||
|
||||
prompt = "high quality photo of nike air jordans on a basketball court, highly detailed"
|
||||
negative_prompt = ""
|
||||
|
||||
final_image = generate_outpaint(prompt, negative_prompt, temp_image, mask_blurred, 7688778)
|
||||
x = (1024 - resized_img.width) // 2
|
||||
y = (1024 - resized_img.height) // 2
|
||||
final_image.paste(resized_img, (x, y), resized_img)
|
||||
final_image
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/final-outpaint.png"/>
|
||||
</div>
|
||||
@@ -41,12 +41,6 @@ An attention processor is a class for applying different types of attention mech
|
||||
## FusedAttnProcessor2_0
|
||||
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
|
||||
|
||||
## LoRAAttnAddedKVProcessor
|
||||
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
|
||||
|
||||
## LoRAXFormersAttnProcessor
|
||||
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
|
||||
|
||||
## SlicedAttnProcessor
|
||||
[[autodoc]] models.attention_processor.SlicedAttnProcessor
|
||||
|
||||
|
||||
@@ -10,13 +10,17 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Loading Pipelines and Models via `from_single_file`
|
||||
# Single files
|
||||
|
||||
The `from_single_file` method allows you to load supported pipelines using a single checkpoint file as opposed to the folder format used by Diffusers. This is useful if you are working with many of the Stable Diffusion Web UI's (such as A1111) that extensively rely on a single file to distribute all the components of a diffusion model.
|
||||
The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
|
||||
|
||||
The `from_single_file` method also supports loading models in their originally distributed format. This means that supported models that have been finetuned with other services can be loaded directly into supported Diffusers model objects and pipelines.
|
||||
* a model stored in a single file, which is useful if you're working with models from the diffusion ecosystem, like Automatic1111, and commonly rely on a single-file layout to store and share models
|
||||
* a model stored in their originally distributed layout, which is useful if you're working with models finetuned with other services, and want to load it directly into Diffusers model objects and pipelines
|
||||
|
||||
## Pipelines that currently support `from_single_file` loading
|
||||
> [!TIP]
|
||||
> Read the [Model files and layouts](../../using-diffusers/other-formats) guide to learn more about the Diffusers-multifolder layout versus the single-file layout, and how to load models stored in these different layouts.
|
||||
|
||||
## Supported pipelines
|
||||
|
||||
- [`StableDiffusionPipeline`]
|
||||
- [`StableDiffusionImg2ImgPipeline`]
|
||||
@@ -31,6 +35,7 @@ The `from_single_file` method also supports loading models in their originally d
|
||||
- [`StableDiffusionXLInstructPix2PixPipeline`]
|
||||
- [`StableDiffusionXLControlNetPipeline`]
|
||||
- [`StableDiffusionXLKDiffusionPipeline`]
|
||||
- [`StableDiffusion3Pipeline`]
|
||||
- [`LatentConsistencyModelPipeline`]
|
||||
- [`LatentConsistencyModelImg2ImgPipeline`]
|
||||
- [`StableDiffusionControlNetXSPipeline`]
|
||||
@@ -39,205 +44,13 @@ The `from_single_file` method also supports loading models in their originally d
|
||||
- [`LEditsPPPipelineStableDiffusionXL`]
|
||||
- [`PIAPipeline`]
|
||||
|
||||
## Models that currently support `from_single_file` loading
|
||||
## Supported models
|
||||
|
||||
- [`UNet2DConditionModel`]
|
||||
- [`StableCascadeUNet`]
|
||||
- [`AutoencoderKL`]
|
||||
- [`ControlNetModel`]
|
||||
|
||||
## Usage Examples
|
||||
|
||||
## Loading a Pipeline using `from_single_file`
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(ckpt_path)
|
||||
```
|
||||
|
||||
## Setting components in a Pipeline using `from_single_file`
|
||||
|
||||
Swap components of the pipeline by passing them directly to the `from_single_file` method. e.g If you would like use a different scheduler than the pipeline default.
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(ckpt_path, scheduler=scheduler)
|
||||
|
||||
```
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionPipeline, ControlNetModel
|
||||
|
||||
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained("https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors")
|
||||
pipe = StableDiffusionPipeline.from_single_file(ckpt_path, controlnet=controlnet)
|
||||
|
||||
```
|
||||
|
||||
## Loading a Model using `from_single_file`
|
||||
|
||||
```python
|
||||
from diffusers import StableCascadeUNet
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
|
||||
model = StableCascadeUNet.from_single_file(ckpt_path)
|
||||
|
||||
```
|
||||
|
||||
## Using a Diffusers model repository to configure single file loading
|
||||
|
||||
Under the hood, `from_single_file` will try to determine a model repository to use to configure the components of the pipeline. You can also pass in a repository id to the `config` argument of the `from_single_file` method to explicitly set the repository to use.
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/segmind/SSD-1B/blob/main/SSD-1B.safetensors"
|
||||
repo_id = "segmind/SSD-1B"
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(ckpt_path, config=repo_id)
|
||||
|
||||
```
|
||||
|
||||
## Override configuration options when using single file loading
|
||||
|
||||
Override the default model or pipeline configuration options when using `from_single_file` by passing in the relevant arguments directly to the `from_single_file` method. Any argument that is supported by the model or pipeline class can be configured in this way:
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLInstructPix2PixPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/cosxl/blob/main/cosxl_edit.safetensors"
|
||||
pipe = StableDiffusionXLInstructPix2PixPipeline.from_single_file(ckpt_path, config="diffusers/sdxl-instructpix2pix-768", is_cosxl_edit=True)
|
||||
|
||||
```
|
||||
|
||||
```python
|
||||
from diffusers import UNet2DConditionModel
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
model = UNet2DConditionModel.from_single_file(ckpt_path, upcast_attention=True)
|
||||
|
||||
```
|
||||
|
||||
In the example above, since we explicitly passed `repo_id="segmind/SSD-1B"`, it will use this [configuration file](https://huggingface.co/segmind/SSD-1B/blob/main/unet/config.json) from the "unet" subfolder in `"segmind/SSD-1B"` to configure the unet component included in the checkpoint; Similarly, it will use the `config.json` file from `"vae"` subfolder to configure the vae model, `config.json` file from text_encoder folder to configure text_encoder and so on.
|
||||
|
||||
Note that most of the time you do not need to explicitly a `config` argument, `from_single_file` will automatically map the checkpoint to a repo id (we will discuss this in more details in next section). However, this can be useful in cases where model components might have been changed from what was originally distributed or in cases where a checkpoint file might not have the necessary metadata to correctly determine the configuration to use for the pipeline.
|
||||
|
||||
<Tip>
|
||||
|
||||
To learn more about how to load single file weights, see the [Load different Stable Diffusion formats](../../using-diffusers/other-formats) loading guide.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Working with local files
|
||||
|
||||
As of `diffusers>=0.28.0` the `from_single_file` method will attempt to configure a pipeline or model by first inferring the model type from the checkpoint file and then using the model type to determine the appropriate model repo configuration to use from the Hugging Face Hub. For example, any single file checkpoint based on the Stable Diffusion XL base model will use the [`stabilityai/stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model repo to configure the pipeline.
|
||||
|
||||
If you are working in an environment with restricted internet access, it is recommended to download the config files and checkpoints for the model to your preferred directory and pass the local paths to the `pretrained_model_link_or_path` and `config` arguments of the `from_single_file` method.
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allowed_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
|
||||
```
|
||||
|
||||
By default this will download the checkpoints and config files to the [Hugging Face Hub cache directory](https://huggingface.co/docs/huggingface_hub/en/guides/manage-cache). You can also specify a local directory to download the files to by passing the `local_dir` argument to the `hf_hub_download` and `snapshot_download` functions.
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
local_dir="my_local_checkpoints"
|
||||
)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allowed_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
local_dir="my_local_config"
|
||||
)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
|
||||
```
|
||||
|
||||
## Working with local files on file systems that do not support symlinking
|
||||
|
||||
By default the `from_single_file` method relies on the `huggingface_hub` caching mechanism to fetch and store checkpoints and config files for models and pipelines. If you are working with a file system that does not support symlinking, it is recommended that you first download the checkpoint file to a local directory and disable symlinking by passing the `local_dir_use_symlink=False` argument to the `hf_hub_download` and `snapshot_download` functions.
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
local_dir="my_local_checkpoints",
|
||||
local_dir_use_symlinks=False
|
||||
)
|
||||
print("My local checkpoint: ", my_local_checkpoint_path)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allowed_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
print("My local config: ", my_local_config_path)
|
||||
|
||||
```
|
||||
|
||||
Then pass the local paths to the `pretrained_model_link_or_path` and `config` arguments of the `from_single_file` method.
|
||||
|
||||
```python
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
|
||||
```
|
||||
|
||||
<Tip>
|
||||
Disabling symlinking means that the `huggingface_hub` caching mechanism has no way to determine whether a file has already been downloaded to the local directory. This means that the `hf_hub_download` and `snapshot_download` functions will download files to the local directory each time they are executed. If you are disabling symlinking, it is recommended that you separate the model download and loading steps to avoid downloading the same file multiple times.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Using the original configuration file of a model
|
||||
|
||||
If you would like to configure the parameters of the model components in the pipeline using the orignal YAML configuration file, you can pass a local path or url to the original configuration file to the `original_config` argument of the `from_single_file` method.
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
original_config = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_single_file(ckpt_path, original_config=original_config)
|
||||
```
|
||||
|
||||
In the example above, the `original_config` file is only used to configure the parameters of the individual model components of the pipeline. For example it will be used to configure parameters such as the `in_channels` of the `vae` model and `unet` model. It is not used to determine the type of component objects in the pipeline.
|
||||
|
||||
|
||||
<Tip>
|
||||
When using `original_config` with local_files_only=True`, Diffusers will attempt to infer the components based on the type signatures of pipeline class, rather than attempting to fetch the pipeline config from the Hugging Face Hub. This is to prevent backwards breaking changes in existing code that might not be able to connect to the internet to fetch the necessary pipeline config files.
|
||||
|
||||
This is not as reliable as providing a path to a local config repo and might lead to errors when configuring the pipeline. To avoid this, please run the pipeline with `local_files_only=False` once to download the appropriate pipeline config files to the local cache.
|
||||
</Tip>
|
||||
|
||||
- [`SD3Transformer2DModel`]
|
||||
|
||||
## FromSingleFileMixin
|
||||
|
||||
|
||||
@@ -21,7 +21,7 @@ The abstract from the paper is:
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`AutoencoderKL`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
|
||||
from the original format using [`FromOriginalVAEMixin.from_single_file`] as follows:
|
||||
from the original format using [`FromOriginalModelMixin.from_single_file`] as follows:
|
||||
|
||||
```py
|
||||
from diffusers import AutoencoderKL
|
||||
|
||||
@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ControlNet
|
||||
# ControlNetModel
|
||||
|
||||
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
|
||||
|
||||
@@ -21,7 +21,7 @@ The abstract from the paper is:
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
|
||||
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
|
||||
from the original format using [`FromOriginalModelMixin.from_single_file`] as follows:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
|
||||
37
docs/source/en/api/models/controlnet_hunyuandit.md
Normal file
37
docs/source/en/api/models/controlnet_hunyuandit.md
Normal file
@@ -0,0 +1,37 @@
|
||||
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# HunyuanDiT2DControlNetModel
|
||||
|
||||
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://arxiv.org/abs/2405.08748).
|
||||
|
||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||
|
||||
With a ControlNet model, you can provide an additional control image to condition and control Hunyuan-DiT generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
This code is implemented by Tencent Hunyuan Team. You can find pre-trained checkpoints for Hunyuan-DiT ControlNets on [Tencent Hunyuan](https://huggingface.co/Tencent-Hunyuan).
|
||||
|
||||
## Example For Loading HunyuanDiT2DControlNetModel
|
||||
|
||||
```py
|
||||
from diffusers import HunyuanDiT2DControlNetModel
|
||||
import torch
|
||||
controlnet = HunyuanDiT2DControlNetModel.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16)
|
||||
```
|
||||
|
||||
## HunyuanDiT2DControlNetModel
|
||||
|
||||
[[autodoc]] HunyuanDiT2DControlNetModel
|
||||
42
docs/source/en/api/models/controlnet_sd3.md
Normal file
42
docs/source/en/api/models/controlnet_sd3.md
Normal file
@@ -0,0 +1,42 @@
|
||||
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# SD3ControlNetModel
|
||||
|
||||
SD3ControlNetModel is an implementation of ControlNet for Stable Diffusion 3.
|
||||
|
||||
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
## Loading from the original format
|
||||
|
||||
By default the [`SD3ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusion3ControlNetPipeline
|
||||
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
||||
|
||||
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
|
||||
pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)
|
||||
```
|
||||
|
||||
## SD3ControlNetModel
|
||||
|
||||
[[autodoc]] SD3ControlNetModel
|
||||
|
||||
## SD3ControlNetOutput
|
||||
|
||||
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput
|
||||
|
||||
19
docs/source/en/api/models/dit_transformer2d.md
Normal file
19
docs/source/en/api/models/dit_transformer2d.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# DiTTransformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [DiT](https://huggingface.co/papers/2212.09748).
|
||||
|
||||
## DiTTransformer2DModel
|
||||
|
||||
[[autodoc]] DiTTransformer2DModel
|
||||
20
docs/source/en/api/models/hunyuan_transformer2d.md
Normal file
20
docs/source/en/api/models/hunyuan_transformer2d.md
Normal file
@@ -0,0 +1,20 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# HunyuanDiT2DModel
|
||||
|
||||
A Diffusion Transformer model for 2D data from [Hunyuan-DiT](https://github.com/Tencent/HunyuanDiT).
|
||||
|
||||
## HunyuanDiT2DModel
|
||||
|
||||
[[autodoc]] HunyuanDiT2DModel
|
||||
|
||||
20
docs/source/en/api/models/lumina_nextdit2d.md
Normal file
20
docs/source/en/api/models/lumina_nextdit2d.md
Normal file
@@ -0,0 +1,20 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# LuminaNextDiT2DModel
|
||||
|
||||
A Next Version of Diffusion Transformer model for 2D data from [Lumina-T2X](https://github.com/Alpha-VLLM/Lumina-T2X).
|
||||
|
||||
## LuminaNextDiT2DModel
|
||||
|
||||
[[autodoc]] LuminaNextDiT2DModel
|
||||
|
||||
19
docs/source/en/api/models/pixart_transformer2d.md
Normal file
19
docs/source/en/api/models/pixart_transformer2d.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# PixArtTransformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [PixArt-Alpha](https://huggingface.co/papers/2310.00426) and [PixArt-Sigma](https://huggingface.co/papers/2403.04692).
|
||||
|
||||
## PixArtTransformer2DModel
|
||||
|
||||
[[autodoc]] PixArtTransformer2DModel
|
||||
@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Prior Transformer
|
||||
# PriorTransformer
|
||||
|
||||
The Prior Transformer was originally introduced in [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://huggingface.co/papers/2204.06125) by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.
|
||||
|
||||
|
||||
19
docs/source/en/api/models/sd3_transformer2d.md
Normal file
19
docs/source/en/api/models/sd3_transformer2d.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# SD3 Transformer Model
|
||||
|
||||
The Transformer model introduced in [Stable Diffusion 3](https://hf.co/papers/2403.03206). Its novelty lies in the MMDiT transformer block.
|
||||
|
||||
## SD3Transformer2DModel
|
||||
|
||||
[[autodoc]] SD3Transformer2DModel
|
||||
@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Transformer2D
|
||||
# Transformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [CompVis](https://huggingface.co/CompVis) that is based on the [Vision Transformer](https://huggingface.co/papers/2010.11929) introduced by Dosovitskiy et al. The [`Transformer2DModel`] accepts discrete (classes of vector embeddings) or continuous (actual embeddings) inputs.
|
||||
|
||||
@@ -38,4 +38,4 @@ It is assumed one of the input classes is the masked latent pixel. The predicted
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.transformers.transformer_2d.Transformer2DModelOutput
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
|
||||
@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Transformer Temporal
|
||||
# TransformerTemporalModel
|
||||
|
||||
A Transformer model for video-like data.
|
||||
|
||||
|
||||
@@ -24,4 +24,4 @@ The abstract from the paper is:
|
||||
|
||||
## VQEncoderOutput
|
||||
|
||||
[[autodoc]] models.vq_model.VQEncoderOutput
|
||||
[[autodoc]] models.autoencoders.vq_model.VQEncoderOutput
|
||||
|
||||
@@ -16,7 +16,7 @@ aMUSEd was introduced in [aMUSEd: An Open MUSE Reproduction](https://huggingface
|
||||
|
||||
Amused is a lightweight text to image model based off of the [MUSE](https://arxiv.org/abs/2301.00704) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
|
||||
|
||||
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.
|
||||
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
|
||||
@@ -78,7 +78,6 @@ output = pipe(
|
||||
)
|
||||
frames = output.frames[0]
|
||||
export_to_gif(frames, "animation.gif")
|
||||
|
||||
```
|
||||
|
||||
Here are some sample outputs:
|
||||
@@ -165,7 +164,7 @@ from PIL import Image
|
||||
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
|
||||
# load SD 1.5 based finetuned model
|
||||
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
||||
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
|
||||
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
|
||||
scheduler = DDIMScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
@@ -303,7 +302,6 @@ output = pipe(
|
||||
)
|
||||
frames = output.frames[0]
|
||||
export_to_gif(frames, "animation.gif")
|
||||
|
||||
```
|
||||
|
||||
<table>
|
||||
@@ -378,7 +376,6 @@ output = pipe(
|
||||
)
|
||||
frames = output.frames[0]
|
||||
export_to_gif(frames, "animation.gif")
|
||||
|
||||
```
|
||||
|
||||
<table>
|
||||
|
||||
@@ -20,8 +20,8 @@ The abstract of the paper is the following:
|
||||
|
||||
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called "language of audio" (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate state-of-the-art or competitive performance against previous approaches. Our code, pretrained model, and demo are available at [this https URL](https://audioldm.github.io/audioldm2).*
|
||||
|
||||
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi) and [Nguyễn Công Tú Anh](https://github.com/tuanh123789). The original codebase can be
|
||||
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
|
||||
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi) and [Nguyễn Công Tú Anh](https://github.com/tuanh123789). The original codebase can be
|
||||
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
|
||||
|
||||
## Tips
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# BLIP-Diffusion
|
||||
|
||||
BLIP-Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
|
||||
BLIP-Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
|
||||
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
36
docs/source/en/api/pipelines/controlnet_hunyuandit.md
Normal file
36
docs/source/en/api/pipelines/controlnet_hunyuandit.md
Normal file
@@ -0,0 +1,36 @@
|
||||
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ControlNet with Hunyuan-DiT
|
||||
|
||||
HunyuanDiTControlNetPipeline is an implementation of ControlNet for [Hunyuan-DiT](https://arxiv.org/abs/2405.08748).
|
||||
|
||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||
|
||||
With a ControlNet model, you can provide an additional control image to condition and control Hunyuan-DiT generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
This code is implemented by Tencent Hunyuan Team. You can find pre-trained checkpoints for Hunyuan-DiT ControlNets on [Tencent Hunyuan](https://huggingface.co/Tencent-Hunyuan).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
## HunyuanDiTControlNetPipeline
|
||||
[[autodoc]] HunyuanDiTControlNetPipeline
|
||||
- all
|
||||
- __call__
|
||||
39
docs/source/en/api/pipelines/controlnet_sd3.md
Normal file
39
docs/source/en/api/pipelines/controlnet_sd3.md
Normal file
@@ -0,0 +1,39 @@
|
||||
<!--Copyright 2023 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ControlNet with Stable Diffusion 3
|
||||
|
||||
StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.
