Compare commits

...

402 Commits

Author SHA1 Message Date
Marc Sun
1cd5155bb8 remove print 2024-12-04 13:04:48 +00:00
Marc Sun
b14bffeffe first draft 2024-12-04 13:03:35 +00:00
Marc Sun
e66c4d0dab Update src/diffusers/pipelines/pipeline_utils.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-04 13:57:21 +01:00
Marc Sun
7d2c7d5553 Update src/diffusers/pipelines/pipeline_utils.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-04 13:56:21 +01:00
Sayak Paul
78135f1478 Merge branch 'main' into dduf 2024-12-04 17:34:58 +05:30
fancy45daddy
9ff72433fa add torch_xla support in pipeline_stable_audio.py (#10109)
Update pipeline_stable_audio.py
2024-12-04 11:24:22 +00:00
Sayak Paul
c1926cef6b [tests] refactor vae tests (#9808)
* add: autoencoderkl tests

* autoencodertiny.

* fix

* asymmetric autoencoder.

* more

* integration tests for stable audio decoder.

* consistency decoder vae tests

* remove grad check from consistency decoder.

* cog

* bye test_models_vae.py

* fix

* fix

* remove allegro

* fixes

* fixes

* fixes

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-04 15:58:36 +05:30
Ivan Skorokhodov
8421c1461b Use parameters + buffers when deciding upscale_dtype (#9882)
Sometimes, the decoder might lack parameters and only buffers (e.g., this happens when we manually need to convert all the parameters to buffers — e.g. to avoid packing fp16 and fp32 parameters with FSDP)
2024-12-03 21:20:11 -10:00
hlky
cfdeebd4a8 Test skip_guidance_layers in SD3 pipeline (#10102)
* Test `skip_guidance_layers` in pipelines

* Move to test_pipeline_stable_diffusion_3
2024-12-03 14:28:31 -10:00
hlky
6a51427b6a Fix multi-prompt inference (#10103)
* Fix multi-prompt inference

Fix generation of multiple images with multiple prompts, e.g len(prompts)>1, num_images_per_prompt>1

* make

* fix copies

---------

Co-authored-by: Nikita Balabin <nikita@mxl.ru>
2024-12-03 13:58:31 -10:00
Anand Kumar
5effcd3e64 [Bug fix] "previous_timestep()" in DDPM scheduling compatible with "trailing" and "linspace" options (#9384)
* Update scheduling_ddpm.py

* fix copies

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 13:57:52 -10:00
lsb
619b9658e2 Avoid compiling a progress bar. (#10098)
* Avoid creating a progress bar when it is disabled.

This is useful when exporting a pipeline, and allows a compiler to avoid trying to compile away tqdm.

* Prevent the PyTorch compiler from compiling progress bars.

* Update pipeline_utils.py
2024-12-03 11:54:32 -10:00
aihao
b58f67f2d5 update (#7067)
* add data_dir parameter to load_dataset

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 11:26:47 -10:00
StAlKeR7779
8ac6de963c DPM++ third order fixes (#9104)
* Fix wrong output on 3n-1 steps count

* Add sde handling to 3 order

* make

* copies

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 11:21:37 -10:00
Parag Ekbote
2be66e6aa0 Fix Broken Link in Optimization Docs (#10105)
Update broken link.
2024-12-03 10:23:35 -08:00
Parag Ekbote
cf258948b2 Notebooks for Community Scripts-4 (#10094)
* Add Diffuser Notebooks for Community Scripts.

* Add missing link.

* Styling Improvement.
2024-12-03 10:23:00 -08:00
sayakpaul
d8408677c5 updates 2024-12-03 14:06:47 +00:00
Benjamin Paine
63b631f383 Add StableDiffusion3PAGImg2Img Pipeline + Fix SD3 Unconditional PAG (#9932)
* fix progress bar updates in SD 1.5 PAG Img2Img pipeline



---------

Co-authored-by: Vinh H. Pham <phamvinh257@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 21:39:47 -10:00
Pedro Cuenca
acf79b3487 Don't stale close-to-merge (#10096)
Re: https://github.com/huggingface/diffusers/discussions/10046#discussioncomment-11443466
2024-12-03 13:00:01 +05:30
DTG
fc72e0f261 Fix some documentation in ./src/diffusers/models/embeddings.py for demo (#9579)
* Fix some documentation in ./src/diffusers/models/embeddings.py as demonstration.


---------

Co-authored-by: DaAccursed05 <68813178+DaAccursed05@users.noreply.github.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-02 17:42:52 -10:00
Lucain
0763a7edf4 Let server decide default repo visibility (#10047) 2024-12-02 17:15:46 -10:00
Emmanuel Benazera
963ffca434 fix: missing AutoencoderKL lora adapter (#9807)
* fix: missing AutoencoderKL lora adapter

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 17:10:20 -10:00
hlky
30f2e9bd20 Convert sigmas to np.array in FlowMatch set_timesteps (#10088) 2024-12-02 14:18:40 -10:00
Pedro Cuenca
2312b27f79 Interpolate fix on cuda for large output tensors (#10067)
* Workaround for upscale with large output tensors.

Fixes #10040.

* Fix scale when output_size is given

* Style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 13:33:56 -10:00
Dhruv Nair
6db33337a4 [Single File] Pass token when fetching interpreted config (#10082)
update
2024-12-02 11:55:36 -10:00
hlky
beb856685d Fix num_images_per_prompt>1 with Skip Guidance Layers in StableDiffusion3Pipeline (#10086) 2024-12-02 21:43:03 +00:00
Dhruv Nair
a9d3f6c359 [Single File] Fix SD3.5 single file loading (#10077)
update
2024-12-02 11:16:16 -10:00
YiYi Xu
cd344393e2 fix offloading for sd3.5 controlnets (#10072)
* add
2024-12-02 10:11:25 -10:00
ChG
c44fba8899 fix link in the docs (#10058)
* fix link in the docs

* fix same issue for ko
2024-12-02 11:45:12 -08:00
Parag Ekbote
922c5f5c3c Fixed Nits in Evaluation Docs (#10063)
Minor fixes and script improvement in evaluation
docs.
2024-12-02 10:50:00 -08:00
hlky
8d386f7990 Add sigmas to Flux pipelines (#10081) 2024-12-02 08:16:47 -10:00
Sayak Paul
827b6c25f9 [CI] Add quantization (#9832)
* add quantization to nightly CI.