|
||||
|
||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||
|
||||
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
|
||||
|
||||
This code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for SD3-ControlNet on [The InstantX Team](https://huggingface.co/InstantX) Hub profile.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
## StableDiffusion3ControlNetPipeline
|
||||
[[autodoc]] StableDiffusion3ControlNetPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusion3PipelineOutput
|
||||
[[autodoc]] pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput
|
||||
101
docs/source/en/api/pipelines/hunyuandit.md
Normal file
101
docs/source/en/api/pipelines/hunyuandit.md
Normal file
@@ -0,0 +1,101 @@
|
||||
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Hunyuan-DiT
|
||||

|
||||
|
||||
[Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding](https://arxiv.org/abs/2405.08748) from Tencent Hunyuan.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.*
|
||||
|
||||
|
||||
You can find the original codebase at [Tencent/HunyuanDiT](https://github.com/Tencent/HunyuanDiT) and all the available checkpoints at [Tencent-Hunyuan](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
|
||||
|
||||
**Highlights**: HunyuanDiT supports Chinese/English-to-image, multi-resolution generation.
|
||||
|
||||
HunyuanDiT has the following components:
|
||||
* It uses a diffusion transformer as the backbone
|
||||
* It combines two text encoders, a bilingual CLIP and a multilingual T5 encoder
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
You can further improve generation quality by passing the generated image from [`HungyuanDiTPipeline`] to the [SDXL refiner](../../using-diffusers/sdxl#base-to-refiner-model) model.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Optimization
|
||||
|
||||
You can optimize the pipeline's runtime and memory consumption with torch.compile and feed-forward chunking. To learn about other optimization methods, check out the [Speed up inference](../../optimization/fp16) and [Reduce memory usage](../../optimization/memory) guides.
|
||||
|
||||
### Inference
|
||||
|
||||
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
|
||||
|
||||
First, load the pipeline:
|
||||
|
||||
```python
|
||||
from diffusers import HunyuanDiTPipeline
|
||||
import torch
|
||||
|
||||
pipeline = HunyuanDiTPipeline.from_pretrained(
|
||||
"Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Then change the memory layout of the pipelines `transformer` and `vae` components to `torch.channels-last`:
|
||||
|
||||
```python
|
||||
pipeline.transformer.to(memory_format=torch.channels_last)
|
||||
pipeline.vae.to(memory_format=torch.channels_last)
|
||||
```
|
||||
|
||||
Finally, compile the components and run inference:
|
||||
|
||||
```python
|
||||
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
||||
pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fullgraph=True)
|
||||
|
||||
image = pipeline(prompt="一个宇航员在骑马").images[0]
|
||||
```
|
||||
|
||||
The [benchmark](https://gist.github.com/sayakpaul/29d3a14905cfcbf611fe71ebd22e9b23) results on a 80GB A100 machine are:
|
||||
|
||||
```bash
|
||||
With torch.compile(): Average inference time: 12.470 seconds.
|
||||
Without torch.compile(): Average inference time: 20.570 seconds.
|
||||
```
|
||||
|
||||
### Memory optimization
|
||||
|
||||
By loading the T5 text encoder in 8 bits, you can run the pipeline in just under 6 GBs of GPU VRAM. Refer to [this script](https://gist.github.com/sayakpaul/3154605f6af05b98a41081aaba5ca43e) for details.
|
||||
|
||||
Furthermore, you can use the [`~HunyuanDiT2DModel.enable_forward_chunking`] method to reduce memory usage. Feed-forward chunking runs the feed-forward layers in a transformer block in a loop instead of all at once. This gives you a trade-off between memory consumption and inference runtime.
|
||||
|
||||
```diff
|
||||
+ pipeline.transformer.enable_forward_chunking(chunk_size=1, dim=1)
|
||||
```
|
||||
|
||||
|
||||
## HunyuanDiTPipeline
|
||||
|
||||
[[autodoc]] HunyuanDiTPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
@@ -47,6 +47,7 @@ Sample output with I2VGenXL:
|
||||
* Unlike SVD, it additionally accepts text prompts as inputs.
|
||||
* It can generate higher resolution videos.
|
||||
* When using the [`DDIMScheduler`] (which is default for this pipeline), less than 50 steps for inference leads to bad results.
|
||||
* This implementation is 1-stage variant of I2VGenXL. The main figure in the [I2VGen-XL](https://arxiv.org/abs/2311.04145) paper shows a 2-stage variant, however, 1-stage variant works well. See [this discussion](https://github.com/huggingface/diffusers/discussions/7952) for more details.
|
||||
|
||||
## I2VGenXLPipeline
|
||||
[[autodoc]] I2VGenXLPipeline
|
||||
|
||||
@@ -11,12 +11,12 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
Kandinsky 3 is created by [Vladimir Arkhipkin](https://github.com/oriBetelgeuse),[Anastasia Maltseva](https://github.com/NastyaMittseva),[Igor Pavlov](https://github.com/boomb0om),[Andrei Filatov](https://github.com/anvilarth),[Arseniy Shakhmatov](https://github.com/cene555),[Andrey Kuznetsov](https://github.com/kuznetsoffandrey),[Denis Dimitrov](https://github.com/denndimitrov), [Zein Shaheen](https://github.com/zeinsh)
|
||||
|
||||
The description from it's Github page:
|
||||
The description from it's GitHub page:
|
||||
|
||||
*Kandinsky 3.0 is an open-source text-to-image diffusion model built upon the Kandinsky2-x model family. In comparison to its predecessors, enhancements have been made to the text understanding and visual quality of the model, achieved by increasing the size of the text encoder and Diffusion U-Net models, respectively.*
|
||||
|
||||
Its architecture includes 3 main components:
|
||||
1. [FLAN-UL2](https://huggingface.co/google/flan-ul2), which is an encoder decoder model based on the T5 architecture.
|
||||
1. [FLAN-UL2](https://huggingface.co/google/flan-ul2), which is an encoder decoder model based on the T5 architecture.
|
||||
2. New U-Net architecture featuring BigGAN-deep blocks doubles depth while maintaining the same number of parameters.
|
||||
3. Sber-MoVQGAN is a decoder proven to have superior results in image restoration.
|
||||
|
||||
|
||||
@@ -25,11 +25,11 @@ You can find additional information about LEDITS++ on the [project page](https:/
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
Due to some backward compatability issues with the current diffusers implementation of [`~schedulers.DPMSolverMultistepScheduler`] this implementation of LEdits++ can no longer guarantee perfect inversion.
|
||||
This issue is unlikely to have any noticeable effects on applied use-cases. However, we provide an alternative implementation that guarantees perfect inversion in a dedicated [GitHub repo](https://github.com/ml-research/ledits_pp).
|
||||
Due to some backward compatability issues with the current diffusers implementation of [`~schedulers.DPMSolverMultistepScheduler`] this implementation of LEdits++ can no longer guarantee perfect inversion.
|
||||
This issue is unlikely to have any noticeable effects on applied use-cases. However, we provide an alternative implementation that guarantees perfect inversion in a dedicated [GitHub repo](https://github.com/ml-research/ledits_pp).
|
||||
</Tip>
|
||||
|
||||
We provide two distinct pipelines based on different pre-trained models.
|
||||
We provide two distinct pipelines based on different pre-trained models.
|
||||
|
||||
## LEditsPPPipelineStableDiffusion
|
||||
[[autodoc]] pipelines.ledits_pp.LEditsPPPipelineStableDiffusion
|
||||
|
||||
88
docs/source/en/api/pipelines/lumina.md
Normal file
88
docs/source/en/api/pipelines/lumina.md
Normal file
@@ -0,0 +1,88 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Lumina-T2X
|
||||

|
||||
|
||||
[Lumina-Next : Making Lumina-T2X Stronger and Faster with Next-DiT](https://github.com/Alpha-VLLM/Lumina-T2X/blob/main/assets/lumina-next.pdf) from Alpha-VLLM, OpenGVLab, Shanghai AI Laboratory.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers (Flag-DiT) that establishes a unified framework for transforming noise into various modalities, such as images and videos, conditioned on text instructions. Despite its promising capabilities, Lumina-T2X still encounters challenges including training instability, slow inference, and extrapolation artifacts. In this paper, we present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger generation performance with increased training and inference efficiency. We begin with a comprehensive analysis of the Flag-DiT architecture and identify several suboptimal components, which we address by introducing the Next-DiT architecture with 3D RoPE and sandwich normalizations. To enable better resolution extrapolation, we thoroughly compare different context extrapolation methods applied to text-to-image generation with 3D RoPE, and propose Frequency- and Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we introduce a sigmoid time discretization schedule to reduce sampling steps in solving the Flow ODE and the Context Drop method to merge redundant visual tokens for faster network evaluation, effectively boosting the overall sampling speed. Thanks to these improvements, Lumina-Next not only improves the quality and efficiency of basic text-to-image generation but also demonstrates superior resolution extrapolation capabilities and multilingual generation using decoder-based LLMs as the text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versatile generative framework, we instantiate it on diverse tasks including visual recognition, multi-view, audio, music, and point cloud generation, showcasing strong performance across these domains. By releasing all codes and model weights at https://github.com/Alpha-VLLM/Lumina-T2X, we aim to advance the development of next-generation generative AI capable of universal modeling.*
|
||||
|
||||
**Highlights**: Lumina-Next is a next-generation Diffusion Transformer that significantly enhances text-to-image generation, multilingual generation, and multitask performance by introducing the Next-DiT architecture, 3D RoPE, and frequency- and time-aware RoPE, among other improvements.
|
||||
|
||||
Lumina-Next has the following components:
|
||||
* It improves sampling efficiency with fewer and faster Steps.
|
||||
* It uses a Next-DiT as a transformer backbone with Sandwichnorm 3D RoPE, and Grouped-Query Attention.
|
||||
* It uses a Frequency- and Time-Aware Scaled RoPE.
|
||||
|
||||
---
|
||||
|
||||
[Lumina-T2X: Transforming Text into Any Modality, Resolution, and Duration via Flow-based Large Diffusion Transformers](https://arxiv.org/abs/2405.05945) from Alpha-VLLM, OpenGVLab, Shanghai AI Laboratory.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Sora unveils the potential of scaling Diffusion Transformer for generating photorealistic images and videos at arbitrary resolutions, aspect ratios, and durations, yet it still lacks sufficient implementation details. In this technical report, we introduce the Lumina-T2X family - a series of Flow-based Large Diffusion Transformers (Flag-DiT) equipped with zero-initialized attention, as a unified framework designed to transform noise into images, videos, multi-view 3D objects, and audio clips conditioned on text instructions. By tokenizing the latent spatial-temporal space and incorporating learnable placeholders such as [nextline] and [nextframe] tokens, Lumina-T2X seamlessly unifies the representations of different modalities across various spatial-temporal resolutions. This unified approach enables training within a single framework for different modalities and allows for flexible generation of multimodal data at any resolution, aspect ratio, and length during inference. Advanced techniques like RoPE, RMSNorm, and flow matching enhance the stability, flexibility, and scalability of Flag-DiT, enabling models of Lumina-T2X to scale up to 7 billion parameters and extend the context window to 128K tokens. This is particularly beneficial for creating ultra-high-definition images with our Lumina-T2I model and long 720p videos with our Lumina-T2V model. Remarkably, Lumina-T2I, powered by a 5-billion-parameter Flag-DiT, requires only 35% of the training computational costs of a 600-million-parameter naive DiT. Our further comprehensive analysis underscores Lumina-T2X's preliminary capability in resolution extrapolation, high-resolution editing, generating consistent 3D views, and synthesizing videos with seamless transitions. We expect that the open-sourcing of Lumina-T2X will further foster creativity, transparency, and diversity in the generative AI community.*
|
||||
|
||||
|
||||
You can find the original codebase at [Alpha-VLLM](https://github.com/Alpha-VLLM/Lumina-T2X) and all the available checkpoints at [Alpha-VLLM Lumina Family](https://huggingface.co/collections/Alpha-VLLM/lumina-family-66423205bedb81171fd0644b).
|
||||
|
||||
**Highlights**: Lumina-T2X supports Any Modality, Resolution, and Duration.
|
||||
|
||||
Lumina-T2X has the following components:
|
||||
* It uses a Flow-based Large Diffusion Transformer as the backbone
|
||||
* It supports different any modalities with one backbone and corresponding encoder, decoder.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Inference (Text-to-Image)
|
||||
|
||||
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
|
||||
|
||||
First, load the pipeline:
|
||||
|
||||
```python
|
||||
from diffusers import LuminaText2ImgPipeline
|
||||
import torch
|
||||
|
||||
pipeline = LuminaText2ImgPipeline.from_pretrained(
|
||||
"Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Then change the memory layout of the pipelines `transformer` and `vae` components to `torch.channels-last`:
|
||||
|
||||
```python
|
||||
pipeline.transformer.to(memory_format=torch.channels_last)
|
||||
pipeline.vae.to(memory_format=torch.channels_last)
|
||||
```
|
||||
|
||||
Finally, compile the components and run inference:
|
||||
|
||||
```python
|
||||
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
||||
pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fullgraph=True)
|
||||
|
||||
image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]
|
||||
```
|
||||
|
||||
## LuminaText2ImgPipeline
|
||||
|
||||
[[autodoc]] LuminaText2ImgPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
76
docs/source/en/api/pipelines/marigold.md
Normal file
76
docs/source/en/api/pipelines/marigold.md
Normal file
@@ -0,0 +1,76 @@
|
||||
<!--Copyright 2024 Marigold authors and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Marigold Pipelines for Computer Vision Tasks
|
||||
|
||||

|
||||
|
||||
Marigold was proposed in [Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation](https://huggingface.co/papers/2312.02145), a CVPR 2024 Oral paper by [Bingxin Ke](http://www.kebingxin.com/), [Anton Obukhov](https://www.obukhov.ai/), [Shengyu Huang](https://shengyuh.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Rodrigo Caye Daudt](https://rcdaudt.github.io/), and [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en).
|
||||
The idea is to repurpose the rich generative prior of Text-to-Image Latent Diffusion Models (LDMs) for traditional computer vision tasks.
|
||||
Initially, this idea was explored to fine-tune Stable Diffusion for Monocular Depth Estimation, as shown in the teaser above.
|
||||
Later,
|
||||
- [Tianfu Wang](https://tianfwang.github.io/) trained the first Latent Consistency Model (LCM) of Marigold, which unlocked fast single-step inference;
|
||||
- [Kevin Qu](https://www.linkedin.com/in/kevin-qu-b3417621b/?locale=en_US) extended the approach to Surface Normals Estimation;
|
||||
- [Anton Obukhov](https://www.obukhov.ai/) contributed the pipelines and documentation into diffusers (enabled and supported by [YiYi Xu](https://yiyixuxu.github.io/) and [Sayak Paul](https://sayak.dev/)).
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.*
|
||||
|
||||
## Available Pipelines
|
||||
|
||||
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
|
||||
Currently, the following tasks are implemented:
|
||||
|
||||
| Pipeline | Predicted Modalities | Demos |
|
||||
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------:|
|
||||
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
|
||||
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
|
||||
|
||||
|
||||
## Available Checkpoints
|
||||
|
||||
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Marigold pipelines were designed and tested only with `DDIMScheduler` and `LCMScheduler`.
|
||||
Depending on the scheduler, the number of inference steps required to get reliable predictions varies, and there is no universal value that works best across schedulers.
|
||||
Because of that, the default value of `num_inference_steps` in the `__call__` method of the pipeline is set to `None` (see the API reference).
|
||||
Unless set explicitly, its value will be taken from the checkpoint configuration `model_index.json`.
|
||||
This is done to ensure high-quality predictions when calling the pipeline with just the `image` argument.
|
||||
|
||||
</Tip>
|
||||
|
||||
See also Marigold [usage examples](marigold_usage).
|
||||
|
||||
## MarigoldDepthPipeline
|
||||
[[autodoc]] MarigoldDepthPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## MarigoldNormalsPipeline
|
||||
[[autodoc]] MarigoldNormalsPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## MarigoldDepthOutput
|
||||
[[autodoc]] pipelines.marigold.pipeline_marigold_depth.MarigoldDepthOutput
|
||||
|
||||
## MarigoldNormalsOutput
|
||||
[[autodoc]] pipelines.marigold.pipeline_marigold_normals.MarigoldNormalsOutput
|
||||
46
docs/source/en/api/pipelines/pag.md
Normal file
46
docs/source/en/api/pipelines/pag.md
Normal file
@@ -0,0 +1,46 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Perturbed-Attention Guidance
|
||||
|
||||
[Perturbed-Attention Guidance (PAG)](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) is a new diffusion sampling guidance that improves sample quality across both unconditional and conditional settings, achieving this without requiring further training or the integration of external modules.
|
||||
|
||||
PAG was introduced in [Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance](https://huggingface.co/papers/2403.17377) by Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim, Hyun Hee Park, Kyong Hwan Jin and Seungryong Kim.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.*
|
||||
|
||||
## StableDiffusionPAGPipeline
|
||||
[[autodoc]] StableDiffusionPAGPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionXLPAGPipeline
|
||||
[[autodoc]] StableDiffusionXLPAGPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionXLPAGImg2ImgPipeline
|
||||
[[autodoc]] StableDiffusionXLPAGImg2ImgPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionXLPAGInpaintPipeline
|
||||
[[autodoc]] StableDiffusionXLPAGInpaintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionXLControlNetPAGPipeline
|
||||
[[autodoc]] StableDiffusionXLControlNetPAGPipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -37,7 +37,7 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m
|
||||
|
||||
## Inference with under 8GB GPU VRAM
|
||||
|
||||
Run the [`PixArtAlphaPipeline`] with under 8GB GPU VRAM by loading the text encoder in 8-bit precision. Let's walk through a full-fledged example.
|
||||
Run the [`PixArtAlphaPipeline`] with under 8GB GPU VRAM by loading the text encoder in 8-bit precision. Let's walk through a full-fledged example.
|
||||
|
||||
First, install the [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) library:
|
||||
|
||||
@@ -75,10 +75,10 @@ with torch.no_grad():
|
||||
prompt_embeds, prompt_attention_mask, negative_embeds, negative_prompt_attention_mask = pipe.encode_prompt(prompt)
|
||||
```
|
||||
|
||||
Since text embeddings have been computed, remove the `text_encoder` and `pipe` from the memory, and free up som GPU VRAM:
|
||||
Since text embeddings have been computed, remove the `text_encoder` and `pipe` from the memory, and free up some GPU VRAM:
|
||||
|
||||
```python
|
||||
import gc
|
||||
import gc
|
||||
|
||||
def flush():
|
||||
gc.collect()
|
||||
@@ -99,7 +99,7 @@ pipe = PixArtAlphaPipeline.from_pretrained(
|
||||
).to("cuda")
|
||||
|
||||
latents = pipe(
|
||||
negative_prompt=None,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
@@ -146,4 +146,3 @@ While loading the `text_encoder`, you set `load_in_8bit` to `True`. You could al
|
||||
[[autodoc]] PixArtAlphaPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
@@ -37,9 +37,15 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
You can further improve generation quality by passing the generated image from [`PixArtSigmaPipeline`] to the [SDXL refiner](../../using-diffusers/sdxl#base-to-refiner-model) model.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Inference with under 8GB GPU VRAM
|
||||
|
||||
Run the [`PixArtSigmaPipeline`] with under 8GB GPU VRAM by loading the text encoder in 8-bit precision. Let's walk through a full-fledged example.
|
||||
Run the [`PixArtSigmaPipeline`] with under 8GB GPU VRAM by loading the text encoder in 8-bit precision. Let's walk through a full-fledged example.
|
||||
|
||||
First, install the [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) library:
|
||||
|
||||
@@ -59,7 +65,6 @@ text_encoder = T5EncoderModel.from_pretrained(
|
||||
subfolder="text_encoder",
|
||||
load_in_8bit=True,
|
||||
device_map="auto",
|
||||
|
||||
)
|
||||
pipe = PixArtSigmaPipeline.from_pretrained(
|
||||
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
||||
@@ -77,10 +82,10 @@ with torch.no_grad():
|
||||
prompt_embeds, prompt_attention_mask, negative_embeds, negative_prompt_attention_mask = pipe.encode_prompt(prompt)
|
||||
```
|
||||
|
||||
Since text embeddings have been computed, remove the `text_encoder` and `pipe` from the memory, and free up som GPU VRAM:
|
||||
Since text embeddings have been computed, remove the `text_encoder` and `pipe` from the memory, and free up some GPU VRAM:
|
||||
|
||||
```python
|
||||
import gc
|
||||
import gc
|
||||
|
||||
def flush():
|
||||
gc.collect()
|
||||
@@ -101,7 +106,7 @@ pipe = PixArtSigmaPipeline.from_pretrained(
|
||||
).to("cuda")
|
||||
|
||||
latents = pipe(
|
||||
negative_prompt=None,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
@@ -148,4 +153,3 @@ While loading the `text_encoder`, you set `load_in_8bit` to `True`. You could al
|
||||
[[autodoc]] PixArtSigmaPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# K-Diffusion
|
||||
|
||||
[k-diffusion](https://github.com/crowsonkb/k-diffusion) is a popular library created by [Katherine Crowson](https://github.com/crowsonkb/). We provide `StableDiffusionKDiffusionPipeline` and `StableDiffusionXLKDiffusionPipeline` that allow you to run Stable DIffusion with samplers from k-diffusion.
|
||||
[k-diffusion](https://github.com/crowsonkb/k-diffusion) is a popular library created by [Katherine Crowson](https://github.com/crowsonkb/). We provide `StableDiffusionKDiffusionPipeline` and `StableDiffusionXLKDiffusionPipeline` that allow you to run Stable DIffusion with samplers from k-diffusion.
|
||||
|
||||
Note that most the samplers from k-diffusion are implemented in Diffusers and we recommend using existing schedulers. You can find a mapping between k-diffusion samplers and schedulers in Diffusers [here](https://huggingface.co/docs/diffusers/api/schedulers/overview)
|
||||
|
||||
|
||||
@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Text-to-(RGB, depth)
|
||||
|
||||
LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps.
|
||||
LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps.
|
||||
|
||||
Two checkpoints are available for use:
|
||||
- [ldm3d-original](https://huggingface.co/Intel/ldm3d). The original checkpoint used in the [paper](https://arxiv.org/pdf/2305.10853.pdf)
|
||||
- [ldm3d-4c](https://huggingface.co/Intel/ldm3d-4c). The new version of LDM3D using 4 channels inputs instead of 6-channels inputs and finetuned on higher resolution images.
|
||||
- [ldm3d-4c](https://huggingface.co/Intel/ldm3d-4c). The new version of LDM3D using 4 channels inputs instead of 6-channels inputs and finetuned on higher resolution images.
|
||||
|
||||
|
||||
The abstract from the paper is:
|
||||
@@ -44,7 +44,7 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
|
||||
|
||||
# Upscaler
|
||||
|
||||
[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.
|
||||
[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.
|
||||
|
||||
The abstract from the paper is:
|
||||
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*
|
||||
|
||||
@@ -177,7 +177,7 @@ inpaint = StableDiffusionInpaintPipeline(**text2img.components)
|
||||
|
||||
The Stable Diffusion pipelines are automatically supported in [Gradio](https://github.com/gradio-app/gradio/), a library that makes creating beautiful and user-friendly machine learning apps on the web a breeze. First, make sure you have Gradio installed:
|
||||
|
||||
```
|
||||
```sh
|
||||
pip install -U gradio
|
||||
```
|
||||
|
||||
@@ -209,4 +209,4 @@ gr.Interface.from_pipeline(pipe).launch()
|
||||
```
|
||||
|
||||
By default, the web demo runs on a local server. If you'd like to share it with others, you can generate a temporary public
|
||||
link by setting `share=True` in `launch()`. Or, you can host your demo on [Hugging Face Spaces](https://huggingface.co/spaces)https://huggingface.co/spaces for a permanent link.
|
||||
link by setting `share=True` in `launch()`. Or, you can host your demo on [Hugging Face Spaces](https://huggingface.co/spaces)https://huggingface.co/spaces for a permanent link.
|
||||
@@ -48,7 +48,7 @@ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
||||
import torch
|
||||
|
||||
repo_id = "stabilityai/stable-diffusion-2-base"
|
||||
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
|
||||
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16")
|
||||
|
||||
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
||||
pipe = pipe.to("cuda")
|
||||
@@ -72,7 +72,7 @@ init_image = load_image(img_url).resize((512, 512))
|
||||
mask_image = load_image(mask_url).resize((512, 512))
|
||||
|
||||
repo_id = "stabilityai/stable-diffusion-2-inpainting"
|
||||
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
|
||||
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16")
|
||||
|
||||
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
||||
pipe = pipe.to("cuda")
|
||||
|
||||
@@ -0,0 +1,315 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Stable Diffusion 3
|
||||
|
||||
Stable Diffusion 3 (SD3) was proposed in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/pdf/2403.03206.pdf) by Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Muller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations.*
|
||||
|
||||
|
||||
## Usage Example
|
||||
|
||||
_As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate._
|
||||
|
||||
Use the command below to log in:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
The SD3 pipeline uses three text encoders to generate an image. Model offloading is necessary in order for it to run on most commodity hardware. Please use the `torch.float16` data type for additional memory savings.
|
||||
|
||||
</Tip>
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = pipe(
|
||||
prompt="a photo of a cat holding a sign that says hello world",
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
height=1024,
|
||||
width=1024,
|
||||
guidance_scale=7.0,
|
||||
).images[0]
|
||||
|
||||
image.save("sd3_hello_world.png")
|
||||
```
|
||||
|
||||
## Memory Optimisations for SD3
|
||||
|
||||
SD3 uses three text encoders, one if which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
|
||||
|
||||
### Running Inference with Model Offloading
|
||||
|
||||
The most basic memory optimization available in Diffusers allows you to offload the components of the model to CPU during inference in order to save memory, while seeing a slight increase in inference latency. Model offloading will only move a model component onto the GPU when it needs to be executed, while keeping the remaining components on the CPU.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
image = pipe(
|
||||
prompt="a photo of a cat holding a sign that says hello world",
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
height=1024,
|
||||
width=1024,
|
||||
guidance_scale=7.0,
|
||||
).images[0]
|
||||
|
||||
image.save("sd3_hello_world.png")
|
||||
```
|
||||
|
||||
### Dropping the T5 Text Encoder during Inference
|
||||
|
||||
Removing the memory-intensive 4.7B parameter T5-XXL text encoder during inference can significantly decrease the memory requirements for SD3 with only a slight loss in performance.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers",
|
||||
text_encoder_3=None,
|
||||
tokenizer_3=None,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = pipe(
|
||||
prompt="a photo of a cat holding a sign that says hello world",
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
height=1024,
|
||||
width=1024,
|
||||
guidance_scale=7.0,
|
||||
).images[0]
|
||||
|
||||
image.save("sd3_hello_world-no-T5.png")
|
||||
```
|
||||
|
||||
### Using a Quantized Version of the T5 Text Encoder
|
||||
|
||||
We can leverage the `bitsandbytes` library to load and quantize the T5-XXL text encoder to 8-bit precision. This allows you to keep using all three text encoders while only slightly impacting performance.
|
||||
|
||||
First install the `bitsandbytes` library.
|
||||
|
||||
```shell
|
||||
pip install bitsandbytes
|
||||
```
|
||||
|
||||
Then load the T5-XXL model using the `BitsAndBytesConfig`.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
from transformers import T5EncoderModel, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
|
||||
text_encoder = T5EncoderModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="text_encoder_3",
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained(
|
||||
model_id,
|
||||
text_encoder_3=text_encoder,
|
||||
device_map="balanced",
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
image = pipe(
|
||||
prompt="a photo of a cat holding a sign that says hello world",
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
height=1024,
|
||||
width=1024,
|
||||
guidance_scale=7.0,
|
||||
).images[0]
|
||||
|
||||
image.save("sd3_hello_world-8bit-T5.png")
|
||||
```
|
||||
|
||||
You can find the end-to-end script [here](https://gist.github.com/sayakpaul/82acb5976509851f2db1a83456e504f1).
|
||||
|
||||
## Performance Optimizations for SD3
|
||||
|
||||
### Using Torch Compile to Speed Up Inference
|
||||
|
||||
Using compiled components in the SD3 pipeline can speed up inference by as much as 4X. The following code snippet demonstrates how to compile the Transformer and VAE components of the SD3 pipeline.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
torch._inductor.config.conv_1x1_as_mm = True
|
||||
torch._inductor.config.coordinate_descent_tuning = True
|
||||
torch._inductor.config.epilogue_fusion = False
|
||||
torch._inductor.config.coordinate_descent_check_all_directions = True
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers",
|
||||
torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
pipe.set_progress_bar_config(disable=True)
|
||||
|
||||
pipe.transformer.to(memory_format=torch.channels_last)
|
||||
pipe.vae.to(memory_format=torch.channels_last)
|
||||
|
||||
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
||||
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
||||
|
||||
# Warm Up
|
||||
prompt = "a photo of a cat holding a sign that says hello world"
|
||||
for _ in range(3):
|
||||
_ = pipe(prompt=prompt, generator=torch.manual_seed(1))
|
||||
|
||||
# Run Inference
|
||||
image = pipe(prompt=prompt, generator=torch.manual_seed(1)).images[0]
|
||||
image.save("sd3_hello_world.png")
|
||||
```
|
||||
|
||||
Check out the full script [here](https://gist.github.com/sayakpaul/508d89d7aad4f454900813da5d42ca97).
|
||||
|
||||
## Using Long Prompts with the T5 Text Encoder
|
||||
|
||||
By default, the T5 Text Encoder prompt uses a maximum sequence length of `256`. This can be adjusted by setting the `max_sequence_length` to accept fewer or more tokens. Keep in mind that longer sequences require additional resources and result in longer generation times, such as during batch inference.
|
||||
|
||||
```python
|
||||
prompt = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. It features the distinctive, bulky body shape of a hippo. However, instead of the usual grey skin, the creature’s body resembles a golden-brown, crispy waffle fresh off the griddle. The skin is textured with the familiar grid pattern of a waffle, each square filled with a glistening sheen of syrup. The environment combines the natural habitat of a hippo with elements of a breakfast table setting, a river of warm, melted butter, with oversized utensils or plates peeking out from the lush, pancake-like foliage in the background, a towering pepper mill standing in for a tree. As the sun rises in this fantastical world, it casts a warm, buttery glow over the scene. The creature, content in its butter river, lets out a yawn. Nearby, a flock of birds take flight"
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
guidance_scale=4.5,
|
||||
max_sequence_length=512,
|
||||
).images[0]
|
||||
```
|
||||
|
||||
### Sending a different prompt to the T5 Text Encoder
|
||||
|
||||
You can send a different prompt to the CLIP Text Encoders and the T5 Text Encoder to prevent the prompt from being truncated by the CLIP Text Encoders and to improve generation.
|
||||
|
||||
<Tip>
|
||||
|
||||
The prompt with the CLIP Text Encoders is still truncated to the 77 token limit.
|
||||
|
||||
</Tip>
|
||||
|
||||
```python
|
||||
prompt = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. A river of warm, melted butter, pancake-like foliage in the background, a towering pepper mill standing in for a tree."
|
||||
|
||||
prompt_3 = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. It features the distinctive, bulky body shape of a hippo. However, instead of the usual grey skin, the creature’s body resembles a golden-brown, crispy waffle fresh off the griddle. The skin is textured with the familiar grid pattern of a waffle, each square filled with a glistening sheen of syrup. The environment combines the natural habitat of a hippo with elements of a breakfast table setting, a river of warm, melted butter, with oversized utensils or plates peeking out from the lush, pancake-like foliage in the background, a towering pepper mill standing in for a tree. As the sun rises in this fantastical world, it casts a warm, buttery glow over the scene. The creature, content in its butter river, lets out a yawn. Nearby, a flock of birds take flight"
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
prompt_3=prompt_3,
|
||||
negative_prompt="",
|
||||
num_inference_steps=28,
|
||||
guidance_scale=4.5,
|
||||
max_sequence_length=512,
|
||||
).images[0]
|
||||
```
|
||||
|
||||
## Tiny AutoEncoder for Stable Diffusion 3
|
||||
|
||||
Tiny AutoEncoder for Stable Diffusion (TAESD3) is a tiny distilled version of Stable Diffusion 3's VAE by [Ollin Boer Bohan](https://github.com/madebyollin/taesd) that can decode [`StableDiffusion3Pipeline`] latents almost instantly.
|
||||
|
||||
To use with Stable Diffusion 3:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline, AutoencoderTiny
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16)
|
||||
pipe = pipe.to("cuda")
|
||||
|
||||
prompt = "slice of delicious New York-style berry cheesecake"
|
||||
image = pipe(prompt, num_inference_steps=25).images[0]
|
||||
image.save("cheesecake.png")
|
||||
```
|
||||
|
||||
## Loading the original checkpoints via `from_single_file`
|
||||
|
||||
The `SD3Transformer2DModel` and `StableDiffusion3Pipeline` classes support loading the original checkpoints via the `from_single_file` method. This method allows you to load the original checkpoint files that were used to train the models.
|
||||
|
||||
## Loading the original checkpoints for the `SD3Transformer2DModel`
|
||||
|
||||
```python
|
||||
from diffusers import SD3Transformer2DModel
|
||||
|
||||
model = SD3Transformer2DModel.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium.safetensors")
|
||||
```
|
||||
|
||||
## Loading the single checkpoint for the `StableDiffusion3Pipeline`
|
||||
|
||||
### Loading the single file checkpoint without T5
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_single_file(
|
||||
"https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors",
|
||||
torch_dtype=torch.float16,
|
||||
text_encoder_3=None
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
|
||||
image.save('sd3-single-file.png')
|
||||
```
|
||||
|
||||
### Loading the single file checkpoint with T5
|
||||
|
||||
> [!TIP]
|
||||
> The following example loads a checkpoint stored in a 8-bit floating point format which requires PyTorch 2.3 or later.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusion3Pipeline
|
||||
|
||||
pipe = StableDiffusion3Pipeline.from_single_file(
|
||||
"https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips_t5xxlfp8.safetensors",
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
|
||||
image.save('sd3-single-file-t5-fp8.png')
|
||||
```
|
||||
|
||||
## StableDiffusion3Pipeline
|
||||
|
||||
[[autodoc]] StableDiffusion3Pipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -155,28 +155,28 @@ To generate a video from prompt with additional pose control
|
||||
imageio.mimsave("video.mp4", result, fps=4)
|
||||
```
|
||||
- #### SDXL Support
|
||||
|
||||
|
||||
Since our attention processor also works with SDXL, it can be utilized to generate a video from prompt using ControlNet models powered by SDXL:
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
|
||||
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
|
||||
|
||||
|
||||
controlnet_model_id = 'thibaud/controlnet-openpose-sdxl-1.0'
|
||||
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
||||
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16)
|
||||
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
||||
model_id, controlnet=controlnet, torch_dtype=torch.float16
|
||||
).to('cuda')
|
||||
|
||||
|
||||
# Set the attention processor
|
||||
pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
|
||||
pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
|
||||
|
||||
|
||||
# fix latents for all frames
|
||||
latents = torch.randn((1, 4, 128, 128), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
|
||||
|
||||
|
||||
prompt = "Darth Vader dancing in a desert"
|
||||
result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
|
||||
imageio.mimsave("video.mp4", result, fps=4)
|
||||
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# EDMDPMSolverMultistepScheduler
|
||||
|
||||
`EDMDPMSolverMultistepScheduler` is a [Karras formulation](https://huggingface.co/papers/2206.00364) of `DPMSolverMultistep`, a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
|
||||
`EDMDPMSolverMultistepScheduler` is a [Karras formulation](https://huggingface.co/papers/2206.00364) of `DPMSolverMultistepScheduler`, a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
|
||||
|
||||
DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality
|
||||
samples, and it can generate quite good samples even in 10 steps.
|
||||
|
||||
18
docs/source/en/api/schedulers/flow_match_euler_discrete.md
Normal file
18
docs/source/en/api/schedulers/flow_match_euler_discrete.md
Normal file
@@ -0,0 +1,18 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# FlowMatchEulerDiscreteScheduler
|
||||
|
||||
`FlowMatchEulerDiscreteScheduler` is based on the flow-matching sampling introduced in [Stable Diffusion 3](https://arxiv.org/abs/2403.03206).
|
||||
|
||||
## FlowMatchEulerDiscreteScheduler
|
||||
[[autodoc]] FlowMatchEulerDiscreteScheduler
|
||||
18
docs/source/en/api/schedulers/flow_match_heun_discrete.md
Normal file
18
docs/source/en/api/schedulers/flow_match_heun_discrete.md
Normal file
@@ -0,0 +1,18 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# FlowMatchHeunDiscreteScheduler
|
||||
|
||||
`FlowMatchHeunDiscreteScheduler` is based on the flow-matching sampling introduced in [EDM](https://arxiv.org/abs/2403.03206).
|
||||
|
||||
## FlowMatchHeunDiscreteScheduler
|
||||
[[autodoc]] FlowMatchHeunDiscreteScheduler
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# DPMSolverMultistepScheduler
|
||||
|
||||
`DPMSolverMultistep` is a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
|
||||
`DPMSolverMultistepScheduler` is a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
|
||||
|
||||
DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality
|
||||
samples, and it can generate quite good samples even in 10 steps.
|
||||
|
||||
@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# TCDScheduler
|
||||
# TCDScheduler
|
||||
|
||||
[Trajectory Consistency Distillation](https://huggingface.co/papers/2402.19159) by Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao and Tat-Jen Cham introduced a Strategic Stochastic Sampling (Algorithm 4) that is capable of generating good samples in a small number of steps. Distinguishing it as an advanced iteration of the multistep scheduler (Algorithm 1) in the [Consistency Models](https://huggingface.co/papers/2303.01469), Strategic Stochastic Sampling specifically tailored for the trajectory consistency function.
|
||||
|
||||
|
||||
@@ -22,14 +22,13 @@ We enormously value feedback from the community, so please do not be afraid to s
|
||||
|
||||
## Overview
|
||||
|
||||
You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
|
||||
the core library.
|
||||
You can contribute in many ways ranging from answering questions on issues and discussions to adding new diffusion models to the core library.
|
||||
|
||||
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
|
||||
|
||||
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
|
||||
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
|
||||
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
|
||||
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose) or new discussions on [the GitHub Discussions tab](https://github.com/huggingface/diffusers/discussions/new/choose).
|
||||
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues) or discussions on [the GitHub Discussions tab](https://github.com/huggingface/diffusers/discussions).
|
||||
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
|
||||
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
|
||||
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
|
||||
@@ -63,7 +62,7 @@ In the same spirit, you are of immense help to the community by answering such q
|
||||
|
||||
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
|
||||
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
|
||||
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
|
||||
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
|
||||
|
||||
**NOTE about channels**:
|
||||
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
|
||||
@@ -99,7 +98,7 @@ This means in more detail:
|
||||
- Format your code.
|
||||
- Do not include any external libraries except for Diffusers depending on them.
|
||||
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
|
||||
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
|
||||
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, (s)he cannot solve it.
|
||||
- **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
|
||||
- If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
|
||||
|
||||
@@ -288,7 +287,7 @@ The official training examples are maintained by the Diffusers' core maintainers
|
||||
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
|
||||
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
|
||||
|
||||
Both official training and research examples consist of a directory that contains one or more training scripts, a requirements.txt file, and a README.md file. In order for the user to make use of the
|
||||
Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
|
||||
training examples, it is required to clone the repository:
|
||||
|
||||
```bash
|
||||
@@ -298,7 +297,8 @@ git clone https://github.com/huggingface/diffusers
|
||||
as well as to install all additional dependencies required for training:
|
||||
|
||||
```bash
|
||||
pip install -r /examples/<your-example-folder>/requirements.txt
|
||||
cd diffusers
|
||||
pip install -r examples/<your-example-folder>/requirements.txt
|
||||
```
|
||||
|
||||
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
|
||||
@@ -316,7 +316,7 @@ Once an example script works, please make sure to add a comprehensive `README.md
|
||||
- A link to some training results (logs, models, etc.) that show what the user can expect as shown [here](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
|
||||
- If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
|
||||
|
||||
If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
|
||||
If you are contributing to the official training examples, please also make sure to add a test to its folder such as [examples/dreambooth/test_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/test_dreambooth.py). This is not necessary for non-official training examples.
|
||||
|
||||
### 8. Fixing a "Good second issue"
|
||||
|
||||
@@ -418,7 +418,7 @@ You will need basic `git` proficiency to be able to contribute to
|
||||
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/main/setup.py#L244)):
|
||||
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/83bc6c94eaeb6f7704a2a428931cf2d9ad973ae9/setup.py#L270)):
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/diffusers) by
|
||||
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
|
||||
@@ -565,4 +565,4 @@ $ git push --set-upstream origin your-branch-for-syncing
|
||||
|
||||
### Style guide
|
||||
|
||||
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
|
||||
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
|
||||
@@ -63,14 +63,14 @@ Let's walk through more in-detail design decisions for each class.