* prep.

* fix lib name.

* remove deps that are not needed.

* fix slice.
2024-12-02 14:53:43 +05:30
SahilCarterr
784b351f32 [Fix] Syntax error (#10068)
fix syntax error
2024-12-02 11:28:00 +05:30
Sayak Paul
cbee7cbc6b Merge branch 'main' into dduf 2024-11-30 08:56:15 +05:30
Sayak Paul
c96bfa5c80 [Mochi-1] ensuring to compute the fourier features in FP32 in Mochi encoder (#10031)
compute fourier features in FP32.
2024-11-29 14:15:00 +05:30
Fanli Lin
6b288ec44d make pipelines tests device-agnostic (part2) (#9400)
* enable on xpu

* add 1 more

* add one more

* enable more

* add 1 more

* add more

* enable 1

* enable more cases

* enable

* enable

* update comment

* one more

* enable 1

* add more cases

* enable xpu

* add one more caswe

* add more cases

* add 1

* add more

* add more cases

* add case

* enable

* add more

* add more

* add more

* enbale more

* add more

* update code

* update test marker

* add skip back

* update comment

* remove single files

* remove

* style

* add

* revert

* reformat

* enable

* enable esingle g

* add 2 more

* update decorator

* update

* update

* update

* Update tests/pipelines/deepfloyd_if/test_if.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update float16

* no unitest.skipt

* update

* apply style check

* adapt style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-29 11:33:41 +05:30
Álvaro Somoza
fdec8bd675 Change image_gen_aux repository URL (#10048)
change image_gen_aux repo url
2024-11-28 12:57:55 -05:00
Marc Sun
2eeda25321 switch to zip uncompressed 2024-11-28 16:06:04 +01:00
Dimitri Barbot
069186fac5 Add sdxl controlnet reference community pipeline (#9893)
* Add reference_attn & reference_adain support for sdxl with other controlnet

* Update README.md

* Update README.md by replacing human example with a cat one

Replace human example with a cat one

* Replace default human example with a cat one

* Use example images from huggingface documentation-images repository

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 17:12:07 +05:30
cjkangme
69c83d6eed [Community Pipeline] Add some feature for regional prompting pipeline (#9874)
* [Fix] fix bugs of  regional_prompting pipeline

* [Feat] add base prompt feature

* [Fix] fix __init__ pipeline error

* [Fix] delete unused args

* [Fix] improve string handling

* [Docs] docs to use_base in regional_prompting

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 16:54:23 +05:30
Dimitri Barbot
e44fc75acb Update sdxl reference pipeline to latest sdxl pipeline (#9938)
* Update sdxl reference community pipeline

* Update README.md

Add example images.

* Style & quality

* Use example images from huggingface documentation-images repository

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 16:34:56 +05:30
hlky
e47cc1fc1a Add beta, exponential and karras sigmas to FlowMatchEulerDiscreteScheduler (#10001)
Add beta, exponential and karras sigmas to FlowMatchEuler
2024-11-27 14:24:35 -10:00
YiYi Xu
75bd1e83cb Sd35 controlnet (#10020)
* add model/pipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-27 10:44:48 -10:00
Marc Sun
0389333113 style 2024-11-27 18:01:43 +01:00
Marc Sun
1fb86e34c0 load and save dduf archive 2024-11-27 18:01:36 +01:00
Parag Ekbote
8d477daed5 Notebooks for Community Scripts-3 (#10032)
* Add Notebooks for Community Scripts
in  ReadME.

* Minor Script Improvement.
2024-11-26 23:05:45 -10:00
Aryan
ad5ecd1251 [docs] Fix CogVideoX table (#10008)
* fix

* fix
2024-11-26 09:14:14 -08:00
SkyCol
074e12358b Add prompt about wandb in examples/dreambooth/readme. (#10014)
Add files via upload
2024-11-25 18:42:06 +05:30
Sayak Paul
047bf49291 [Docs] add: missing pipelines from the spec. (#10005)
add: missing pipelines from the spec.
2024-11-25 00:27:59 -10:00
Linoy Tsaban
c4b5d2ff6b [SD3 dreambooth lora] smol fix to checkpoint saving (#9993)
* smol change to fix checkpoint saving & resuming (as done in train_dreambooth_sd3.py)

* style

* modify comment to explain reasoning behind hidden size check
2024-11-24 18:51:06 +02:00
Aryan
7ac6e286ee Flux Fill, Canny, Depth, Redux (#9985)
* update

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-23 01:41:25 -10:00
hlky
b5fd6f13f5 ControlNet from_single_file when already converted (#9978)
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-22 17:52:52 +05:30
Fanli Lin
64b3e0f539 make pipelines tests device-agnostic (part1) (#9399)
* enable on xpu

* add 1 more

* add one more

* enable more

* add 1 more

* add more

* enable 1

* enable more cases

* enable

* enable

* update comment

* one more

* enable 1

* add more cases

* enable xpu

* add one more caswe

* add more cases

* add 1

* add more

* add more cases

* add case

* enable

* add more

* add more

* add more

* enbale more

* add more

* update code

* update test marker

* add skip back

* update comment

* remove single files

* remove

* style

* add

* revert

* reformat

* update decorator

* update

* update

* update

* Update tests/pipelines/deepfloyd_if/test_if.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update float16

* no unitest.skipt

* update

* apply style check

* reapply format

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-22 15:32:54 +05:30
Sayak Paul
2e86a3f023 [Tests] skip nan lora tests on PyTorch 2.5.1 CPU. (#9975)
* skip nan lora tests on PyTorch 2.5.1 CPU.