|
||||
Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
|
||||
|
||||
The following design principles are followed:
|
||||
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as it’s done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [#Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
|
||||
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as it’s done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
|
||||
- Pipelines all inherit from [`DiffusionPipeline`].
|
||||
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
|
||||
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
|
||||
- Pipelines should be used **only** for inference.
|
||||
- Pipelines should be very readable, self-explanatory, and easy to tweak.
|
||||
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
|
||||
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
|
||||
- Pipelines are **not** intended to be feature-complete user interfaces. For feature-complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
|
||||
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
|
||||
- Pipelines should be named after the task they are intended to solve.
|
||||
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
|
||||
@@ -81,7 +81,7 @@ Models are designed as configurable toolboxes that are natural extensions of [Py
|
||||
|
||||
The following design principles are followed:
|
||||
- Models correspond to **a type of model architecture**. *E.g.* the [`UNet2DConditionModel`] class is used for all UNet variations that expect 2D image inputs and are conditioned on some context.
|
||||
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py), [`transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py), etc...
|
||||
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unets/unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py), [`transformers/transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_2d.py), etc...
|
||||
- Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modeling files and shows that models do not really follow the single-file policy.
|
||||
- Models intend to expose complexity, just like PyTorch's `Module` class, and give clear error messages.
|
||||
- Models all inherit from `ModelMixin` and `ConfigMixin`.
|
||||
@@ -90,7 +90,7 @@ The following design principles are followed:
|
||||
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
|
||||
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
|
||||
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
|
||||
readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
|
||||
### Schedulers
|
||||
|
||||
@@ -100,11 +100,11 @@ The following design principles are followed:
|
||||
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
|
||||
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
|
||||
- One scheduler Python file corresponds to one scheduler algorithm (as might be defined in a paper).
|
||||
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
|
||||
- If schedulers share similar functionalities, we can make use of the `# Copied from` mechanism.
|
||||
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
|
||||
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](../using-diffusers/schedulers.md).
|
||||
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](../using-diffusers/schedulers).
|
||||
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
|
||||
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
|
||||
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
|
||||
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
|
||||
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
|
||||
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
|
||||
@@ -36,7 +36,7 @@ Then load and enable the [`DeepCacheSDHelper`](https://github.com/horseee/DeepCa
|
||||
image = pipe("a photo of an astronaut on a moon").images[0]
|
||||
```
|
||||
|
||||
The `set_params` method accepts two arguments: `cache_interval` and `cache_branch_id`. `cache_interval` means the frequency of feature caching, specified as the number of steps between each cache operation. `cache_branch_id` identifies which branch of the network (ordered from the shallowest to the deepest layer) is responsible for executing the caching processes.
|
||||
The `set_params` method accepts two arguments: `cache_interval` and `cache_branch_id`. `cache_interval` means the frequency of feature caching, specified as the number of steps between each cache operation. `cache_branch_id` identifies which branch of the network (ordered from the shallowest to the deepest layer) is responsible for executing the caching processes.
|
||||
Opting for a lower `cache_branch_id` or a larger `cache_interval` can lead to faster inference speed at the expense of reduced image quality (ablation experiments of these two hyperparameters can be found in the [paper](https://arxiv.org/abs/2312.00858)). Once those arguments are set, use the `enable` or `disable` methods to activate or deactivate the `DeepCacheSDHelper`.
|
||||
|
||||
<div class="flex justify-center">
|
||||
|
||||
@@ -6,7 +6,7 @@ Before you begin, make sure you install T-GATE.
|
||||
|
||||
```bash
|
||||
pip install tgate
|
||||
pip install -U pytorch diffusers transformers accelerate DeepCache
|
||||
pip install -U torch diffusers transformers accelerate DeepCache
|
||||
```
|
||||
|
||||
|
||||
@@ -46,12 +46,12 @@ pipe = TgatePixArtLoader(
|
||||
|
||||
image = pipe.tgate(
|
||||
"An alpaca made of colorful building blocks, cyberpunk.",
|
||||
gate_step=gate_step,
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step,
|
||||
).images[0]
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="Stable Diffusion XL">
|
||||
<hfoption id="Stable Diffusion XL">
|
||||
|
||||
Accelerate `StableDiffusionXLPipeline` with T-GATE:
|
||||
|
||||
@@ -78,9 +78,9 @@ pipe = TgateSDXLLoader(
|
||||
).to("cuda")
|
||||
|
||||
image = pipe.tgate(
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
).images[0]
|
||||
```
|
||||
</hfoption>
|
||||
@@ -111,9 +111,9 @@ pipe = TgateSDXLDeepCacheLoader(
|
||||
).to("cuda")
|
||||
|
||||
image = pipe.tgate(
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
).images[0]
|
||||
```
|
||||
</hfoption>
|
||||
@@ -151,9 +151,9 @@ pipe = TgateSDXLLoader(
|
||||
).to("cuda")
|
||||
|
||||
image = pipe.tgate(
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
|
||||
gate_step=gate_step,
|
||||
num_inference_steps=inference_step
|
||||
).images[0]
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
@@ -26,7 +26,7 @@ pipeline.unet.config["in_channels"]
|
||||
9
|
||||
```
|
||||
|
||||
To adapt your text-to-image model for inpainting, you'll need to change the number of `in_channels` from 4 to 9.
|
||||
To adapt your text-to-image model for inpainting, you'll need to change the number of `in_channels` from 4 to 9.
|
||||
|
||||
Initialize a [`UNet2DConditionModel`] with the pretrained text-to-image model weights, and change `in_channels` to 9. Changing the number of `in_channels` means you need to set `ignore_mismatched_sizes=True` and `low_cpu_mem_usage=False` to avoid a size mismatch error because the shape is different now.
|
||||
|
||||
|
||||
@@ -349,7 +349,7 @@ control_image = load_image("./conditioning_image_1.png")
|
||||
prompt = "pale golden rod circle with old lace background"
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
image = pipe(prompt, num_inference_steps=20, generator=generator, image=control_image).images[0]
|
||||
image = pipeline(prompt, num_inference_steps=20, generator=generator, image=control_image).images[0]
|
||||
image.save("./output.png")
|
||||
```
|
||||
|
||||
@@ -363,4 +363,4 @@ The SDXL training script is discussed in more detail in the [SDXL training](sdxl
|
||||
|
||||
Congratulations on training your own ControlNet! To learn more about how to use your new model, the following guides may be helpful:
|
||||
|
||||
- Learn how to [use a ControlNet](../using-diffusers/controlnet) for inference on a variety of tasks.
|
||||
- Learn how to [use a ControlNet](../using-diffusers/controlnet) for inference on a variety of tasks.
|
||||
|
||||
@@ -9,7 +9,7 @@ This guide will show you two ways to create a dataset to finetune on:
|
||||
|
||||
<Tip>
|
||||
|
||||
💡 Learn more about how to create an image dataset for training in the [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset) guide.
|
||||
💡 Learn more about how to create an image dataset for training in the [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset) guide.
|
||||
|
||||
</Tip>
|
||||
|
||||
@@ -39,7 +39,7 @@ accelerate launch train_unconditional.py \
|
||||
|
||||
</Tip>
|
||||
|
||||
Start by creating a dataset with the [`ImageFolder`](https://huggingface.co/docs/datasets/image_load#imagefolder) feature, which creates an `image` column containing the PIL-encoded images.
|
||||
Start by creating a dataset with the [`ImageFolder`](https://huggingface.co/docs/datasets/image_load#imagefolder) feature, which creates an `image` column containing the PIL-encoded images.
|
||||
|
||||
You can use the `data_dir` or `data_files` parameters to specify the location of the dataset. The `data_files` parameter supports mapping specific files to dataset splits like `train` or `test`:
|
||||
|
||||
|
||||
@@ -52,76 +52,6 @@ To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](h
|
||||
|
||||
</Tip>
|
||||
|
||||
### Device placement
|
||||
|
||||
> [!WARNING]
|
||||
> This feature is experimental and its APIs might change in the future.
|
||||
|
||||
With Accelerate, you can use the `device_map` to determine how to distribute the models of a pipeline across multiple devices. This is useful in situations where you have more than one GPU.
|
||||
|
||||
For example, if you have two 8GB GPUs, then using [`~DiffusionPipeline.enable_model_cpu_offload`] may not work so well because:
|
||||
|
||||
* it only works on a single GPU
|
||||
* a single model might not fit on a single GPU ([`~DiffusionPipeline.enable_sequential_cpu_offload`] might work but it will be extremely slow and it is also limited to a single GPU)
|
||||
|
||||
To make use of both GPUs, you can use the "balanced" device placement strategy which splits the models across all available GPUs.
|
||||
|
||||
> [!WARNING]
|
||||
> Only the "balanced" strategy is supported at the moment, and we plan to support additional mapping strategies in the future.
|
||||
|
||||
```diff
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
- "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
|
||||
+ "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, device_map="balanced"
|
||||
)
|
||||
image = pipeline("a dog").images[0]
|
||||
image
|
||||
```
|
||||
|
||||
You can also pass a dictionary to enforce the maximum GPU memory that can be used on each device:
|
||||
|
||||
```diff
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
max_memory = {0:"1GB", 1:"1GB"}
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
device_map="balanced",
|
||||
+ max_memory=max_memory
|
||||
)
|
||||
image = pipeline("a dog").images[0]
|
||||
image
|
||||
```
|
||||
|
||||
If a device is not present in `max_memory`, then it will be completely ignored and will not participate in the device placement.
|
||||
|
||||
By default, Diffusers uses the maximum memory of all devices. If the models don't fit on the GPUs, they are offloaded to the CPU. If the CPU doesn't have enough memory, then you might see an error. In that case, you could defer to using [`~DiffusionPipeline.enable_sequential_cpu_offload`] and [`~DiffusionPipeline.enable_model_cpu_offload`].
|
||||
|
||||
Call [`~DiffusionPipeline.reset_device_map`] to reset the `device_map` of a pipeline. This is also necessary if you want to use methods like `to()`, [`~DiffusionPipeline.enable_sequential_cpu_offload`], and [`~DiffusionPipeline.enable_model_cpu_offload`] on a pipeline that was device-mapped.
|
||||
|
||||
```py
|
||||
pipeline.reset_device_map()
|
||||
```
|
||||
|
||||
Once a pipeline has been device-mapped, you can also access its device map via `hf_device_map`:
|
||||
|
||||
```py
|
||||
print(pipeline.hf_device_map)
|
||||
```
|
||||
|
||||
An example device map would look like so:
|
||||
|
||||
|
||||
```bash
|
||||
{'unet': 1, 'vae': 1, 'safety_checker': 0, 'text_encoder': 0}
|
||||
```
|
||||
|
||||
## PyTorch Distributed
|
||||
|
||||
PyTorch supports [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) which enables data parallelism.
|
||||
@@ -176,3 +106,6 @@ Once you've completed the inference script, use the `--nproc_per_node` argument
|
||||
```bash
|
||||
torchrun run_distributed.py --nproc_per_node=2
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
|
||||
@@ -440,6 +440,198 @@ Stable Diffusion XL (SDXL) is a powerful text-to-image model that generates high
|
||||
|
||||
The SDXL training script is discussed in more detail in the [SDXL training](sdxl) guide.
|
||||
|
||||
## DeepFloyd IF
|
||||
|
||||
DeepFloyd IF is a cascading pixel diffusion model with three stages. The first stage generates a base image and the second and third stages progressively upscales the base image into a high-resolution 1024x1024 image. Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) or [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) scripts to train a DeepFloyd IF model with LoRA or the full model.
|
||||
|
||||
DeepFloyd IF uses predicted variance, but the Diffusers training scripts uses predicted error so the trained DeepFloyd IF models are switched to a fixed variance schedule. The training scripts will update the scheduler config of the fully trained model for you. However, when you load the saved LoRA weights you must also update the pipeline's scheduler config.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", use_safetensors=True)
|
||||
|
||||
pipe.load_lora_weights("<lora weights path>")
|
||||
|
||||
# Update scheduler config to fixed variance schedule
|
||||
pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small")
|
||||
```
|
||||
|
||||
The stage 2 model requires additional validation images to upscale. You can download and use a downsized version of the training images for this.
|
||||
|
||||
```py
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
local_dir = "./dog_downsized"
|
||||
snapshot_download(
|
||||
"diffusers/dog-example-downsized",
|
||||
local_dir=local_dir,
|
||||
repo_type="dataset",
|
||||
ignore_patterns=".gitattributes",
|
||||
)
|
||||
```
|
||||
|
||||
The code samples below provide a brief overview of how to train a DeepFloyd IF model with a combination of DreamBooth and LoRA. Some important parameters to note are:
|
||||
|
||||
* `--resolution=64`, a much smaller resolution is required because DeepFloyd IF is a pixel diffusion model and to work on uncompressed pixels, the input images must be smaller
|
||||
* `--pre_compute_text_embeddings`, compute the text embeddings ahead of time to save memory because the [`~transformers.T5Model`] can take up a lot of memory
|
||||
* `--tokenizer_max_length=77`, you can use a longer default text length with T5 as the text encoder but the default model encoding procedure uses a shorter text length
|
||||
* `--text_encoder_use_attention_mask`, to pass the attention mask to the text encoder
|
||||
|
||||
<hfoptions id="IF-DreamBooth">
|
||||
<hfoption id="Stage 1 LoRA DreamBooth">
|
||||
|
||||
Training stage 1 of DeepFloyd IF with LoRA and DreamBooth requires ~28GB of memory.
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
|
||||
export INSTANCE_DIR="dog"
|
||||
export OUTPUT_DIR="dreambooth_dog_lora"
|
||||
|
||||
accelerate launch train_dreambooth_lora.py \
|
||||
--report_to wandb \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--instance_prompt="a sks dog" \
|
||||
--resolution=64 \
|
||||
--train_batch_size=4 \
|
||||
--gradient_accumulation_steps=1 \
|
||||
--learning_rate=5e-6 \
|
||||
--scale_lr \
|
||||
--max_train_steps=1200 \
|
||||
--validation_prompt="a sks dog" \
|
||||
--validation_epochs=25 \
|
||||
--checkpointing_steps=100 \
|
||||
--pre_compute_text_embeddings \
|
||||
--tokenizer_max_length=77 \
|
||||
--text_encoder_use_attention_mask
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Stage 2 LoRA DreamBooth">
|
||||
|
||||
For stage 2 of DeepFloyd IF with LoRA and DreamBooth, pay attention to these parameters:
|
||||
|
||||
* `--validation_images`, the images to upscale during validation
|
||||
* `--class_labels_conditioning=timesteps`, to additionally conditional the UNet as needed in stage 2
|
||||
* `--learning_rate=1e-6`, a lower learning rate is used compared to stage 1
|
||||
* `--resolution=256`, the expected resolution for the upscaler
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
|
||||
export INSTANCE_DIR="dog"
|
||||
export OUTPUT_DIR="dreambooth_dog_upscale"
|
||||
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
|
||||
|
||||
python train_dreambooth_lora.py \
|
||||
--report_to wandb \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--instance_prompt="a sks dog" \
|
||||
--resolution=256 \
|
||||
--train_batch_size=4 \
|
||||
--gradient_accumulation_steps=1 \
|
||||
--learning_rate=1e-6 \
|
||||
--max_train_steps=2000 \
|
||||
--validation_prompt="a sks dog" \
|
||||
--validation_epochs=100 \
|
||||
--checkpointing_steps=500 \
|
||||
--pre_compute_text_embeddings \
|
||||
--tokenizer_max_length=77 \
|
||||
--text_encoder_use_attention_mask \
|
||||
--validation_images $VALIDATION_IMAGES \
|
||||
--class_labels_conditioning=timesteps
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Stage 1 DreamBooth">
|
||||
|
||||
For stage 1 of DeepFloyd IF with DreamBooth, pay attention to these parameters:
|
||||
|
||||
* `--skip_save_text_encoder`, to skip saving the full T5 text encoder with the finetuned model
|
||||
* `--use_8bit_adam`, to use 8-bit Adam optimizer to save memory due to the size of the optimizer state when training the full model
|
||||
* `--learning_rate=1e-7`, a really low learning rate should be used for full model training otherwise the model quality is degraded (you can use a higher learning rate with a larger batch size)
|
||||
|
||||
Training with 8-bit Adam and a batch size of 4, the full model can be trained with ~48GB of memory.
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
|
||||
export INSTANCE_DIR="dog"
|
||||
export OUTPUT_DIR="dreambooth_if"
|
||||
|
||||
accelerate launch train_dreambooth.py \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--instance_prompt="a photo of sks dog" \
|
||||
--resolution=64 \
|
||||
--train_batch_size=4 \
|
||||
--gradient_accumulation_steps=1 \
|
||||
--learning_rate=1e-7 \
|
||||
--max_train_steps=150 \
|
||||
--validation_prompt "a photo of sks dog" \
|
||||
--validation_steps 25 \
|
||||
--text_encoder_use_attention_mask \
|
||||
--tokenizer_max_length 77 \
|
||||
--pre_compute_text_embeddings \
|
||||
--use_8bit_adam \
|
||||
--set_grads_to_none \
|
||||
--skip_save_text_encoder \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Stage 2 DreamBooth">
|
||||
|
||||
For stage 2 of DeepFloyd IF with DreamBooth, pay attention to these parameters:
|
||||
|
||||
* `--learning_rate=5e-6`, use a lower learning rate with a smaller effective batch size
|
||||
* `--resolution=256`, the expected resolution for the upscaler
|
||||
* `--train_batch_size=2` and `--gradient_accumulation_steps=6`, to effectively train on images wiht faces requires larger batch sizes
|
||||
|
||||
```bash
|
||||
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
|
||||
export INSTANCE_DIR="dog"
|
||||
export OUTPUT_DIR="dreambooth_dog_upscale"
|
||||
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
|
||||
|
||||
accelerate launch train_dreambooth.py \
|
||||
--report_to wandb \
|
||||
--pretrained_model_name_or_path=$MODEL_NAME \
|
||||
--instance_data_dir=$INSTANCE_DIR \
|
||||
--output_dir=$OUTPUT_DIR \
|
||||
--instance_prompt="a sks dog" \
|
||||
--resolution=256 \
|
||||
--train_batch_size=2 \
|
||||
--gradient_accumulation_steps=6 \
|
||||
--learning_rate=5e-6 \
|
||||
--max_train_steps=2000 \
|
||||
--validation_prompt="a sks dog" \
|
||||
--validation_steps=150 \
|
||||
--checkpointing_steps=500 \
|
||||
--pre_compute_text_embeddings \
|
||||
--tokenizer_max_length=77 \
|
||||
--text_encoder_use_attention_mask \
|
||||
--validation_images $VALIDATION_IMAGES \
|
||||
--class_labels_conditioning timesteps \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Training tips
|
||||
|
||||
Training the DeepFloyd IF model can be challenging, but here are some tips that we've found helpful:
|
||||
|
||||
- LoRA is sufficient for training the stage 1 model because the model's low resolution makes representing finer details difficult regardless.
|
||||
- For common or simple objects, you don't necessarily need to finetune the upscaler. Make sure the prompt passed to the upscaler is adjusted to remove the new token from the instance prompt. For example, if your stage 1 prompt is "a sks dog" then your stage 2 prompt should be "a dog".
|
||||
- For finer details like faces, fully training the stage 2 upscaler is better than training the stage 2 model with LoRA. It also helps to use lower learning rates with larger batch sizes.
|
||||
- Lower learning rates should be used to train the stage 2 model.
|
||||
- The [`DDPMScheduler`] works better than the DPMSolver used in the training scripts.
|
||||
|
||||
## Next steps
|
||||
|
||||
Congratulations on training your DreamBooth model! To learn more about how to use your new model, the following guide may be helpful:
|
||||
|
||||
@@ -181,7 +181,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
|
||||
--max_train_steps=15000 \
|
||||
--learning_rate=1e-05 \
|
||||
--max_grad_norm=1 \
|
||||
--enable_xformers_memory_efficient_attention
|
||||
--enable_xformers_memory_efficient_attention \
|
||||
--lr_scheduler="constant" --lr_warmup_steps=0 \
|
||||
--output_dir="sd-naruto-model" \
|
||||
--push_to_hub
|
||||
|
||||
@@ -260,7 +260,7 @@ Then, you'll need a way to evaluate the model. For evaluation, you can use the [
|
||||
... # The default pipeline output type is `List[PIL.Image]`
|
||||
... images = pipeline(
|
||||
... batch_size=config.eval_batch_size,
|
||||
... generator=torch.manual_seed(config.seed),
|
||||
... generator=torch.Generator(device='cpu').manual_seed(config.seed), # Use a separate torch generator to avoid rewinding the random state of the main training loop
|
||||
... ).images
|
||||
|
||||
... # Make a grid out of the images
|
||||
|
||||
@@ -34,13 +34,10 @@ Install [PyTorch nightly](https://pytorch.org/) to benefit from the latest and f
|
||||
pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
|
||||
```
|
||||
|
||||
<Tip>
|
||||
> [!TIP]
|
||||
> The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum.
|
||||
> If you're interested in the full benchmarking code, take a look at [huggingface/diffusion-fast](https://github.com/huggingface/diffusion-fast).
|
||||
|
||||
The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum. <br>
|
||||
|
||||
If you're interested in the full benchmarking code, take a look at [huggingface/diffusion-fast](https://github.com/huggingface/diffusion-fast).
|
||||
|
||||
</Tip>
|
||||
|
||||
## Baseline
|
||||
|
||||
@@ -170,6 +167,9 @@ Using SDPA attention and compiling both the UNet and VAE cuts the latency from 3
|
||||
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_3.png" width=500>
|
||||
</div>
|
||||
|
||||
> [!TIP]
|
||||
> From PyTorch 2.3.1, you can control the caching behavior of `torch.compile()`. This is particularly beneficial for compilation modes like `"max-autotune"` which performs a grid-search over several compilation flags to find the optimal configuration. Learn more in the [Compile Time Caching in torch.compile](https://pytorch.org/tutorials/recipes/torch_compile_caching_tutorial.html) tutorial.
|
||||
|
||||
### Prevent graph breaks
|
||||
|
||||
Specifying `fullgraph=True` ensures there are no graph breaks in the underlying model to take full advantage of `torch.compile` without any performance degradation. For the UNet and VAE, this means changing how you access the return variables.
|
||||
@@ -222,7 +222,7 @@ First, configure all the compiler tags:
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
import torch
|
||||
import torch
|
||||
|
||||
# Notice the two new flags at the end.
|
||||
torch._inductor.config.conv_1x1_as_mm = True
|
||||
|
||||
139
docs/source/en/tutorials/inference_with_big_models.md
Normal file
139
docs/source/en/tutorials/inference_with_big_models.md
Normal file
@@ -0,0 +1,139 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Working with big models
|
||||
|
||||
A modern diffusion model, like [Stable Diffusion XL (SDXL)](../using-diffusers/sdxl), is not just a single model, but a collection of multiple models. SDXL has four different model-level components:
|
||||
|
||||
* A variational autoencoder (VAE)
|
||||
* Two text encoders
|
||||
* A UNet for denoising
|
||||
|
||||
Usually, the text encoders and the denoiser are much larger compared to the VAE.
|
||||
|
||||
As models get bigger and better, it’s possible your model is so big that even a single copy won’t fit in memory. But that doesn’t mean it can’t be loaded. If you have more than one GPU, there is more memory available to store your model. In this case, it’s better to split your model checkpoint into several smaller *checkpoint shards*.
|
||||
|
||||
When a text encoder checkpoint has multiple shards, like [T5-xxl for SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers/tree/main/text_encoder_3), it is automatically handled by the [Transformers](https://huggingface.co/docs/transformers/index) library as it is a required dependency of Diffusers when using the [`StableDiffusion3Pipeline`]. More specifically, Transformers will automatically handle the loading of multiple shards within the requested model class and get it ready so that inference can be performed.
|
||||
|
||||
The denoiser checkpoint can also have multiple shards and supports inference thanks to the [Accelerate](https://huggingface.co/docs/accelerate/index) library.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Handling big models for inference](https://huggingface.co/docs/accelerate/main/en/concept_guides/big_model_inference) guide for general guidance when working with big models that are hard to fit into memory.
|
||||
|
||||
For example, let's save a sharded checkpoint for the [SDXL UNet](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/unet):
|
||||
|
||||
```python
|
||||
from diffusers import UNet2DConditionModel
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet"
|
||||
)
|
||||
unet.save_pretrained("sdxl-unet-sharded", max_shard_size="5GB")
|
||||
```
|
||||
|
||||
The size of the fp32 variant of the SDXL UNet checkpoint is ~10.4GB. Set the `max_shard_size` parameter to 5GB to create 3 shards. After saving, you can load them in [`StableDiffusionXLPipeline`]:
|
||||
|
||||
```python
|
||||
from diffusers import UNet2DConditionModel, StableDiffusionXLPipeline
|
||||
import torch
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
"sayakpaul/sdxl-unet-sharded", torch_dtype=torch.float16
|
||||
)
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
image = pipeline("a cute dog running on the grass", num_inference_steps=30).images[0]
|
||||
image.save("dog.png")
|
||||
```
|
||||
|
||||
If placing all the model-level components on the GPU at once is not feasible, use [`~DiffusionPipeline.enable_model_cpu_offload`] to help you:
|
||||
|
||||
```diff
|
||||
- pipeline.to("cuda")
|
||||
+ pipeline.enable_model_cpu_offload()
|
||||
```
|
||||
|
||||
In general, we recommend sharding when a checkpoint is more than 5GB (in fp32).
|
||||
|
||||
## Device placement
|
||||
|
||||
On distributed setups, you can run inference across multiple GPUs with Accelerate.
|
||||
|
||||
> [!WARNING]
|
||||
> This feature is experimental and its APIs might change in the future.
|
||||
|
||||
With Accelerate, you can use the `device_map` to determine how to distribute the models of a pipeline across multiple devices. This is useful in situations where you have more than one GPU.
|
||||
|
||||
For example, if you have two 8GB GPUs, then using [`~DiffusionPipeline.enable_model_cpu_offload`] may not work so well because:
|
||||
|
||||
* it only works on a single GPU
|
||||
* a single model might not fit on a single GPU ([`~DiffusionPipeline.enable_sequential_cpu_offload`] might work but it will be extremely slow and it is also limited to a single GPU)
|
||||
|
||||
To make use of both GPUs, you can use the "balanced" device placement strategy which splits the models across all available GPUs.
|
||||
|
||||
> [!WARNING]
|
||||
> Only the "balanced" strategy is supported at the moment, and we plan to support additional mapping strategies in the future.
|
||||
|
||||
```diff
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
- "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
|
||||
+ "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, device_map="balanced"
|
||||
)
|
||||
image = pipeline("a dog").images[0]
|
||||
image
|
||||
```
|
||||
|
||||
You can also pass a dictionary to enforce the maximum GPU memory that can be used on each device:
|
||||
|
||||
```diff
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
max_memory = {0:"1GB", 1:"1GB"}
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
device_map="balanced",
|
||||
+ max_memory=max_memory
|
||||
)
|
||||
image = pipeline("a dog").images[0]
|
||||
image
|
||||
```
|
||||
|
||||
If a device is not present in `max_memory`, then it will be completely ignored and will not participate in the device placement.
|
||||
|
||||
By default, Diffusers uses the maximum memory of all devices. If the models don't fit on the GPUs, they are offloaded to the CPU. If the CPU doesn't have enough memory, then you might see an error. In that case, you could defer to using [`~DiffusionPipeline.enable_sequential_cpu_offload`] and [`~DiffusionPipeline.enable_model_cpu_offload`].
|
||||
|
||||
Call [`~DiffusionPipeline.reset_device_map`] to reset the `device_map` of a pipeline. This is also necessary if you want to use methods like `to()`, [`~DiffusionPipeline.enable_sequential_cpu_offload`], and [`~DiffusionPipeline.enable_model_cpu_offload`] on a pipeline that was device-mapped.
|
||||
|
||||
```py
|
||||
pipeline.reset_device_map()
|
||||
```
|
||||
|
||||
Once a pipeline has been device-mapped, you can also access its device map via `hf_device_map`:
|
||||
|
||||
```py
|
||||
print(pipeline.hf_device_map)
|
||||
```
|
||||
|
||||
An example device map would look like so:
|
||||
|
||||
|
||||
```bash
|
||||
{'unet': 1, 'vae': 1, 'safety_checker': 0, 'text_encoder': 0}
|
||||
```
|
||||
@@ -188,7 +188,7 @@ def latents_to_rgb(latents):
|
||||
```py
|
||||
def decode_tensors(pipe, step, timestep, callback_kwargs):
|
||||
latents = callback_kwargs["latents"]
|
||||
|
||||
|
||||
image = latents_to_rgb(latents)
|
||||
image.save(f"{step}.png")
|
||||
|
||||
|
||||
@@ -506,7 +506,7 @@ make_image_grid([original_image, canny_image], rows=1, cols=2)
|
||||
</div>
|
||||
|
||||
For human pose estimation, install [controlnet_aux](https://github.com/patrickvonplaten/controlnet_aux):
|
||||
|
||||
|
||||
```py
|
||||
# uncomment to install the necessary library in Colab
|
||||
#!pip install -q controlnet-aux
|
||||
|
||||
@@ -147,11 +147,11 @@ prompt = "cat, hiding in the leaves, ((rain)), zazie rainyday, beautiful eyes, m
|
||||
neg_prompt = "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
|
||||
generator = torch.Generator(device="cpu").manual_seed(20)
|
||||
out_lpw = pipe_lpw(
|
||||
prompt,
|
||||
negative_prompt=neg_prompt,
|
||||
prompt,
|
||||
negative_prompt=neg_prompt,
|
||||
width=512,
|
||||
height=512,
|
||||
max_embeddings_multiples=3,
|
||||
max_embeddings_multiples=3,
|
||||
num_inference_steps=50,
|
||||
generator=generator,
|
||||
).images[0]
|
||||
|
||||
@@ -12,54 +12,10 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Controlling image quality
|
||||
|
||||
The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better image lighting and details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.
|
||||
The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.
|
||||
|
||||
This guide will show you how to turn these techniques on in your pipeline and how to configure them to improve the quality of your generated images.
|
||||
|
||||
## Lighting
|
||||
|
||||
The Stable Diffusion models aren't very good at generating images that are very bright or dark because the scheduler doesn't start sampling from the last timestep and it doesn't enforce a zero signal-to-noise ratio (SNR). The [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper fixes these issues which are now available in some Diffusers schedulers.
|
||||
|
||||
> [!TIP]
|
||||
> For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts.
|
||||
>
|
||||
> ```bash
|
||||
> --prediction_type="v_prediction"
|
||||
> ```
|
||||
|
||||
For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Now you should configure the following parameters in the [`DDIMScheduler`].
|
||||
|
||||
* `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR
|
||||
* `timestep_spacing="trailing"` to start sampling from the last timestep
|
||||
|
||||
Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline, DDIMScheduler
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
|
||||
|
||||
pipeline.scheduler = DDIMScheduler.from_config(
|
||||
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
|
||||
)
|
||||
pipeline.to("cuda")
|
||||
prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed"
|
||||
generator = torch.Generator(device="cpu").manual_seed(23)
|
||||
image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/no-zero-snr.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">default Stable Diffusion v2-1 image</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero-snr.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">image with zero SNR and trailing timestep spacing enabled</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Details
|
||||
|
||||
[FreeU](https://hf.co/papers/2309.11497) improves image details by rebalancing the UNet's backbone and skip connection weights. The skip connections can cause the model to overlook some of the backbone semantics which may lead to unnatural image details in the generated image. This technique does not require any additional training and can be applied on the fly during inference for tasks like image-to-image and text-to-video.
|
||||
|
||||
@@ -235,7 +235,7 @@ image = pipe(
|
||||
mask_image=mask_image,
|
||||
generator=generator,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=4,
|
||||
guidance_scale=4,
|
||||
).images[0]
|
||||
image
|
||||
```
|
||||
@@ -497,7 +497,7 @@ pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
||||
unet=unet,
|
||||
adapter=adapter,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -512,7 +512,7 @@ image = pipe(
|
||||
image=canny_image,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=5,
|
||||
adapter_conditioning_scale=0.8,
|
||||
adapter_conditioning_scale=0.8,
|
||||
adapter_conditioning_factor=1,
|
||||
generator=generator,
|
||||
).images[0]
|
||||
@@ -554,10 +554,10 @@ canny_image = Image.fromarray(image).resize((1024, 1024))
|
||||
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda")
|
||||
|
||||
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
adapter=adapter,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -573,8 +573,8 @@ image = pipe(
|
||||
negative_prompt=negative_prompt,
|
||||
image=canny_image,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=1.5,
|
||||
adapter_conditioning_scale=0.8,
|
||||
guidance_scale=1.5,
|
||||
adapter_conditioning_scale=0.8,
|
||||
adapter_conditioning_factor=1,
|
||||
generator=generator,
|
||||
).images[0]
|
||||
|
||||
@@ -78,7 +78,7 @@ image = pipe(
|
||||
prompt=prompt,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
eta=0.3,
|
||||
generator=torch.Generator(device=device).manual_seed(0),
|
||||
).images[0]
|
||||
```
|
||||
@@ -156,14 +156,14 @@ image = pipe(
|
||||
prompt=prompt,
|
||||
num_inference_steps=8,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
eta=0.3,
|
||||
generator=torch.Generator(device=device).manual_seed(0),
|
||||
).images[0]
|
||||
```
|
||||
|
||||

|
||||
|
||||
TCD-LoRA also supports other LoRAs trained on different styles. For example, let's load the [TheLastBen/Papercut_SDXL](https://huggingface.co/TheLastBen/Papercut_SDXL) LoRA and fuse it with the TCD-LoRA with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method.
|
||||
TCD-LoRA also supports other LoRAs trained on different styles. For example, let's load the [TheLastBen/Papercut_SDXL](https://huggingface.co/TheLastBen/Papercut_SDXL) LoRA and fuse it with the TCD-LoRA with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method.
|
||||
|
||||
> [!TIP]
|
||||
> Check out the [Merge LoRAs](merge_loras) guide to learn more about efficient merging methods.
|
||||
@@ -171,7 +171,7 @@ TCD-LoRA also supports other LoRAs trained on different styles. For example, let
|
||||
```python
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
from scheduling_tcd import TCDScheduler
|
||||
from scheduling_tcd import TCDScheduler
|
||||
|
||||
device = "cuda"
|
||||
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
@@ -191,7 +191,7 @@ image = pipe(
|
||||
prompt=prompt,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
eta=0.3,
|
||||
generator=torch.Generator(device=device).manual_seed(0),
|
||||
).images[0]
|
||||
```
|
||||
@@ -215,7 +215,7 @@ from PIL import Image
|
||||
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
||||
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
||||
from diffusers.utils import load_image, make_image_grid
|
||||
from scheduling_tcd import TCDScheduler
|
||||
from scheduling_tcd import TCDScheduler
|
||||
|
||||
device = "cuda"
|
||||
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
||||
@@ -249,13 +249,13 @@ controlnet = ControlNetModel.from_pretrained(
|
||||
controlnet_id,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to(device)
|
||||
)
|
||||
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
base_model_id,
|
||||
controlnet=controlnet,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to(device)
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -271,9 +271,9 @@ depth_image = get_depth_map(image)
|
||||
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
||||
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=depth_image,
|
||||
num_inference_steps=4,
|
||||
prompt,
|
||||
image=depth_image,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
||||
@@ -290,7 +290,7 @@ grid_image = make_image_grid([depth_image, image], rows=1, cols=2)
|
||||
import torch
|
||||
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
||||
from diffusers.utils import load_image, make_image_grid
|
||||
from scheduling_tcd import TCDScheduler
|
||||
from scheduling_tcd import TCDScheduler
|
||||
|
||||
device = "cuda"
|
||||
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
@@ -301,13 +301,13 @@ controlnet = ControlNetModel.from_pretrained(
|
||||
controlnet_id,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to(device)
|
||||
)
|
||||
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
base_model_id,
|
||||
controlnet=controlnet,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to(device)
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -322,9 +322,9 @@ canny_image = load_image("https://huggingface.co/datasets/hf-internal-testing/di
|
||||
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
||||
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=canny_image,
|
||||
num_inference_steps=4,
|
||||
prompt,
|
||||
image=canny_image,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
||||
@@ -336,7 +336,7 @@ grid_image = make_image_grid([canny_image, image], rows=1, cols=2)
|
||||

|
||||
|
||||
<Tip>
|
||||
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one.
|
||||
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one.
|
||||
</Tip>
|
||||
|
||||
</hfoption>
|
||||
@@ -350,7 +350,7 @@ from diffusers import StableDiffusionXLPipeline
|
||||
from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
from ip_adapter import IPAdapterXL
|
||||
from scheduling_tcd import TCDScheduler
|
||||
from scheduling_tcd import TCDScheduler
|
||||
|
||||
device = "cuda"
|
||||
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
@@ -359,8 +359,8 @@ ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
|
||||
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
base_model_path,
|
||||
torch_dtype=torch.float16,
|
||||
base_model_path,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16"
|
||||
)
|
||||
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -375,13 +375,13 @@ ref_image = load_image("https://raw.githubusercontent.com/tencent-ailab/IP-Adapt
|
||||
prompt = "best quality, high quality, wearing sunglasses"
|
||||
|
||||
image = ip_model.generate(
|
||||
pil_image=ref_image,
|
||||
pil_image=ref_image,
|
||||
prompt=prompt,
|
||||
scale=0.5,
|
||||
num_samples=1,
|
||||
num_inference_steps=4,
|
||||
num_samples=1,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0,
|
||||
eta=0.3,
|
||||
eta=0.3,
|
||||
seed=0,
|
||||
)[0]
|
||||
|
||||
|
||||
@@ -230,7 +230,7 @@ from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
|
||||
pipeline.enable_xformers_memory_efficient_attention()
|
||||
@@ -255,7 +255,7 @@ from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(
|
||||
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
|
||||
pipeline.enable_xformers_memory_efficient_attention()
|
||||
@@ -296,7 +296,7 @@ from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
|
||||
pipeline.enable_xformers_memory_efficient_attention()
|
||||
@@ -319,7 +319,7 @@ from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(
|
||||
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
|
||||
pipeline.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@@ -445,8 +445,8 @@ generator = torch.Generator(device="cpu").manual_seed(42)
|
||||
|
||||
images = pipeline(
|
||||
prompt="A photo of a girl",
|
||||
ip_adapter_image_embeds=[id_embeds],
|
||||
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
||||
ip_adapter_image_embeds=[id_embeds],
|
||||
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
||||
num_inference_steps=20, num_images_per_prompt=1,
|
||||
generator=generator
|
||||
).images
|
||||
@@ -661,7 +661,7 @@ image
|
||||
|
||||
### Style & layout control
|
||||
|
||||
[InstantStyle](https://arxiv.org/abs/2404.02733) is a plug-and-play method on top of IP-Adapter, which disentangles style and layout from image prompt to control image generation. This way, you can generate images following only the style or layout from image prompt, with significantly improved diversity. This is achieved by only activating IP-Adapters to specific parts of the model.
|
||||
[InstantStyle](https://arxiv.org/abs/2404.02733) is a plug-and-play method on top of IP-Adapter, which disentangles style and layout from image prompt to control image generation. This way, you can generate images following only the style or layout from image prompt, with significantly improved diversity. This is achieved by only activating IP-Adapters to specific parts of the model.
|
||||
|
||||
By default IP-Adapters are inserted to all layers of the model. Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method with a dictionary to assign scales to IP-Adapter at different layers.
|
||||
|
||||
|
||||
@@ -81,14 +81,14 @@ pipeline = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffu
|
||||
Use the Space below to gauge a pipeline's memory requirements before you download and load it to see if it runs on your hardware.