* cog

* use xfail

* correct xfail

* add condition

* tests
2024-11-22 12:45:21 +05:30
Aryan
cd6ca9df29 Fix prepare latent image ids and vae sample generators for flux (#9981)
* fix

* update expected slice
2024-11-21 13:02:31 +05:30
YiYi Xu
e564abe292 fix controlnet module refactor (#9968)
* fix
2024-11-20 13:11:39 -10:00
raulmosa
3139d39fa7 Update handle single blocks on _convert_xlabs_flux_lora_to_diffusers (#9915)
* Update handle single blocks on _convert_xlabs_flux_lora_to_diffusers to fix bug on updating keys and old_state_dict


---------

Co-authored-by: raul_ar <raul.moreno.salinas@autoretouch.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 12:53:20 -10:00
linjiapro
12358622e5 Improve control net block index for sd3 (#9758)
* improve control net index

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-11-20 12:45:18 -10:00
Sayak Paul
805aa93789 [LoRA] enable LoRA for Mochi-1 (#9943)
* feat: add lora support to Mochi-1.
2024-11-20 12:07:04 -10:00
Dhruv Nair
f6f7afa1d7 Flux latents fix (#9929)
* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 17:30:17 +05:30
hlky
637e2302ac Fix beta and exponential sigmas + add tests (#9954)
* Fix beta and exponential sigmas + add tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 01:20:34 -10:00
Bagheera
99c0483b67 add skip_layers argument to SD3 transformer model class (#9880)
* add skip_layers argument to SD3 transformer model class

* add unit test for skip_layers in stable diffusion 3

* sd3: pipeline should support skip layer guidance

* up

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-19 15:22:54 -05:00
Parag Ekbote
cc7d88f247 Move IP Adapter Scripts to research project (#9960)
* Move files to research-projects.

* docs: add IP Adapter training instructions

* Delete venv

* Update examples/ip_adapter/tutorial_train_sdxl.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Cherry-picked commits and re-moved files
to research_projects.

* make style.

* Update toctree and delete ip_adapter.

* Nit Fix

* Fix nit.

* Fix nit.

* Create training script for single GPU and set
model format to .safetensors

* Add sample inference script and restore _toctree

* Restore toctree.yaml

* fix spacing.

* Update toctree.yaml

---------

Co-authored-by: AMohamedAakhil <a.aakhilmohamed@gmail.com>
Co-authored-by: BootesVoid <78485654+AMohamedAakhil@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-19 10:37:22 -08:00
Dhruv Nair
ea40933f36 [CI] Unpin torch<2.5 in CI (#9961)
* update

* update
2024-11-19 18:50:46 +05:30
Aryan
0583a8d12a Make CogVideoX RoPE implementation consistent (#9963)
* update cogvideox rope implementation

* apply suggestions from review
2024-11-19 17:40:38 +05:30
Sayak Paul
7d0b9c4d4e [LoRA] feat: save_lora_adapter() (#9862)
* feat: save_lora_adapter.
2024-11-18 21:03:38 -10:00
Linoy Tsaban
acf479bded [advanced flux training] bug fix + reduce memory cost as in #9829 (#9838)
* memory improvement as done here: https://github.com/huggingface/diffusers/pull/9829

* fix bug

* fix bug

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-19 08:43:36 +05:30
Parag Ekbote
03bf77c4af Notebooks for Community Scripts-2 (#9952)
4 Notebooks for Community Scripts and minor
script improvements.
2024-11-18 12:58:57 -08:00
Yuxuan.Zhang
3b2830618d CogVideoX 1.5 (#9877)
* CogVideoX1_1PatchEmbed test

* 1360 * 768

* refactor

* make style

* update docs

* add modeling tests for cogvideox 1.5

* update

* make fix-copies

* add ofs embed(for convert)

* add ofs embed(for convert)

* more resolution for cogvideox1.5-5b-i2v

* use even number of latent frames only

* update pipeline implementations

* make style

* set patch_size_t as None by default

* #skip frames 0

* refactor

* make style

* update docs

* fix ofs_embed

* update docs

* invert_scale_latents

* update

* fix

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/cogvideox_transformer_3d.py

* update conversion script

* remove copied from

* fix test

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-11-19 00:56:34 +05:30
Grant Sherrick
c3c94fe71b Add server example (#9918)
* Add server example.

* Minor updates to README.

* Add fixes after local testing.

* Apply suggestions from code review

Updates to README from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* More doc updates.

* Maybe this will work to build the docs correctly?

* Fix style issues.

* Fix toc.

* Minor reformatting.

* Move docs to proper loc.

* Fix missing tick.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Sync docs changes back to README.

* Very minor update to docs to add space.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-11-18 09:26:13 -08:00
Parag Ekbote
365a938884 Fixed Nits in Docs and Example Script (#9940)
Fixed nits in docs and example script.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-18 09:03:22 -08:00
ちくわぶ
345907f32d Add all AttnProcessor classes in AttentionProcessor type (#9909)
Add all AttnProcessor in `AttentionProcessor` type
2024-11-18 16:18:12 +09:00
_
07d0fbf3ec Correct pipeline_output.py to the type Mochi (#9945)
Correct pipeline_output.py
2024-11-18 08:40:06 +09:00
Heavenn
1d2204d3a0 Modify apply_overlay for inpainting with padding_mask_crop (Inpainting area: "Only Masked") (#8793)
* Modify apply_overlay for inpainting

* style

---------

Co-authored-by: root <root@debian>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-17 12:14:13 +09:00
高佳宝
d38c50c8dd Update ip_adapter.py (#8882)
update comments of load_ip_adapter function
2024-11-17 06:54:13 +09:00
Parag Ekbote
e255920719 Move Wuerstchen Dreambooth to research_projects (#9935)
update file paths to research_projects folder.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-16 18:56:16 +05:30
Pakkapon Phongthawee
40ab1c03f3 add depth controlnet sd3 pre-trained checkpoints to docs (#9937) 2024-11-16 18:36:01 +05:30
Sam
5c94937dc7 Update pipeline_flux_img2img.py (#9928)
* Update pipeline_flux_img2img.py

Added FromSingleFileMixin to this pipeline loader like the other FLUX pipelines.

* Update pipeline_flux_img2img.py

typo

* modified:   src/diffusers/pipelines/flux/pipeline_flux_img2img.py
2024-11-14 17:58:14 -03:00
Benjamin Paine
d74483c47a Fix Progress Bar Updates in SD 1.5 PAG Img2Img pipeline (#9925)
fix progress bar updates in SD 1.5 PAG Img2Img pipeline
2024-11-14 16:40:20 -03:00
Parag Ekbote
1dbd26fa23 Notebooks for Community Scripts Examples (#9905)
* Add Notebooks on Community Scripts
2024-11-12 14:08:48 -10:00
Eliseu Silva
dac623b59f Feature IP Adapter Xformers Attention Processor (#9881)
* Feature IP Adapter Xformers Attention Processor: this fix error loading incorrect attention processor when setting Xformers attn after load ip adapter scale, issues: #8863 #8872
2024-11-08 15:40:51 -10:00
Sayak Paul
8d6dc2be5d Revert "[Flux] reduce explicit device transfers and typecasting in flux." (#9896)
Revert "[Flux] reduce explicit device transfers and typecasting in flux. (#9817)"

This reverts commit 5588725e8e.
2024-11-08 13:35:38 -10:00
Sayak Paul
d720b2132e [Advanced LoRA v1.5] fix: gradient unscaling problem (#7018)
fix: gradient unscaling problem

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-11-08 19:31:43 -04:00
SahilCarterr
9cc96a64f1 [FIX] Fix TypeError in DreamBooth SDXL when use_dora is False (#9879)
* fix use_dora

* fix style and quality

* fix use_dora with peft version

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-08 19:09:24 -04:00
Michael Tkachuk
5b972fbd6a Enabling gradient checkpointing in eval() mode (#9878)
* refactored
2024-11-08 09:03:26 -10:00
SahilCarterr
0be52c07d6 [fix] Replaced shutil.copy with shutil.copyfile (#9885)
fix shutil.copy
2024-11-08 08:32:32 -10:00
Dhruv Nair
1b392544c7 Improve downloads of sharded variants (#9869)
* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-08 17:49:00 +05:30
Sayak Paul
5588725e8e [Flux] reduce explicit device transfers and typecasting in flux. (#9817)
reduce explicit device transfers and typecasting in flux.
2024-11-06 22:33:39 -04:00
Sayak Paul
ded3db164b [Core] introduce controlnet module (#8768)
* move vae flax module.

* controlnet module.

* prepare for PR.

* revert a commit

* gracefully deprecate controlnet deps.

* fix

* fix doc path

* fix-copies

* fix path

* style

* style

* conflicts

* fix

* fix-copies

* sparsectrl.

* updates

* fix

* updates

* updates

* updates

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-06 22:08:55 -04:00
SahilCarterr
76b7d86a9a Updated _encode_prompt_with_clip and encode_prompt in train_dreamboth_sd3 (#9800)
* updated encode prompt and clip encod prompt


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-05 15:08:50 -10:00
Sookwan Han
e2b3c248d8 Add new community pipeline for 'Adaptive Mask Inpainting', introduced in [ECCV2024] ComA (#9228)
* Add new community pipeline for 'Adaptive Mask Inpainting', introduced in [ECCV2024] Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models
2024-11-05 15:05:58 -10:00
Vahid Askari
a03bf4a531 Fix: Remove duplicated comma in distributed_inference.md (#9868)
Fix: Remove duplicated comma

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-05 23:37:11 +01:00
SahilCarterr
08ac5cbc7f [Fix] Test of sd3 lora (#9843)
* fix test

* fix test asser

* fix format

* Update test_lora_layers_sd3.py
2024-11-05 11:05:20 -10:00
Aryan
3f329a426a [core] Mochi T2V (#9769)
* update

* udpate

* update transformer

* make style

* fix

* add conversion script

* update

* fix

* update

* fix

* update

* fixes

* make style

* update

* update

* update

* init

* update

* update

* add

* up

* up

* up

* update

* mochi transformer

* remove original implementation

* make style

* update inits

* update conversion script

* docs

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix docs

* pipeline fixes

* make style

* invert sigmas in scheduler; fix pipeline

* fix pipeline num_frames

* flip proj and gate in swiglu

* make style

* fix

* make style

* fix tests

* latent mean and std fix

* update

* cherry-pick 1069d210e1

* remove additional sigma already handled by flow match scheduler

* fix

* remove hardcoded value

* replace conv1x1 with linear

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* framewise decoding and conv_cache

* make style

* Apply suggestions from code review

* mochi vae encoder changes

* rebase correctly

* Update scripts/convert_mochi_to_diffusers.py

* fix tests

* fixes

* make style

* update

* make style

* update

* add framewise and tiled encoding

* make style

* make original vae implementation behaviour the default; note: framewise encoding does not work

* remove framewise encoding implementation due to presence of attn layers

* fight test 1

* fight test 2

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-05 20:33:41 +05:30
RogerSinghChugh
a3cc641f78 Refac training utils.py (#9815)
* Refac training utils.py

* quality

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2024-11-04 09:40:44 -08:00
Sayak Paul
13e8fdecda [feat] add load_lora_adapter() for compatible models (#9712)
* add first draft.