|
||||
|
||||
<div class="block dark:hidden">
|
||||
<iframe
|
||||
<iframe
|
||||
src="https://diffusers-compute-pipeline-size.hf.space?__theme=light"
|
||||
width="850"
|
||||
height="1600"
|
||||
></iframe>
|
||||
</div>
|
||||
<div class="hidden dark:block">
|
||||
<iframe
|
||||
<iframe
|
||||
src="https://diffusers-compute-pipeline-size.hf.space?__theme=dark"
|
||||
width="850"
|
||||
height="1600"
|
||||
@@ -138,11 +138,11 @@ Now pass the new scheduler and VAE to the [`StableDiffusionXLPipeline`].
|
||||
|
||||
```py
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True
|
||||
).to("cuda")
|
||||
```
|
||||
@@ -178,7 +178,7 @@ pipe_sd.to("cuda")
|
||||
generator = torch.Generator(device="cpu").manual_seed(33)
|
||||
out_sd = pipe_sd(
|
||||
prompt="bear eats pizza",
|
||||
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
|
||||
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
|
||||
ip_adapter_image=image,
|
||||
num_inference_steps=50,
|
||||
generator=generator,
|
||||
@@ -284,7 +284,7 @@ pipe.sag_unload_ip_adapter()
|
||||
generator = torch.Generator(device="cpu").manual_seed(33)
|
||||
out_sd = pipe_sd(
|
||||
prompt="bear eats pizza",
|
||||
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
|
||||
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
|
||||
ip_adapter_image=image,
|
||||
num_inference_steps=50,
|
||||
generator=generator,
|
||||
|
||||
@@ -166,7 +166,7 @@ For both [`~loaders.LoraLoaderMixin.load_lora_weights`] and [`~loaders.UNet2DCon
|
||||
For more granular control on the amount of LoRA weights used per layer, you can use [`~loaders.LoraLoaderMixin.set_adapters`] and pass a dictionary specifying by how much to scale the weights in each layer by.
|
||||
```python
|
||||
pipe = ... # create pipeline
|
||||
pipe.load_lora_weights(..., adapter_name="my_adapter")
|
||||
pipe.load_lora_weights(..., adapter_name="my_adapter")
|
||||
scales = {
|
||||
"text_encoder": 0.5,
|
||||
"text_encoder_2": 0.5, # only usable if pipe has a 2nd text encoder
|
||||
|
||||
466
docs/source/en/using-diffusers/marigold_usage.md
Normal file
466
docs/source/en/using-diffusers/marigold_usage.md
Normal file
@@ -0,0 +1,466 @@
|
||||
<!--Copyright 2024 Marigold authors and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Marigold Pipelines for Computer Vision Tasks
|
||||
|
||||
[Marigold](../api/pipelines/marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
|
||||
|
||||
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
|
||||
|
||||
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
|
||||
Currently, the following tasks are implemented:
|
||||
|
||||
| Pipeline | Predicted Modalities | Demos |
|
||||
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------:|
|
||||
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
|
||||
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
|
||||
|
||||
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
|
||||
These checkpoints are meant to work with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold).
|
||||
The original code can also be used to train new checkpoints.
|
||||
|
||||
| Checkpoint | Modality | Comment |
|
||||
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [prs-eth/marigold-v1-0](https://huggingface.co/prs-eth/marigold-v1-0) | Depth | The first Marigold Depth checkpoint, which predicts *affine-invariant depth* maps. The performance of this checkpoint in benchmarks was studied in the original [paper](https://huggingface.co/papers/2312.02145). Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. Affine-invariant depth prediction has a range of values in each pixel between 0 (near plane) and 1 (far plane); both planes are chosen by the model as part of the inference process. See the `MarigoldImageProcessor` reference for visualization utilities. |
|
||||
| [prs-eth/marigold-depth-lcm-v1-0](https://huggingface.co/prs-eth/marigold-depth-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
|
||||
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
|
||||
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
|
||||
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
|
||||
We showcase the predictions using the same input image of Albert Einstein generated by Midjourney.
|
||||
This makes it easier to compare visualizations of the predictions across various modalities and checkpoints.
|
||||
|
||||
<div class="flex gap-4" style="justify-content: center; width: 100%;">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://marigoldmonodepth.github.io/images/einstein.jpg"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Example input image for all Marigold pipelines
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
### Depth Prediction Quick Start
|
||||
|
||||
To get the first depth prediction, load `prs-eth/marigold-depth-lcm-v1-0` checkpoint into `MarigoldDepthPipeline` pipeline, put the image through the pipeline, and save the predictions:
|
||||
|
||||
```python
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
depth = pipe(image)
|
||||
|
||||
vis = pipe.image_processor.visualize_depth(depth.prediction)
|
||||
vis[0].save("einstein_depth.png")
|
||||
|
||||
depth_16bit = pipe.image_processor.export_depth_to_16bit_png(depth.prediction)
|
||||
depth_16bit[0].save("einstein_depth_16bit.png")
|
||||
```
|
||||
|
||||
The visualization function for depth [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] applies one of [matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]` depth range into an RGB image.
|
||||
With the `Spectral` colormap, pixels with near depth are painted red, and far pixels are assigned blue color.
|
||||
The 16-bit PNG file stores the single channel values mapped linearly from the `[0, 1]` range into `[0, 65535]`.
|
||||
Below are the raw and the visualized predictions; as can be seen, dark areas (mustache) are easier to distinguish in the visualization:
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth_16bit.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted depth (16-bit PNG)
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted depth visualization (Spectral)
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
### Surface Normals Prediction Quick Start
|
||||
|
||||
Load `prs-eth/marigold-normals-lcm-v0-1` checkpoint into `MarigoldNormalsPipeline` pipeline, put the image through the pipeline, and save the predictions:
|
||||
|
||||
```python
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
|
||||
"prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
normals = pipe(image)
|
||||
|
||||
vis = pipe.image_processor.visualize_normals(normals.prediction)
|
||||
vis[0].save("einstein_normals.png")
|
||||
```
|
||||
|
||||
The visualization function for normals [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional prediction with pixel values in the range `[-1, 1]` into an RGB image.
|
||||
The visualization function supports flipping surface normals axes to make the visualization compatible with other choices of the frame of reference.
|
||||
Conceptually, each pixel is painted according to the surface normal vector in the frame of reference, where `X` axis points right, `Y` axis points up, and `Z` axis points at the viewer.
|
||||
Below is the visualized prediction:
|
||||
|
||||
<div class="flex gap-4" style="justify-content: center; width: 100%;">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted surface normals visualization
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
In this example, the nose tip almost certainly has a point on the surface, in which the surface normal vector points straight at the viewer, meaning that its coordinates are `[0, 0, 1]`.
|
||||
This vector maps to the RGB `[128, 128, 255]`, which corresponds to the violet-blue color.
|
||||
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the red hue.
|
||||
Points on the shoulders pointing up with a large `Y` promote green color.
|
||||
|
||||
### Speeding up inference
|
||||
|
||||
The above quick start snippets are already optimized for speed: they load the LCM checkpoint, use the `fp16` variant of weights and computation, and perform just one denoising diffusion step.
|
||||
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
|
||||
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
|
||||
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
|
||||
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny):
|
||||
|
||||
```diff
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
+ pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
|
||||
+ "madebyollin/taesd", torch_dtype=torch.float16
|
||||
+ ).cuda()
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
depth = pipe(image)
|
||||
```
|
||||
|
||||
As suggested in [Optimizations](../optimization/torch2.0#torch.compile), adding `torch.compile` may squeeze extra performance depending on the target hardware:
|
||||
|
||||
```diff
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
depth = pipe(image)
|
||||
```
|
||||
|
||||
## Qualitative Comparison with Depth Anything
|
||||
|
||||
With the above speed optimizations, Marigold delivers predictions with more details and faster than [Depth Anything](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything) with the largest checkpoint [LiheYoung/depth-anything-large-hf](https://huggingface.co/LiheYoung/depth-anything-large-hf):
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Marigold LCM fp16 with Tiny AutoEncoder
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/einstein_depthanything_large.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth Anything Large
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Maximizing Precision and Ensembling
|
||||
|
||||
Marigold pipelines have a built-in ensembling mechanism combining multiple predictions from different random latents.
|
||||
This is a brute-force way of improving the precision of predictions, capitalizing on the generative nature of diffusion.
|
||||
The ensembling path is activated automatically when the `ensemble_size` argument is set greater than `1`.
|
||||
When aiming for maximum precision, it makes sense to adjust `num_inference_steps` simultaneously with `ensemble_size`.
|
||||
The recommended values vary across checkpoints but primarily depend on the scheduler type.
|
||||
The effect of ensembling is particularly well-seen with surface normals:
|
||||
|
||||
```python
|
||||
import diffusers
|
||||
|
||||
model_path = "prs-eth/marigold-normals-v1-0"
|
||||
|
||||
model_paper_kwargs = {
|
||||
diffusers.schedulers.DDIMScheduler: {
|
||||
"num_inference_steps": 10,
|
||||
"ensemble_size": 10,
|
||||
},
|
||||
diffusers.schedulers.LCMScheduler: {
|
||||
"num_inference_steps": 4,
|
||||
"ensemble_size": 5,
|
||||
},
|
||||
}
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
|
||||
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(model_path).to("cuda")
|
||||
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
|
||||
|
||||
depth = pipe(image, **pipe_kwargs)
|
||||
|
||||
vis = pipe.image_processor.visualize_normals(depth.prediction)
|
||||
vis[0].save("einstein_normals.png")
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals, no ensembling
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals, with ensembling
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
As can be seen, all areas with fine-grained structurers, such as hair, got more conservative and on average more correct predictions.
|
||||
Such a result is more suitable for precision-sensitive downstream tasks, such as 3D reconstruction.
|
||||
|
||||
## Quantitative Evaluation
|
||||
|
||||
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets), follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values for `num_inference_steps` and `ensemble_size`.
|
||||
Optionally seed randomness to ensure reproducibility. Maximizing `batch_size` will deliver maximum device utilization.
|
||||
|
||||
```python
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
device = "cuda"
|
||||
seed = 2024
|
||||
model_path = "prs-eth/marigold-v1-0"
|
||||
|
||||
model_paper_kwargs = {
|
||||
diffusers.schedulers.DDIMScheduler: {
|
||||
"num_inference_steps": 50,
|
||||
"ensemble_size": 10,
|
||||
},
|
||||
diffusers.schedulers.LCMScheduler: {
|
||||
"num_inference_steps": 4,
|
||||
"ensemble_size": 10,
|
||||
},
|
||||
}
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(model_path).to(device)
|
||||
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
|
||||
|
||||
depth = pipe(image, generator=generator, **pipe_kwargs)
|
||||
|
||||
# evaluate metrics
|
||||
```
|
||||
|
||||
## Using Predictive Uncertainty
|
||||
|
||||
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random latents.
|
||||
As a side effect, it can be used to quantify epistemic (model) uncertainty; simply specify `ensemble_size` greater than 1 and set `output_uncertainty=True`.
|
||||
The resulting uncertainty will be available in the `uncertainty` field of the output.
|
||||
It can be visualized as follows:
|
||||
|
||||
```python
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
||||
depth = pipe(
|
||||
image,
|
||||
ensemble_size=10, # any number greater than 1; higher values yield higher precision
|
||||
output_uncertainty=True,
|
||||
)
|
||||
|
||||
uncertainty = pipe.image_processor.visualize_uncertainty(depth.uncertainty)
|
||||
uncertainty[0].save("einstein_depth_uncertainty.png")
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth uncertainty
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals uncertainty
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
The interpretation of uncertainty is easy: higher values (white) correspond to pixels, where the model struggles to make consistent predictions.
|
||||
Evidently, the depth model is the least confident around edges with discontinuity, where the object depth changes drastically.
|
||||
The surface normals model is the least confident in fine-grained structures, such as hair, and dark areas, such as the collar.
|
||||
|
||||
## Frame-by-frame Video Processing with Temporal Consistency
|
||||
|
||||
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent initialization.
|
||||
This becomes an obvious drawback compared to traditional end-to-end dense regression networks, as exemplified in the following videos:
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Input video</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
To address this issue, it is possible to pass `latents` argument to the pipelines, which defines the starting point of diffusion.
|
||||
Empirically, we found that a convex combination of the very same starting point noise latent and the latent corresponding to the previous frame prediction give sufficiently smooth results, as implemented in the snippet below:
|
||||
|
||||
```python
|
||||
import imageio
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
device = "cuda"
|
||||
path_in = "obama.mp4"
|
||||
path_out = "obama_depth.gif"
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to(device)
|
||||
pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
|
||||
"madebyollin/taesd", torch_dtype=torch.float16
|
||||
).to(device)
|
||||
pipe.set_progress_bar_config(disable=True)
|
||||
|
||||
with imageio.get_reader(path_in) as reader:
|
||||
size = reader.get_meta_data()['size']
|
||||
last_frame_latent = None
|
||||
latent_common = torch.randn(
|
||||
(1, 4, 768 * size[1] // (8 * max(size)), 768 * size[0] // (8 * max(size)))
|
||||
).to(device=device, dtype=torch.float16)
|
||||
|
||||
out = []
|
||||
for frame_id, frame in tqdm(enumerate(reader), desc="Processing Video"):
|
||||
frame = Image.fromarray(frame)
|
||||
latents = latent_common
|
||||
if last_frame_latent is not None:
|
||||
latents = 0.9 * latents + 0.1 * last_frame_latent
|
||||
|
||||
depth = pipe(
|
||||
frame, match_input_resolution=False, latents=latents, output_latent=True
|
||||
)
|
||||
last_frame_latent = depth.latent
|
||||
out.append(pipe.image_processor.visualize_depth(depth.prediction)[0])
|
||||
|
||||
diffusers.utils.export_to_gif(out, path_out, fps=reader.get_meta_data()['fps'])
|
||||
```
|
||||
|
||||
Here, the diffusion process starts from the given computed latent.
|
||||
The pipeline sets `output_latent=True` to access `out.latent` and computes its contribution to the next frame's latent initialization.
|
||||
The result is much more stable now:
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_consistent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth with forced latents initialization</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Marigold for ControlNet
|
||||
|
||||
A very common application for depth prediction with diffusion models comes in conjunction with ControlNet.
|
||||
Depth crispness plays a crucial role in obtaining high-quality results from ControlNet.
|
||||
As seen in comparisons with other methods above, Marigold excels at that task.
|
||||
The snippet below demonstrates how to load an image, compute depth, and pass it into ControlNet in a compatible format:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import diffusers
|
||||
|
||||
device = "cuda"
|
||||
generator = torch.Generator(device=device).manual_seed(2024)
|
||||
image = diffusers.utils.load_image(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"
|
||||
)
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-depth-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
|
||||
).to(device)
|
||||
|
||||
depth_image = pipe(image, generator=generator).prediction
|
||||
depth_image = pipe.image_processor.visualize_depth(depth_image, color_map="binary")
|
||||
depth_image[0].save("motorcycle_controlnet_depth.png")
|
||||
|
||||
controlnet = diffusers.ControlNetModel.from_pretrained(
|
||||
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
|
||||
).to(device)
|
||||
pipe = diffusers.StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
"SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16", controlnet=controlnet
|
||||
).to(device)
|
||||
pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
||||
|
||||
controlnet_out = pipe(
|
||||
prompt="high quality photo of a sports bike, city",
|
||||
negative_prompt="",
|
||||
guidance_scale=6.5,
|
||||
num_inference_steps=25,
|
||||
image=depth_image,
|
||||
controlnet_conditioning_scale=0.7,
|
||||
control_guidance_end=0.7,
|
||||
generator=generator,
|
||||
).images
|
||||
controlnet_out[0].save("motorcycle_controlnet_out.png")
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 33%; max-width: 33%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_depth_source.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Input image
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 33%; max-width: 33%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth in the format compatible with ControlNet
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 33%; max-width: 33%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_out.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
ControlNet generation, conditioned on depth and prompt: "high quality photo of a sports bike, city"
|
||||
</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
Hopefully, you will find Marigold useful for solving your downstream tasks, be it a part of a more broad generative workflow, or a perception task, such as 3D reconstruction.
|
||||
@@ -71,7 +71,7 @@ import torch
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.float16,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
subfolder="unet",
|
||||
@@ -138,7 +138,7 @@ from peft import PeftModel
|
||||
|
||||
base_unet = UNet2DConditionModel.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.float16,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
subfolder="unet",
|
||||
|
||||
@@ -10,156 +10,86 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Load different Stable Diffusion formats
|
||||
# Model files and layouts
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
Stable Diffusion models are available in different formats depending on the framework they're trained and saved with, and where you download them from. Converting these formats for use in 🤗 Diffusers allows you to use all the features supported by the library, such as [using different schedulers](schedulers) for inference, [building your custom pipeline](write_own_pipeline), and a variety of techniques and methods for [optimizing inference speed](../optimization/opt_overview).
|
||||
Diffusion models are saved in various file types and organized in different layouts. Diffusers stores model weights as safetensors files in *Diffusers-multifolder* layout and it also supports loading files (like safetensors and ckpt files) from a *single-file* layout which is commonly used in the diffusion ecosystem.
|
||||
|
||||
<Tip>
|
||||
Each layout has its own benefits and use cases, and this guide will show you how to load the different files and layouts, and how to convert them.
|
||||
|
||||
We highly recommend using the `.safetensors` format because it is more secure than traditional pickled files which are vulnerable and can be exploited to execute any code on your machine (learn more in the [Load safetensors](using_safetensors) guide).
|
||||
## Files
|
||||
|
||||
</Tip>
|
||||
PyTorch model weights are typically saved with Python's [pickle](https://docs.python.org/3/library/pickle.html) utility as ckpt or bin files. However, pickle is not secure and pickled files may contain malicious code that can be executed. This vulnerability is a serious concern given the popularity of model sharing. To address this security issue, the [Safetensors](https://hf.co/docs/safetensors) library was developed as a secure alternative to pickle, which saves models as safetensors files.
|
||||
|
||||
This guide will show you how to convert other Stable Diffusion formats to be compatible with 🤗 Diffusers.
|
||||
### safetensors
|
||||
|
||||
## PyTorch .ckpt
|
||||
> [!TIP]
|
||||
> Learn more about the design decisions and why safetensor files are preferred for saving and loading model weights in the [Safetensors audited as really safe and becoming the default](https://blog.eleuther.ai/safetensors-security-audit/) blog post.
|
||||
|
||||
The checkpoint - or `.ckpt` - format is commonly used to store and save models. The `.ckpt` file contains the entire model and is typically several GBs in size. While you can load and use a `.ckpt` file directly with the [`~StableDiffusionPipeline.from_single_file`] method, it is generally better to convert the `.ckpt` file to 🤗 Diffusers so both formats are available.
|
||||
[Safetensors](https://hf.co/docs/safetensors) is a safe and fast file format for securely storing and loading tensors. Safetensors restricts the header size to limit certain types of attacks, supports lazy loading (useful for distributed setups), and has generally faster loading speeds.
|
||||
|
||||
There are two options for converting a `.ckpt` file: use a Space to convert the checkpoint or convert the `.ckpt` file with a script.
|
||||
Make sure you have the [Safetensors](https://hf.co/docs/safetensors) library installed.
|
||||
|
||||
### Convert with a Space
|
||||
|
||||
The easiest and most convenient way to convert a `.ckpt` file is to use the [SD to Diffusers](https://huggingface.co/spaces/diffusers/sd-to-diffusers) Space. You can follow the instructions on the Space to convert the `.ckpt` file.
|
||||
|
||||
This approach works well for basic models, but it may struggle with more customized models. You'll know the Space failed if it returns an empty pull request or error. In this case, you can try converting the `.ckpt` file with a script.
|
||||
|
||||
### Convert with a script
|
||||
|
||||
🤗 Diffusers provides a [conversion script](https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py) for converting `.ckpt` files. This approach is more reliable than the Space above.
|
||||
|
||||
Before you start, make sure you have a local clone of 🤗 Diffusers to run the script and log in to your Hugging Face account so you can open pull requests and push your converted model to the Hub.
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```py
|
||||
!pip install safetensors
|
||||
```
|
||||
|
||||
To use the script:
|
||||
Safetensors stores weights in a safetensors file. Diffusers loads safetensors files by default if they're available and the Safetensors library is installed. There are two ways safetensors files can be organized:
|
||||
|
||||
1. Git clone the repository containing the `.ckpt` file you want to convert. For this example, let's convert this [TemporalNet](https://huggingface.co/CiaraRowles/TemporalNet) `.ckpt` file:
|
||||
1. Diffusers-multifolder layout: there may be several separate safetensors files, one for each pipeline component (text encoder, UNet, VAE), organized in subfolders (check out the [runwayml/stable-diffusion-v1-5](https://hf.co/runwayml/stable-diffusion-v1-5/tree/main) repository as an example)
|
||||
2. single-file layout: all the model weights may be saved in a single file (check out the [WarriorMama777/OrangeMixs](https://hf.co/WarriorMama777/OrangeMixs/tree/main/Models/AbyssOrangeMix) repository as an example)
|
||||
|
||||
```bash
|
||||
git lfs install
|
||||
git clone https://huggingface.co/CiaraRowles/TemporalNet
|
||||
```
|
||||
<hfoptions id="safetensors">
|
||||
<hfoption id="multifolder">
|
||||
|
||||
2. Open a pull request on the repository where you're converting the checkpoint from:
|
||||
|
||||
```bash
|
||||
cd TemporalNet && git fetch origin refs/pr/13:pr/13
|
||||
git checkout pr/13
|
||||
```
|
||||
|
||||
3. There are several input arguments to configure in the conversion script, but the most important ones are:
|
||||
|
||||
- `checkpoint_path`: the path to the `.ckpt` file to convert.
|
||||
- `original_config_file`: a YAML file defining the configuration of the original architecture. If you can't find this file, try searching for the YAML file in the GitHub repository where you found the `.ckpt` file.
|
||||
- `dump_path`: the path to the converted model.
|
||||
|
||||
For example, you can take the `cldm_v15.yaml` file from the [ControlNet](https://github.com/lllyasviel/ControlNet/tree/main/models) repository because the TemporalNet model is a Stable Diffusion v1.5 and ControlNet model.
|
||||
|
||||
4. Now you can run the script to convert the `.ckpt` file:
|
||||
|
||||
```bash
|
||||
python ../diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path temporalnetv3.ckpt --original_config_file cldm_v15.yaml --dump_path ./ --controlnet
|
||||
```
|
||||
|
||||
5. Once the conversion is done, upload your converted model and test out the resulting [pull request](https://huggingface.co/CiaraRowles/TemporalNet/discussions/13)!
|
||||
|
||||
```bash
|
||||
git push origin pr/13:refs/pr/13
|
||||
```
|
||||
|
||||
## Keras .pb or .h5
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
🧪 This is an experimental feature. Only Stable Diffusion v1 checkpoints are supported by the Convert KerasCV Space at the moment.
|
||||
|
||||
</Tip>
|
||||
|
||||
[KerasCV](https://keras.io/keras_cv/) supports training for [Stable Diffusion](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion) v1 and v2. However, it offers limited support for experimenting with Stable Diffusion models for inference and deployment whereas 🤗 Diffusers has a more complete set of features for this purpose, such as different [noise schedulers](https://huggingface.co/docs/diffusers/using-diffusers/schedulers), [flash attention](https://huggingface.co/docs/diffusers/optimization/xformers), and [other
|
||||
optimization techniques](https://huggingface.co/docs/diffusers/optimization/fp16).
|
||||
|
||||
The [Convert KerasCV](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) Space converts `.pb` or `.h5` files to PyTorch, and then wraps them in a [`StableDiffusionPipeline`] so it is ready for inference. The converted checkpoint is stored in a repository on the Hugging Face Hub.
|
||||
|
||||
For this example, let's convert the [`sayakpaul/textual-inversion-kerasio`](https://huggingface.co/sayakpaul/textual-inversion-kerasio/tree/main) checkpoint which was trained with Textual Inversion. It uses the special token `<my-funny-cat>` to personalize images with cats.
|
||||
|
||||
The Convert KerasCV Space allows you to input the following:
|
||||
|
||||
* Your Hugging Face token.
|
||||
* Paths to download the UNet and text encoder weights from. Depending on how the model was trained, you don't necessarily need to provide the paths to both the UNet and text encoder. For example, Textual Inversion only requires the embeddings from the text encoder and a text-to-image model only requires the UNet weights.
|
||||
* Placeholder token is only applicable for textual inversion models.
|
||||
* The `output_repo_prefix` is the name of the repository where the converted model is stored.
|
||||
|
||||
Click the **Submit** button to automatically convert the KerasCV checkpoint! Once the checkpoint is successfully converted, you'll see a link to the new repository containing the converted checkpoint. Follow the link to the new repository, and you'll see the Convert KerasCV Space generated a model card with an inference widget to try out the converted model.
|
||||
|
||||
If you prefer to run inference with code, click on the **Use in Diffusers** button in the upper right corner of the model card to copy and paste the code snippet:
|
||||
Use the [`~DiffusionPipeline.from_pretrained`] method to load a model with safetensors files stored in multiple folders.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
|
||||
"runwayml/stable-diffusion-v1-5",
|
||||
use_safetensors=True
|
||||
)
|
||||
```
|
||||
|
||||
Then, you can generate an image like:
|
||||
</hfoption>
|
||||
<hfoption id="single file">
|
||||
|
||||
Use the [`~loaders.FromSingleFileMixin.from_single_file`] method to load a model with all the weights stored in a single safetensors file.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers import StableDiffusionPipeline
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
|
||||
pipeline = StableDiffusionPipeline.from_single_file(
|
||||
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
|
||||
)
|
||||
pipeline.to("cuda")
|
||||
|
||||
placeholder_token = "<my-funny-cat-token>"
|
||||
prompt = f"two {placeholder_token} getting married, photorealistic, high quality"
|
||||
image = pipeline(prompt, num_inference_steps=50).images[0]
|
||||
```
|
||||
|
||||
## A1111 LoRA files
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
[Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) (A1111) is a popular web UI for Stable Diffusion that supports model sharing platforms like [Civitai](https://civitai.com/). Models trained with the Low-Rank Adaptation (LoRA) technique are especially popular because they're fast to train and have a much smaller file size than a fully finetuned model. 🤗 Diffusers supports loading A1111 LoRA checkpoints with [`~loaders.LoraLoaderMixin.load_lora_weights`]:
|
||||
#### LoRA files
|
||||
|
||||
[LoRA](https://hf.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a lightweight adapter that is fast and easy to train, making them especially popular for generating images in a certain way or style. These adapters are commonly stored in a safetensors file, and are widely popular on model sharing platforms like [civitai](https://civitai.com/).
|
||||
|
||||
LoRAs are loaded into a base model with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
import torch
|
||||
|
||||
# base model
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"Lykon/dreamshaper-xl-1-0", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Download a LoRA checkpoint from Civitai; this example uses the [Blueprintify SD XL 1.0](https://civitai.com/models/150986/blueprintify-sd-xl-10) checkpoint, but feel free to try out any LoRA checkpoint!
|
||||
# download LoRA weights
|
||||
!wget https://civitai.com/api/download/models/168776 -O blueprintify.safetensors
|
||||
|
||||
```py
|
||||
# uncomment to download the safetensor weights
|
||||
#!wget https://civitai.com/api/download/models/168776 -O blueprintify.safetensors
|
||||
```
|
||||
|
||||
Load the LoRA checkpoint into the pipeline with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method:
|
||||
|
||||
```py
|
||||
# load LoRA weights
|
||||
pipeline.load_lora_weights(".", weight_name="blueprintify.safetensors")
|
||||
```
|
||||
|
||||
Now you can use the pipeline to generate images:
|
||||
|
||||
```py
|
||||
prompt = "bl3uprint, a highly detailed blueprint of the empire state building, explaining how to build all parts, many txt, blueprint grid backdrop"
|
||||
negative_prompt = "lowres, cropped, worst quality, low quality, normal quality, artifacts, signature, watermark, username, blurry, more than one bridge, bad architecture"
|
||||
|
||||
@@ -174,3 +104,378 @@ image
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/blueprint-lora.png"/>
|
||||
</div>
|
||||
|
||||
### ckpt
|
||||
|
||||
> [!WARNING]
|
||||
> Pickled files may be unsafe because they can be exploited to execute malicious code. It is recommended to use safetensors files instead where possible, or convert the weights to safetensors files.
|
||||
|
||||
PyTorch's [torch.save](https://pytorch.org/docs/stable/generated/torch.save.html) function uses Python's [pickle](https://docs.python.org/3/library/pickle.html) utility to serialize and save models. These files are saved as a ckpt file and they contain the entire model's weights.
|
||||
|
||||
Use the [`~loaders.FromSingleFileMixin.from_single_file`] method to directly load a ckpt file.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionPipeline
|
||||
|
||||
pipeline = StableDiffusionPipeline.from_single_file(
|
||||
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.ckpt"
|
||||
)
|
||||
```
|
||||
|
||||
## Storage layout
|
||||
|
||||
There are two ways model files are organized, either in a Diffusers-multifolder layout or in a single-file layout. The Diffusers-multifolder layout is the default, and each component file (text encoder, UNet, VAE) is stored in a separate subfolder. Diffusers also supports loading models from a single-file layout where all the components are bundled together.
|
||||
|
||||
### Diffusers-multifolder
|
||||
|
||||
The Diffusers-multifolder layout is the default storage layout for Diffusers. Each component's (text encoder, UNet, VAE) weights are stored in a separate subfolder. The weights can be stored as safetensors or ckpt files.
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multifolder-layout.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">multifolder layout</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multifolder-unet.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">UNet subfolder</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
To load from Diffusers-multifolder layout, use the [`~DiffusionPipeline.from_pretrained`] method.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True,
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Benefits of using the Diffusers-multifolder layout include:
|
||||
|
||||
1. Faster to load each component file individually or in parallel.
|
||||
2. Reduced memory usage because you only load the components you need. For example, models like [SDXL Turbo](https://hf.co/stabilityai/sdxl-turbo), [SDXL Lightning](https://hf.co/ByteDance/SDXL-Lightning), and [Hyper-SD](https://hf.co/ByteDance/Hyper-SD) have the same components except for the UNet. You can reuse their shared components with the [`~DiffusionPipeline.from_pipe`] method without consuming any additional memory (take a look at the [Reuse a pipeline](./loading#reuse-a-pipeline) guide) and only load the UNet. This way, you don't need to download redundant components and unnecessarily use more memory.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
||||
|
||||
# download one model
|
||||
sdxl_pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True,
|
||||
).to("cuda")
|
||||
|
||||
# switch UNet for another model
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
"stabilityai/sdxl-turbo",
|
||||
subfolder="unet",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True
|
||||
)
|
||||
# reuse all the same components in new model except for the UNet
|
||||
turbo_pipeline = StableDiffusionXLPipeline.from_pipe(
|
||||
sdxl_pipeline, unet=unet,
|
||||
).to("cuda")
|
||||
turbo_pipeline.scheduler = EulerDiscreteScheduler.from_config(
|
||||
turbo_pipeline.scheduler.config,
|
||||
timestep+spacing="trailing"
|
||||
)
|
||||
image = turbo_pipeline(
|
||||
"an astronaut riding a unicorn on mars",
|
||||
num_inference_steps=1,
|
||||
guidance_scale=0.0,
|
||||
).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
3. Reduced storage requirements because if a component, such as the SDXL [VAE](https://hf.co/madebyollin/sdxl-vae-fp16-fix), is shared across multiple models, you only need to download and store a single copy of it instead of downloading and storing it multiple times. For 10 SDXL models, this can save ~3.5GB of storage. The storage savings is even greater for newer models like PixArt Sigma, where the [text encoder](https://hf.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS/tree/main/text_encoder) alone is ~19GB!
|
||||
4. Flexibility to replace a component in the model with a newer or better version.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline, AutoencoderKL
|
||||
|
||||
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
vae=vae,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True,
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
5. More visibility and information about a model's components, which are stored in a [config.json](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/unet/config.json) file in each component subfolder.
|
||||
|
||||
### Single-file
|
||||
|
||||
The single-file layout stores all the model weights in a single file. All the model components (text encoder, UNet, VAE) weights are kept together instead of separately in subfolders. This can be a safetensors or ckpt file.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/single-file-layout.png"/>
|
||||
</div>
|
||||
|
||||
To load from a single-file layout, use the [`~loaders.FromSingleFileMixin.from_single_file`] method.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(
|
||||
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
use_safetensors=True,
|
||||
).to("cuda")
|
||||
```
|
||||
|
||||
Benefits of using a single-file layout include:
|
||||
|
||||
1. Easy compatibility with diffusion interfaces such as [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) which commonly use a single-file layout.
|
||||
2. Easier to manage (download and share) a single file.
|
||||
|
||||
## Convert layout and files
|
||||
|
||||
Diffusers provides many scripts and methods to convert storage layouts and file formats to enable broader support across the diffusion ecosystem.
|
||||
|
||||
Take a look at the [diffusers/scripts](https://github.com/huggingface/diffusers/tree/main/scripts) collection to find a script that fits your conversion needs.
|
||||
|
||||
> [!TIP]
|
||||
> Scripts that have "`to_diffusers`" appended at the end mean they convert a model to the Diffusers-multifolder layout. Each script has their own specific set of arguments for configuring the conversion, so make sure you check what arguments are available!
|
||||
|
||||
For example, to convert a Stable Diffusion XL model stored in Diffusers-multifolder layout to a single-file layout, run the [convert_diffusers_to_original_sdxl.py](https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_sdxl.py) script. Provide the path to the model to convert, and the path to save the converted model to. You can optionally specify whether you want to save the model as a safetensors file and whether to save the model in half-precision.
|
||||
|
||||
```bash
|
||||
python convert_diffusers_to_original_sdxl.py --model_path path/to/model/to/convert --checkpoint_path path/to/save/model/to --use_safetensors
|
||||
```
|
||||
|
||||
You can also save a model to Diffusers-multifolder layout with the [`~DiffusionPipeline.save_pretrained`] method. This creates a directory for you if it doesn't already exist, and it also saves the files as a safetensors file by default.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(
|
||||
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
|
||||
)
|
||||
pipeline.save_pretrained()
|
||||
```
|
||||
|
||||
Lastly, there are also Spaces, such as [SD To Diffusers](https://hf.co/spaces/diffusers/sd-to-diffusers) and [SD-XL To Diffusers](https://hf.co/spaces/diffusers/sdxl-to-diffusers), that provide a more user-friendly interface for converting models to Diffusers-multifolder layout. This is the easiest and most convenient option for converting layouts, and it'll open a PR on your model repository with the converted files. However, this option is not as reliable as running a script, and the Space may fail for more complicated models.
|
||||
|
||||
## Single-file layout usage
|
||||
|
||||
Now that you're familiar with the differences between the Diffusers-multifolder and single-file layout, this section shows you how to load models and pipeline components, customize configuration options for loading, and load local files with the [`~loaders.FromSingleFileMixin.from_single_file`] method.
|
||||
|
||||
### Load a pipeline or model
|
||||
|
||||
Pass the file path of the pipeline or model to the [`~loaders.FromSingleFileMixin.from_single_file`] method to load it.
|
||||
|
||||
<hfoptions id="pipeline-model">
|
||||
<hfoption id="pipeline">
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="model">
|
||||
|
||||
```py
|
||||
from diffusers import StableCascadeUNet
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
|
||||
model = StableCascadeUNet.from_single_file(ckpt_path)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Customize components in the pipeline by passing them directly to the [`~loaders.FromSingleFileMixin.from_single_file`] method. For example, you can use a different scheduler in a pipeline.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
scheduler = DDIMScheduler()
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, scheduler=scheduler)
|
||||
```
|
||||
|
||||
Or you could use a ControlNet model in the pipeline.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
|
||||
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
|
||||
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
|
||||
pipeline = StableDiffusionControlNetPipeline.from_single_file(ckpt_path, controlnet=controlnet)
|
||||
```
|
||||
|
||||
### Customize configuration options
|
||||
|
||||
Models have a configuration file that define their attributes like the number of inputs in a UNet. Pipelines configuration options are available in the pipeline's class. For example, if you look at the [`StableDiffusionXLInstructPix2PixPipeline`] class, there is an option to scale the image latents with the `is_cosxl_edit` parameter.
|
||||
|
||||
These configuration files can be found in the models Hub repository or another location from which the configuration file originated (for example, a GitHub repository or locally on your device).
|
||||
|
||||
<hfoptions id="config-file">
|
||||
<hfoption id="Hub configuration file">
|
||||
|
||||
> [!TIP]
|
||||
> The [`~loaders.FromSingleFileMixin.from_single_file`] method automatically maps the checkpoint to the appropriate model repository, but there are cases where it is useful to use the `config` parameter. For example, if the model components in the checkpoint are different from the original checkpoint or if a checkpoint doesn't have the necessary metadata to correctly determine the configuration to use for the pipeline.
|
||||
|
||||
The [`~loaders.FromSingleFileMixin.from_single_file`] method automatically determines the configuration to use from the configuration file in the model repository. You could also explicitly specify the configuration to use by providing the repository id to the `config` parameter.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/segmind/SSD-1B/blob/main/SSD-1B.safetensors"
|
||||
repo_id = "segmind/SSD-1B"
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, config=repo_id)
|
||||
```
|
||||
|
||||
The model loads the configuration file for the [UNet](https://huggingface.co/segmind/SSD-1B/blob/main/unet/config.json), [VAE](https://huggingface.co/segmind/SSD-1B/blob/main/vae/config.json), and [text encoder](https://huggingface.co/segmind/SSD-1B/blob/main/text_encoder/config.json) from their respective subfolders in the repository.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="original configuration file">
|
||||
|
||||
The [`~loaders.FromSingleFileMixin.from_single_file`] method can also load the original configuration file of a pipeline that is stored elsewhere. Pass a local path or URL of the original configuration file to the `original_config` parameter.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
original_config = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_path, original_config=original_config)
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Diffusers attempts to infer the pipeline components based on the type signatures of the pipeline class when you use `original_config` with `local_files_only=True`, instead of fetching the configuration files from the model repository on the Hub. This prevents backward breaking changes in code that can't connect to the internet to fetch the necessary configuration files.
|
||||
>
|
||||
> This is not as reliable as providing a path to a local model repository with the `config` parameter, and might lead to errors during pipeline configuration. To avoid errors, run the pipeline with `local_files_only=False` once to download the appropriate pipeline configuration files to the local cache.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
While the configuration files specify the pipeline or models default parameters, you can override them by providing the parameters directly to the [`~loaders.FromSingleFileMixin.from_single_file`] method. Any parameter supported by the model or pipeline class can be configured in this way.
|
||||
|
||||
<hfoptions id="override">
|
||||
<hfoption id="pipeline">
|
||||
|
||||
For example, to scale the image latents in [`StableDiffusionXLInstructPix2PixPipeline`] pass the `is_cosxl_edit` parameter.