* fix

* updates.

* updates.

* updates

* updates

* updates.

* fix-copies

* lora constants.

* add tests

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* docstrings.

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-11-02 09:50:39 +05:30
Dorsa Rohani
c10f875ff0 Add Diffusion Policy for Reinforcement Learning (#9824)
* enable cpu ability

* model creation + comprehensive testing

* training + tests

* all tests working

* remove unneeded files + clarify docs

* update train tests

* update readme.md

* remove data from gitignore

* undo cpu enabled option

* Update README.md

* update readme

* code quality fixes

* diffusion policy example

* update readme

* add pretrained model weights + doc

* add comment

* add documentation

* add docstrings

* update comments

* update readme

* fix code quality

* Update examples/reinforcement_learning/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/reinforcement_learning/diffusion_policy.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* suggestions + safe globals for weights_only=True

* suggestions + safe weights loading

* fix code quality

* reformat file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-02 09:18:44 +05:30
Leo Jiang
a98a839de7 Reduce Memory Cost in Flux Training (#9829)
* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* Reduce memory cost for flux training process

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 12:19:32 +05:30
Boseong Jeon
3deed729e6 Handling mixed precision for dreambooth flux lora training (#9565)
Handling mixed precision and add unwarp

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-11-01 10:16:05 +05:30
ScilenceForest
7ffbc2525f Update train_controlnet_flux.py,Fix size mismatch issue in validation (#9679)
Update train_controlnet_flux.py

Fix the problem of inconsistency between size of image and size of validation_image which causes np.stack to report error.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 10:15:10 +05:30
SahilCarterr
f55f1f7ee5 Fixes EMAModel "from_pretrained" method (#9779)
* fix from_pretrained and added test

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 09:20:19 +05:30
Leo Jiang
9dcac83057 NPU Adaption for FLUX (#9751)
* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
2024-11-01 09:03:15 +05:30
Abhipsha Das
c75431843f [Model Card] standardize advanced diffusion training sd15 lora (#7613)
* modelcard generation edit

* add missed tag

* fix param name

* fix var

* change str to dict

* add use_dora check

* use correct tags for lora

* make style && make quality

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-11-01 03:23:00 +05:30
YiYi Xu
d2e5cb3c10 Revert "[LoRA] fix: lora loading when using with a device_mapped mode… (#9823)
Revert "[LoRA] fix: lora loading when using with a device_mapped model. (#9449)"

This reverts commit 41e4779d98.
2024-10-31 08:19:32 -10:00
Sayak Paul
41e4779d98 [LoRA] fix: lora loading when using with a device_mapped model. (#9449)
* fix: lora loading when using with a device_mapped model.

* better attibutung

* empty

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* minors

* better error messages.

* fix-copies

* add: tests, docs.

* add hardware note.

* quality

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixes

* skip properly.

* fixes

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-31 21:17:41 +05:30
Sayak Paul
ff182ad669 [CI] add a big GPU marker to run memory-intensive tests separately on CI (#9691)
* add a marker for big gpu tests

* update

* trigger on PRs temporarily.

* onnx

* fix

* total memory

* fixes

* reduce memory threshold.

* bigger gpu

* empty

* g6e

* Apply suggestions from code review

* address comments.

* fix

* fix

* fix

* fix

* fix

* okay

* further reduce.

* updates

* remove

* updates

* updates

* updates

* updates

* fixes

* fixes

* updates.

* fix

* workflow fixes.

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-31 18:44:34 +05:30
Sayak Paul
4adf6affbb [Tests] clean up and refactor gradient checkpointing tests (#9494)
* check.

* fixes

* fixes

* updates

* fixes

* fixes
2024-10-31 18:24:19 +05:30
Sayak Paul
8ce37ab055 [training] use the lr when using 8bit adam. (#9796)
* use the lr when using 8bit adam.

* remove lr as we pack it in params_to_optimize.

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-10-31 15:51:42 +05:30
Sayak Paul
09b8aebd67 [training] fixes to the quantization training script and add AdEMAMix optimizer as an option (#9806)
* fixes

* more fixes.
2024-10-31 15:46:00 +05:30
Sayak Paul
c1d4a0dded [CI] add new runner for testing (#9699)
new runner.
2024-10-31 14:58:05 +05:30
Aryan
9a92b8177c Allegro VAE fix (#9811)
fix
2024-10-30 18:04:15 +05:30
Aryan
0d1d267b12 [core] Allegro T2V (#9736)
* update

* refactor transformer part 1

* refactor part 2

* refactor part 3

* make style

* refactor part 4; modeling tests

* make style

* refactor part 5

* refactor part 6

* gradient checkpointing

* pipeline tests (broken atm)

* update

* add coauthor

Co-Authored-By: Huan Yang <hyang@fastmail.com>

* refactor part 7

* add docs

* make style

* add coauthor

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* make fix-copies

* undo unrelated change

* revert changes to embeddings, normalization, transformer

* refactor part 8

* make style

* refactor part 9

* make style

* fix

* apply suggestions from review

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update example

* remove attention mask for self-attention

* update

* copied from

* update

* update

---------

Co-authored-by: Huan Yang <hyang@fastmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-29 13:14:36 +05:30
Raul Ciotescu
c5376c5695 adds the pipeline for pixart alpha controlnet (#8857)
* add the controlnet pipeline for pixart alpha

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: junsongc <cjs1020440147@icloud.com>
2024-10-28 08:48:04 -10:00
Linoy Tsaban
743a5697f2 [flux dreambooth lora training] make LoRA target modules configurable + small bug fix (#9646)
* make lora target modules configurable and change the default