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionXLInstructPix2PixPipeline
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/cosxl/blob/main/cosxl_edit.safetensors"
|
||||
pipeline = StableDiffusionXLInstructPix2PixPipeline.from_single_file(ckpt_path, config="diffusers/sdxl-instructpix2pix-768", is_cosxl_edit=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="model">
|
||||
|
||||
For example, to upcast the attention dimensions in a [`UNet2DConditionModel`] pass the `upcast_attention` parameter.
|
||||
|
||||
```python
|
||||
from diffusers import UNet2DConditionModel
|
||||
|
||||
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors"
|
||||
model = UNet2DConditionModel.from_single_file(ckpt_path, upcast_attention=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Local files
|
||||
|
||||
In Diffusers>=v0.28.0, the [`~loaders.FromSingleFileMixin.from_single_file`] method attempts to configure a pipeline or model by inferring the model type from the keys in the checkpoint file. The inferred model type is used to determine the appropriate model repository on the Hugging Face Hub to configure the model or pipeline.
|
||||
|
||||
For example, any single file checkpoint based on the Stable Diffusion XL base model will use the [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model repository to configure the pipeline.
|
||||
|
||||
But if you're working in an environment with restricted internet access, you should download the configuration files with the [`~huggingface_hub.snapshot_download`] function, and the model checkpoint with the [`~huggingface_hub.hf_hub_download`] function. By default, these files are downloaded to the Hugging Face Hub [cache directory](https://huggingface.co/docs/huggingface_hub/en/guides/manage-cache), but you can specify a preferred directory to download the files to with the `local_dir` parameter.
|
||||
|
||||
Pass the configuration and checkpoint paths to the [`~loaders.FromSingleFileMixin.from_single_file`] method to load locally.
|
||||
|
||||
<hfoptions id="local">
|
||||
<hfoption id="Hub cache directory">
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
)
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="specific local directory">
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
local_dir="my_local_checkpoints"
|
||||
)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
local_dir="my_local_config"
|
||||
)
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
#### Local files without symlink
|
||||
|
||||
> [!TIP]
|
||||
> In huggingface_hub>=v0.23.0, the `local_dir_use_symlinks` argument isn't necessary for the [`~huggingface_hub.hf_hub_download`] and [`~huggingface_hub.snapshot_download`] functions.
|
||||
|
||||
The [`~loaders.FromSingleFileMixin.from_single_file`] method relies on the [huggingface_hub](https://hf.co/docs/huggingface_hub/index) caching mechanism to fetch and store checkpoints and configuration files for models and pipelines. If you're working with a file system that does not support symlinking, you should download the checkpoint file to a local directory first, and disable symlinking with the `local_dir_use_symlink=False` parameter in the [`~huggingface_hub.hf_hub_download`] function and [`~huggingface_hub.snapshot_download`] functions.
|
||||
|
||||
```python
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
|
||||
my_local_checkpoint_path = hf_hub_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
filename="SSD-1B.safetensors"
|
||||
local_dir="my_local_checkpoints",
|
||||
local_dir_use_symlinks=False
|
||||
)
|
||||
print("My local checkpoint: ", my_local_checkpoint_path)
|
||||
|
||||
my_local_config_path = snapshot_download(
|
||||
repo_id="segmind/SSD-1B",
|
||||
allow_patterns=["*.json", "**/*.json", "*.txt", "**/*.txt"]
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
print("My local config: ", my_local_config_path)
|
||||
```
|
||||
|
||||
Then you can pass the local paths to the `pretrained_model_link_or_path` and `config` parameters.
|
||||
|
||||
```python
|
||||
pipeline = StableDiffusionXLPipeline.from_single_file(my_local_checkpoint_path, config=my_local_config_path, local_files_only=True)
|
||||
```
|
||||
|
||||
351
docs/source/en/using-diffusers/pag.md
Normal file
351
docs/source/en/using-diffusers/pag.md
Normal file
@@ -0,0 +1,351 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Perturbed-Attention Guidance
|
||||
|
||||
[Perturbed-Attention Guidance (PAG)](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) is a new diffusion sampling guidance that improves sample quality across both unconditional and conditional settings, achieving this without requiring further training or the integration of external modules. PAG is designed to progressively enhance the structure of synthesized samples throughout the denoising process by considering the self-attention mechanisms' ability to capture structural information. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, and guiding the denoising process away from these degraded samples.
|
||||
|
||||
This guide will show you how to use PAG for various tasks and use cases.
|
||||
|
||||
|
||||
## General tasks
|
||||
|
||||
You can apply PAG to the [`StableDiffusionXLPipeline`] for tasks such as text-to-image, image-to-image, and inpainting. To enable PAG for a specific task, load the pipeline using the [AutoPipeline](../api/pipelines/auto_pipeline) API with the `enable_pag=True` flag and the `pag_applied_layers` argument.
|
||||
|
||||
> [!TIP]
|
||||
> 🤗 Diffusers currently only supports using PAG with selected SDXL pipelines, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to add PAG support to a new pipeline!
|
||||
|
||||
<hfoptions id="tasks">
|
||||
<hfoption id="Text-to-image">
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from diffusers.utils import load_image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
enable_pag=True,
|
||||
pag_applied_layers=["mid"],
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> The `pag_applied_layers` argument allows you to specify which layers PAG is applied to. Additionally, you can use `set_pag_applied_layers` method to update these layers after the pipeline has been created. Check out the [pag_applied_layers](#pag_applied_layers) section to learn more about applying PAG to other layers.
|
||||
|
||||
If you already have a pipeline created and loaded, you can enable PAG on it using the `from_pipe` API with the `enable_pag` flag. Internally, a PAG pipeline is created based on the pipeline and task you specified. In the example below, since we used `AutoPipelineForText2Image` and passed a `StableDiffusionXLPipeline`, a `StableDiffusionXLPAGPipeline` is created accordingly. Note that this does not require additional memory, and you will have both `StableDiffusionXLPipeline` and `StableDiffusionXLPAGPipeline` loaded and ready to use. You can read more about the `from_pipe` API and how to reuse pipelines in diffuser[here](https://huggingface.co/docs/diffusers/using-diffusers/loading#reuse-a-pipeline)
|
||||
|
||||
```py
|
||||
pipeline_sdxl = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0, torch_dtype=torch.float16")
|
||||
pipeline = AutoPipelineForText2Image.from_pipe(pipeline_sdxl, enable_pag=True)
|
||||
```
|
||||
|
||||
To generate an image, you will also need to pass a `pag_scale`. When `pag_scale` increases, images gain more semantically coherent structures and exhibit fewer artifacts. However overly large guidance scale can lead to smoother textures and slight saturation in the images, similarly to CFG. `pag_scale=3.0` is used in the official demo and works well in most of the use cases, but feel free to experiment and select the appropriate value according to your needs! PAG is disabled when `pag_scale=0`.
|
||||
|
||||
```py
|
||||
prompt = "an insect robot preparing a delicious meal, anime style"
|
||||
|
||||
for pag_scale in [0.0, 3.0]:
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
images = pipeline(
|
||||
prompt=prompt,
|
||||
num_inference_steps=25,
|
||||
guidance_scale=7.0,
|
||||
generator=generator,
|
||||
pag_scale=pag_scale,
|
||||
).images
|
||||
```
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_cfg_7.0_mid.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_mid.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Image-to-image">
|
||||
|
||||
You can use PAG with image-to-image pipelines.
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForImage2Image
|
||||
from diffusers.utils import load_image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForImage2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
enable_pag=True,
|
||||
pag_applied_layers=["mid"],
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
```
|
||||
|
||||
If you already have a image-to-image pipeline and would like enable PAG on it, you can run this
|
||||
|
||||
```py
|
||||
pipeline_t2i = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
||||
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i, enable_pag=True)
|
||||
```
|
||||
|
||||
It is also very easy to directly switch from a text-to-image pipeline to PAG enabled image-to-image pipeline
|
||||
|
||||
```py
|
||||
pipeline_pag = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
||||
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i, enable_pag=True)
|
||||
```
|
||||
|
||||
If you have a PAG enabled text-to-image pipeline, you can directly switch to a image-to-image pipeline with PAG still enabled
|
||||
|
||||
```py
|
||||
pipeline_pag = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", enable_pag=True, torch_dtype=torch.float16)
|
||||
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_t2i)
|
||||
```
|
||||
|
||||
Now let's generate an image!
|
||||
|
||||
```py
|
||||
pag_scales = 4.0
|
||||
guidance_scales = 7.0
|
||||
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
|
||||
init_image = load_image(url)
|
||||
prompt = "a dog catching a frisbee in the jungle"
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
image = pipeline(
|
||||
prompt,
|
||||
image=init_image,
|
||||
strength=0.8,
|
||||
guidance_scale=guidance_scale,
|
||||
pag_scale=pag_scale,
|
||||
generator=generator).images[0]
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Inpainting">
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForInpainting
|
||||
from diffusers.utils import load_image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
enable_pag=True,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
```
|
||||
|
||||
You can enable PAG on an exisiting inpainting pipeline like this
|
||||
|
||||
```py
|
||||
pipeline_inpaint = AutoPipelineForInpaiting.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
||||
pipeline = AutoPipelineForInpaiting.from_pipe(pipeline_inpaint, enable_pag=True)
|
||||
```
|
||||
|
||||
This still works when your pipeline has a different task:
|
||||
|
||||
```py
|
||||
pipeline_t2i = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
||||
pipeline = AutoPipelineForInpaiting.from_pipe(pipeline_t2i, enable_pag=True)
|
||||
```
|
||||
|
||||
Let's generate an image!
|
||||
|
||||
```py
|
||||
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
||||
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
||||
init_image = load_image(img_url).convert("RGB")
|
||||
mask_image = load_image(mask_url).convert("RGB")
|
||||
|
||||
prompt = "A majestic tiger sitting on a bench"
|
||||
|
||||
pag_scales = 3.0
|
||||
guidance_scales = 7.5
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(1)
|
||||
images = pipeline(
|
||||
prompt=prompt,
|
||||
image=init_image,
|
||||
mask_image=mask_image,
|
||||
strength=0.8,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=generator,
|
||||
pag_scale=pag_scale,
|
||||
).images
|
||||
images[0]
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## PAG with ControlNet
|
||||
|
||||
To use PAG with ControlNet, first create a `controlnet`. Then, pass the `controlnet` and other PAG arguments to the `from_pretrained` method of the AutoPipeline for the specified task.
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image, ControlNetModel
|
||||
import torch
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained(
|
||||
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
controlnet=controlnet,
|
||||
enable_pag=True,
|
||||
pag_applied_layers="mid",
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
If you already have a controlnet pipeline and want to enable PAG, you can use the `from_pipe` API: `AutoPipelineForText2Image.from_pipe(pipeline_controlnet, enable_pag=True)`
|
||||
|
||||
</Tip>
|
||||
|
||||
You can use the pipeline in the same way you normally use ControlNet pipelines, with the added option to specify a `pag_scale` parameter. Note that PAG works well for unconditional generation. In this example, we will generate an image without a prompt.
|
||||
|
||||
```py
|
||||
from diffusers.utils import load_image
|
||||
canny_image = load_image(
|
||||
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_control_input.png"
|
||||
)
|
||||
|
||||
for pag_scale in [0.0, 3.0]:
|
||||
generator = torch.Generator(device="cpu").manual_seed(1)
|
||||
images = pipeline(
|
||||
prompt="",
|
||||
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
||||
image=canny_image,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=0,
|
||||
generator=generator,
|
||||
pag_scale=pag_scale,
|
||||
).images
|
||||
images[0]
|
||||
```
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_controlnet.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_controlnet.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## PAG with IP-Adapter
|
||||
|
||||
[IP-Adapter](https://hf.co/papers/2308.06721) is a popular model that can be plugged into diffusion models to enable image prompting without any changes to the underlying model. You can enable PAG on a pipeline with IP-Adapter loaded.
|
||||
|
||||
```py
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from diffusers.utils import load_image
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
import torch
|
||||
|
||||
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
||||
"h94/IP-Adapter",
|
||||
subfolder="models/image_encoder",
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
image_encoder=image_encoder,
|
||||
enable_pag=True,
|
||||
torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.bin")
|
||||
|
||||
pag_scales = 5.0
|
||||
ip_adapter_scales = 0.8
|
||||
|
||||
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
|
||||
|
||||
pipeline.set_ip_adapter_scale(ip_adapter_scale)
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
images = pipeline(
|
||||
prompt="a polar bear sitting in a chair drinking a milkshake",
|
||||
ip_adapter_image=image,
|
||||
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
|
||||
num_inference_steps=25,
|
||||
guidance_scale=3.0,
|
||||
generator=generator,
|
||||
pag_scale=pag_scale,
|
||||
).images
|
||||
images[0]
|
||||
|
||||
```
|
||||
|
||||
PAG reduces artifacts and improves the overall compposition.
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_0.0_ipa_0.8.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image without PAG</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_5.0_ipa_0.8.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image with PAG</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
## Configure parameters
|
||||
|
||||
### pag_applied_layers
|
||||
|
||||
The `pag_applied_layers` argument allows you to specify which layers PAG is applied to. By default, it applies only to the mid blocks. Changing this setting will significantly impact the output. You can use the `set_pag_applied_layers` method to adjust the PAG layers after the pipeline is created, helping you find the optimal layers for your model.
|
||||
|
||||
As an example, here is the images generated with `pag_layers = ["down.block_2"]` and `pag_layers = ["down.block_2", "up.block_1.attentions_0"]`
|
||||
|
||||
```py
|
||||
prompt = "an insect robot preparing a delicious meal, anime style"
|
||||
pipeline.set_pag_applied_layers(pag_layers)
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
images = pipeline(
|
||||
prompt=prompt,
|
||||
num_inference_steps=25,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=generator,
|
||||
pag_scale=pag_scale,
|
||||
).images
|
||||
images[0]
|
||||
```
|
||||
|
||||
<div class="flex flex-row gap-4">
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_down2_up1a0.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">down.block_2 + up.block1.attentions_0</figcaption>
|
||||
</div>
|
||||
<div class="flex-1">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/pag_3.0_cfg_7.0_down2.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">down.block_2</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
235
docs/source/en/using-diffusers/scheduler_features.md
Normal file
235
docs/source/en/using-diffusers/scheduler_features.md
Normal file
@@ -0,0 +1,235 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Scheduler features
|
||||
|
||||
The scheduler is an important component of any diffusion model because it controls the entire denoising (or sampling) process. There are many types of schedulers, some are optimized for speed and some for quality. With Diffusers, you can modify the scheduler configuration to use custom noise schedules, sigmas, and rescale the noise schedule. Changing these parameters can have profound effects on inference quality and speed.
|
||||
|
||||
This guide will demonstrate how to use these features to improve inference quality.
|
||||
|
||||
> [!TIP]
|
||||
> Diffusers currently only supports the `timesteps` and `sigmas` parameters for a select list of schedulers and pipelines. Feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you want to extend these parameters to a scheduler and pipeline that does not currently support it!
|
||||
|
||||
## Timestep schedules
|
||||
|
||||
The timestep or noise schedule determines the amount of noise at each sampling step. The scheduler uses this to generate an image with the corresponding amount of noise at each step. The timestep schedule is generated from the scheduler's default configuration, but you can customize the scheduler to use new and optimized sampling schedules that aren't in Diffusers yet.
|
||||
|
||||
For example, [Align Your Steps (AYS)](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) is a method for optimizing a sampling schedule to generate a high-quality image in as little as 10 steps. The optimal [10-step schedule](https://github.com/huggingface/diffusers/blob/a7bf77fc284810483f1e60afe34d1d27ad91ce2e/src/diffusers/schedulers/scheduling_utils.py#L51) for Stable Diffusion XL is:
|
||||
|
||||
```py
|
||||
from diffusers.schedulers import AysSchedules
|
||||
|
||||
sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
|
||||
print(sampling_schedule)
|
||||
"[999, 845, 730, 587, 443, 310, 193, 116, 53, 13]"
|
||||
```
|
||||
|
||||
You can use the AYS sampling schedule in a pipeline by passing it to the `timesteps` parameter.
|
||||
|
||||
```py
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"SG161222/RealVisXL_V4.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")
|
||||
|
||||
prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
|
||||
generator = torch.Generator(device="cpu").manual_seed(2487854446)
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
negative_prompt="",
|
||||
generator=generator,
|
||||
timesteps=sampling_schedule,
|
||||
).images[0]
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ays.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">AYS timestep schedule 10 steps</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/10.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 10 steps</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/25.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">Linearly-spaced timestep schedule 25 steps</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Timestep spacing
|
||||
|
||||
The way sample steps are selected in the schedule can affect the quality of the generated image, especially with respect to [rescaling the noise schedule](#rescale-noise-schedule), which can enable a model to generate much brighter or darker images. Diffusers provides three timestep spacing methods:
|
||||
|
||||
- `leading` creates evenly spaced steps
|
||||
- `linspace` includes the first and last steps and evenly selects the remaining intermediate steps
|
||||
- `trailing` only includes the last step and evenly selects the remaining intermediate steps starting from the end
|
||||
|
||||
It is recommended to use the `trailing` spacing method because it generates higher quality images with more details when there are fewer sample steps. But the difference in quality is not as obvious for more standard sample step values.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"SG161222/RealVisXL_V4.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
|
||||
|
||||
prompt = "A cinematic shot of a cute little black cat sitting on a pumpkin at night"
|
||||
generator = torch.Generator(device="cpu").manual_seed(2487854446)
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
negative_prompt="",
|
||||
generator=generator,
|
||||
num_inference_steps=5,
|
||||
).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/trailing_spacing.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">trailing spacing after 5 steps</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/leading_spacing.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">leading spacing after 5 steps</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Sigmas
|
||||
|
||||
The `sigmas` parameter is the amount of noise added at each timestep according to the timestep schedule. Like the `timesteps` parameter, you can customize the `sigmas` parameter to control how much noise is added at each step. When you use a custom `sigmas` value, the `timesteps` are calculated from the custom `sigmas` value and the default scheduler configuration is ignored.
|
||||
|
||||
For example, you can manually pass the [sigmas](https://github.com/huggingface/diffusers/blob/6529ee67ec02fcf58d2fd9242164ea002b351d75/src/diffusers/schedulers/scheduling_utils.py#L55) for something like the 10-step AYS schedule from before to the pipeline.
|
||||
|
||||
```py
|
||||
import torch
|
||||
|
||||
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0]
|
||||
prompt = "anthropomorphic capybara wearing a suit and working with a computer"
|
||||
generator = torch.Generator(device='cuda').manual_seed(123)
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
num_inference_steps=10,
|
||||
sigmas=sigmas,
|
||||
generator=generator
|
||||
).images[0]
|
||||
```
|
||||
|
||||
When you take a look at the scheduler's `timesteps` parameter, you'll see that it is the same as the AYS timestep schedule because the `timestep` schedule is calculated from the `sigmas`.
|
||||
|
||||
```py
|
||||
print(f" timesteps: {pipe.scheduler.timesteps}")
|
||||
"timesteps: tensor([999., 845., 730., 587., 443., 310., 193., 116., 53., 13.], device='cuda:0')"
|
||||
```
|
||||
|
||||
### Karras sigmas
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the scheduler API [overview](../api/schedulers/overview) for a list of schedulers that support Karras sigmas.
|
||||
>
|
||||
> Karras sigmas should not be used for models that weren't trained with them. For example, the base Stable Diffusion XL model shouldn't use Karras sigmas but the [DreamShaperXL](https://hf.co/Lykon/dreamshaper-xl-1-0) model can since they are trained with Karras sigmas.
|
||||
|
||||
Karras scheduler's use the timestep schedule and sigmas from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://hf.co/papers/2206.00364) paper. This scheduler variant applies a smaller amount of noise per step as it approaches the end of the sampling process compared to other schedulers, and can increase the level of details in the generated image.
|
||||
|
||||
Enable Karras sigmas by setting `use_karras_sigmas=True` in the scheduler.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
|
||||
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"SG161222/RealVisXL_V4.0",
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
).to("cuda")
|
||||
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)
|
||||
|
||||
prompt = "A cinematic shot of a cute little rabbit wearing a jacket and doing a thumbs up"
|
||||
generator = torch.Generator(device="cpu").manual_seed(2487854446)
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
negative_prompt="",
|
||||
generator=generator,
|
||||
).images[0]
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_true.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas enabled</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/stevhliu/testing-images/resolve/main/karras_sigmas_false.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">Karras sigmas disabled</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Rescale noise schedule
|
||||
|
||||
In the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper, the authors discovered that common noise schedules allowed some signal to leak into the last timestep. This signal leakage at inference can cause models to only generate images with medium brightness. By enforcing a zero signal-to-noise ratio (SNR) for the timstep schedule and sampling from the last timestep, the model can be improved to generate very bright or dark images.
|
||||
|
||||
> [!TIP]
|
||||
> For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts.
|
||||
>
|
||||
> ```bash
|
||||
> --prediction_type="v_prediction"
|
||||
> ```
|
||||
|
||||
For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Configure the following parameters in the [`DDIMScheduler`]:
|
||||
|
||||
* `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR
|
||||
* `timestep_spacing="trailing"` to start sampling from the last timestep
|
||||
|
||||
Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out.
|
||||
|
||||
```py
|
||||
from diffusers import DiffusionPipeline, DDIMScheduler
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
|
||||
|
||||
pipeline.scheduler = DDIMScheduler.from_config(
|
||||
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
|
||||
)
|
||||
pipeline.to("cuda")
|
||||
prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed"
|
||||
generator = torch.Generator(device="cpu").manual_seed(23)
|
||||
image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/no-zero-snr.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">default Stable Diffusion v2-1 image</figcaption>
|
||||
</div>
|
||||
<div>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero-snr.png"/>
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">image with zero SNR and trailing timestep spacing enabled</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user