* style

* make lora target modules configurable and change the default

* fix bug when using prodigy and training te

* fix mixed precision training as  proposed in https://github.com/huggingface/diffusers/pull/9565 for full dreambooth as well

* add test and notes

* style

* address sayaks comments

* style

* fix test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-28 17:27:41 +02:00
Linoy Tsaban
db5b6a9630 [SD 3.5 Dreambooth LoRA] support configurable training block & layers (#9762)
* configurable layers

* configurable layers

* update README

* style

* add test

* style

* add layer test, update readme, add nargs

* readme

* test style

* remove print, change nargs

* test arg change

* style

* revert nargs 2/2

* address sayaks comments

* style

* address sayaks comments
2024-10-28 16:07:54 +02:00
Biswaroop
493aa74312 [Fix] remove setting lr for T5 text encoder when using prodigy in flux dreambooth lora script (#9473)
* fix: removed setting of text encoder lr for T5 as it's not being tuned

* fix: removed setting of text encoder lr for T5 as it's not being tuned

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-10-28 13:07:30 +02:00
Vinh H. Pham
3b5b1c5698 [Fix] train_dreambooth_lora_flux_advanced ValueError: unexpected save model: <class 'transformers.models.t5.modeling_t5.T5EncoderModel'> (#9777)
fix save state te T5
2024-10-28 12:52:27 +02:00
Sayak Paul
fddbab7993 [research_projects] Update README.md to include a note about NF5 T5-xxl (#9775)
Update README.md
2024-10-26 22:13:03 +09:00
SahilCarterr
298ab6eb01 Added Support of Xlabs controlnet to FluxControlNetInpaintPipeline (#9770)
* added xlabs support
2024-10-25 11:50:55 -10:00
Ina
73b59f5203 [refactor] enhance readability of flux related pipelines (#9711)
* flux pipline: readability enhancement.
2024-10-25 11:01:51 -10:00
Jingya HUANG
52d4449810 Add a doc for AWS Neuron in Diffusers (#9766)
* start draft

* add doc

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* bref intro of ON

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-25 08:24:58 -07:00
Sayak Paul
df073ba137 [research_projects] add flux training script with quantization (#9754)
* add flux training script with quantization

* remove exclamation
2024-10-26 00:07:57 +09:00
Leo Jiang
94643fac8a [bugfix] bugfix for npu free memory (#9640)
* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-25 23:35:19 +09:00
Zhiyang Shen
435f6b7e47 [Docs] fix docstring typo in SD3 pipeline (#9765)
* fix docstring typo in SD3 pipeline

* fix docstring typo in SD3 pipeline
2024-10-25 16:33:35 +05:30
Sayak Paul
1d1e1a2888 Some minor updates to the nightly and push workflows (#9759)
* move lora integration tests to nightly./

* remove slow marker in the workflow where not needed.
2024-10-24 23:49:09 +09:00
Rachit Shah
24c7d578ba config attribute not foud error for FluxImagetoImage Pipeline for multi controlnet solved (#9586)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-23 10:33:29 -10:00
Linoy Tsaban
bfa0aa4ff2 [SD3-5 dreambooth lora] update model cards (#9749)
* improve readme

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-23 23:16:53 +03:00
Álvaro Somoza
ab1b7b2080 [Official callbacks] SDXL Controlnet CFG Cutoff (#9311)
* initial proposal

* style
2024-10-23 13:21:56 -03:00
Fanli Lin
9366c8f84b fix bug in require_accelerate_version_greater (#9746)
fix bug
2024-10-23 10:01:33 +05:30
Sayak Paul
e45c25d03a post-release 0.31.0 (#9742)
* post-release

* style
2024-10-22 20:42:30 +05:30
Dhruv Nair
76c00c7236 is_safetensors_compatible fix (#9741)
update
2024-10-22 19:35:03 +05:30
Dhruv Nair
0d9d98fe5f Fix typos (#9739)
* update

* update

* update

* update

* update

* update
2024-10-22 16:12:28 +05:30
Sayak Paul
60ffa84253 [bitsandbbytes] follow-ups (#9730)
* bnb follow ups.

* add a warning when dtypes mismatch.

* fx-copies

* clear cache.

* check_if_quantized_param

* add a check on shape.

* updates

* docs

* improve readability.

* resources.

* fix
2024-10-22 16:00:05 +05:30
Álvaro Somoza
0f079b932d [Fix] Using sharded checkpoints with gated repositories (#9737)
fix
2024-10-22 01:33:52 -03:00
Yu Zheng
b0ffe92230 Update sd3 controlnet example (#9735)
* use make_image_grid in diffusers.utils

* use checkpoint on the Hub
2024-10-22 09:02:16 +05:30
Tolga Cangöz
1b64772b79 Fix schedule_shifted_power usage in 🪆Matryoshka Diffusion Models (#9723)
* [matryoshka.py] Add schedule_shifted_power attribute and update get_schedule_shifted method
2024-10-21 14:23:50 -10:00
YiYi Xu
2d280f173f fix singlestep dpm tests (#9716)
fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 13:27:01 -10:00
G.O.D
63a0c9e5f7 [bugfix] reduce float value error when adding noise (#9004)
* Update train_controlnet.py

reduce float value error for bfloat16

* Update train_controlnet_sdxl.py

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-10-21 13:26:05 -10:00
YiYi Xu
e2d037bbf1 minor doc/test update (#9734)
* update some docs and tests!

---------

Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2024-10-21 13:06:13 -10:00
timdalxx
bcd61fd349 [docs] add docstrings in pipline_stable_diffusion.py (#9590)
* fix the issue on flux dreambooth lora training

* update : origin main code

* docs: update pipeline_stable_diffusion docstring

* docs: update pipeline_stable_diffusion docstring

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: style

* fix: style

* fix: copies

* make fix-copies

* remove extra newline

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 09:39:20 -07:00
Sayak Paul
d27ecc5960 [Docs] docs to xlabs controlnets. (#9688)
* docs to xlabs controlnets.

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>

* Apply suggestions from code review

Co-authored-by: Anzhella Pankratova <54744846+Anghellia@users.noreply.github.com>

---------

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>
Co-authored-by: Anzhella Pankratova <54744846+Anghellia@users.noreply.github.com>
2024-10-21 09:38:22 -07:00
Chenyu Li
6b915672f4 Fix typo in cogvideo pipeline (#9722)
Fix type in cogvideo pipeline
2024-10-21 21:39:39 +05:30
Sayak Paul
b821f006d0 [Quantization] Add quantization support for bitsandbytes (#9213)
* quantization config.

* fix-copies

* fix

* modules_to_not_convert

* add bitsandbytes utilities.

* make progress.

* fixes

* quality

* up

* up

rotary embedding refactor 2: update comments, fix dtype for use_real=False (#9312)

fix notes and dtype

up

up

* minor

* up

* up

* fix

* provide credits where due.

* make configurations work.

* fixes

* fix

* update_missing_keys

* fix

* fix

* make it work.

* fix

* provide credits to transformers.

* empty commit

* handle to() better.

* tests

* change to bnb from bitsandbytes

* fix tests

fix slow quality tests

SD3 remark

fix

complete int4 tests

add a readme to the test files.

add model cpu offload tests

warning test

* better safeguard.

* change merging status

* courtesy to transformers.

* move  upper.

* better

* make the unused kwargs warning friendlier.

* harmonize changes with https://github.com/huggingface/transformers/pull/33122

* style

* trainin tests

* feedback part i.

* Add Flux inpainting and Flux Img2Img (#9135)

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>

Update `UNet2DConditionModel`'s error messages (#9230)

* refactor

[CI] Update Single file Nightly Tests (#9357)

* update

* update

feedback.

improve README for flux dreambooth lora (#9290)

* improve readme

* improve readme

* improve readme

* improve readme

fix one uncaught deprecation warning for accessing vae_latent_channels in VaeImagePreprocessor (#9372)

deprecation warning vae_latent_channels

add mixed int8 tests and more tests to nf4.

[core] Freenoise memory improvements (#9262)

* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* update

* chunk -> split

* remove changes from incorrect conflict resolution

* remove changes from incorrect conflict resolution

* add explanation of SplitInferenceModule

* update docs

* Revert "update docs"

This reverts commit c55a50a271.

* update docstring for freenoise split inference

* apply suggestions from review

* add tests

* apply suggestions from review

quantization docs.

docs.

* Revert "Add Flux inpainting and Flux Img2Img (#9135)"

This reverts commit 5799954dd4.

* tests

* don

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* contribution guide.

* changes

* empty

* fix tests

* harmonize with https://github.com/huggingface/transformers/pull/33546.

* numpy_cosine_distance

* config_dict modification.

* remove if config comment.

* note for load_state_dict changes.

* float8 check.

* quantizer.

* raise an error for non-True low_cpu_mem_usage values when using quant.

* low_cpu_mem_usage shenanigans when using fp32 modules.

* don't re-assign _pre_quantization_type.

* make comments clear.

* remove comments.

* handle mixed types better when moving to cpu.

* add tests to check if we're throwing warning rightly.

* better check.

* fix 8bit test_quality.

* handle dtype more robustly.

* better message when keep_in_fp32_modules.

* handle dtype casting.

* fix dtype checks in pipeline.

* fix warning message.

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* mitigate the confusing cpu warning

---------

Co-authored-by: Vishnu V Jaddipal <95531133+Gothos@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-21 10:11:57 +05:30
Aryan
24281f8036 make deps_table_update to fix CI tests (#9720)
* update

* dummy change to trigger CI; will revert

* no deps peft

* np deps

* todo

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 09:58:26 +05:30
Sayak Paul
2a1d2f6218 [Docker] pin torch versions in the dockerfiles. (#9721)
* pin torch versions in the dockerfiles.

* more
2024-10-20 10:44:09 +05:30
Aryan
56d6d21bae [CI] pin max torch version to fix CI errors (#9709)
* pin max torch version

* update

* Update setup.py
2024-10-20 01:50:56 +05:30
hlky
89565e9171 Add prompt scheduling callback to community scripts (#9718) 2024-10-19 14:22:22 -03:00
bonlime
5d3e7bdaaa Fix bug in Textual Inversion Unloading (#9304)
* Update textual_inversion.py

* add unload test

* add comment

* fix style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-19 02:37:32 -10:00
Linoy Tsaban
2541d141d5 [advanced flux lora script] minor updates to readme (#9705)
* fix arg naming

* fix arg naming

* fix arg naming

* fix arg naming
2024-10-18 15:35:44 +03:00
Aryan
5704376d03 [refactor] DiffusionPipeline.download (#9557)
* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-10-17 12:38:06 -10:00
Linoy Tsaban
9a7f824645 [Flux] Add advanced training script + support textual inversion inference (#9434)
* add ostris trainer to README & add cache latents of vae

* add ostris trainer to README & add cache latents of vae

* style

* readme

* add test for latent caching

* add ostris noise scheduler
9ee1ef2a0a/toolkit/samplers/custom_flowmatch_sampler.py (L95)

* style

* fix import

* style

* fix tests

* style

* --change upcasting of transformer?

* update readme according to main

* add pivotal tuning for CLIP

* fix imports, encode_prompt call,add TextualInversionLoaderMixin to FluxPipeline for inference

* TextualInversionLoaderMixin support for FluxPipeline for inference

* move changes to advanced flux script, revert canonical

* add latent caching to canonical script

* revert changes to canonical script to keep it separate from https://github.com/huggingface/diffusers/pull/9160

* revert changes to canonical script to keep it separate from https://github.com/huggingface/diffusers/pull/9160

* style

* remove redundant line and change code block placement to align with logic

* add initializer_token arg

* add transformer frac for range support from pure textual inversion to the orig pivotal tuning

* support pure textual inversion - wip

* adjustments to support pure textual inversion and transformer optimization in only part of the epochs

* fix logic when using initializer token

* fix pure_textual_inversion_condition

* fix ti/pivotal loading of last validation run

* remove embeddings loading for ti in final training run (to avoid adding huggingface hub dependency)

* support pivotal for t5

* adapt pivotal for T5 encoder

* adapt pivotal for T5 encoder and support in flux pipeline

* t5 pivotal support + support fo pivotal for clip only or both

* fix param chaining

* fix param chaining

* README first draft

* readme

* readme

* readme

* style

* fix import

* style

* add fix from https://github.com/huggingface/diffusers/pull/9419

* add to readme, change function names

* te lr changes

* readme

* change concept tokens logic

* fix indices

* change arg name

* style

* dummy test

* revert dummy test

* reorder pivoting

* add warning in case the token abstraction is not the instance prompt

* experimental - wip - specific block training

* fix documentation and token abstraction processing

* remove transformer block specification feature (for now)

* style

* fix copies

* fix indexing issue when --initializer_concept has different amounts

* add if TextualInversionLoaderMixin to all flux pipelines

* style

* fix import

* fix imports

* address review comments - remove necessary prints & comments, use pin_memory=True, use free_memory utils, unify warning and prints

* style

* logger info fix

* make lora target modules configurable and change the default

* make lora target modules configurable and change the default

* style

* make lora target modules configurable and change the default, add notes to readme

* style

* add tests

* style

* fix repo id

* add updated requirements for advanced flux

* fix indices of t5 pivotal tuning embeddings

* fix path in test

* remove `pin_memory`

* fix filename of embedding

* fix filename of embedding

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-17 12:22:11 +03:00
Aryan
d9029f2c59 [tests] fix name and unskip CogI2V integration test (#9683)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:28:19 +05:30
Aryan
d204e53291 [core] improve VAE encode/decode framewise batching (#9684)
* update

* apply suggestions from review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:25:41 +05:30
Aryan
8cabd4a0db [pipeline] CogVideoX-Fun Control (#9671)
* cogvideox-fun control

* make style

* make fix-copies

* karras schedulers

* Update src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions from review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:21:09 +05:30
Jongho Choi
5783286d2b [peft] simple update when unscale (#9689)
Update peft_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:10:19 +05:30
Linoy Tsaban
ee4ab23892 [SD3 dreambooth-lora training] small updates + bug fixes (#9682)
* add latent caching + smol updates

* update license

* replace with free_memory

* add --upcast_before_saving to allow saving transformer weights in lower precision

* fix models to accumulate

* fix mixed precision issue as proposed in https://github.com/huggingface/diffusers/pull/9565

* smol update to readme

* style

* fix caching latents

* style

* add tests for latent caching

* style

* fix latent caching

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 11:13:37 +03:00
Sayak Paul
cef4f65cf7 [LoRA] log a warning when there are missing keys in the LoRA loading. (#9622)
* log a warning when there are missing keys in the LoRA loading.

* handle missing keys and unexpected keys better.

* add tests

* fix-copies.

* updates

* tests

* concat warning.

* Add Differential Diffusion to Kolors (#9423)

* Added diff diff support for kolors img2img

* Fized relative imports

* Fized relative imports

* Added diff diff support for Kolors

* Fized import issues

* Added map

* Fized import issues

* Fixed naming issues

* Added diffdiff support for Kolors img2img pipeline

* Removed example docstrings

* Added map input

* Updated latents

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Updated `original_with_noise`

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Improved code quality

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* FluxMultiControlNetModel (#9647)

* tests

* Update src/diffusers/loaders/lora_pipeline.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix

---------

Co-authored-by: M Saqlain <118016760+saqlain2204@users.noreply.github.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-16 07:46:12 +05:30
Charchit Sharma
29a2c5d1ca Resolves [BUG] 'GatheredParameters' object is not callable (#9614)
* gatherparams bug

* calling context lib object

* fix

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-16 06:44:10 +05:30
glide-the
0d935df67d Docs: CogVideoX (#9578)
* CogVideoX docs


---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-15 14:41:56 -10:00
YiYi Xu
3e9a28a8a1 [authored by @Anghellia) Add support of Xlabs Controlnets #9638 (#9687)
* Add support of Xlabs Controlnets


---------

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>
2024-10-15 12:10:45 -10:00
Aryan
2ffbb88f1c [training] CogVideoX-I2V LoRA (#9482)
* update

* update

* update

* update

* update

* add coauthor

Co-Authored-By: yuan-shenghai <963658029@qq.com>

* add coauthor

Co-Authored-By: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com>

* update

Co-Authored-By: yuan-shenghai <963658029@qq.com>

* update

---------

Co-authored-by: yuan-shenghai <963658029@qq.com>
Co-authored-by: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com>
2024-10-16 02:07:07 +05:30
Ahnjj_DEV
d40da7b68a Fix some documentation in ./src/diffusers/models/adapter.py (#9591)
* Fix some documentation in ./src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* run make style

* make style & fix

* make style : 0.1.5 version ruff

* revert changes to examples

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 10:27:39 -07:00
wony617
a3e8d3f7de [docs] refactoring docstrings in models/embeddings_flax.py (#9592)
* [docs] refactoring docstrings in `models/embeddings_flax.py`

* Update src/diffusers/models/embeddings_flax.py

* make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 19:15:14 +05:30
wony617
fff4be8e23 [docs] refactoring docstrings in community/hd_painter.py (#9593)
* [docs] refactoring docstrings in community/hd_painter.py

* Update examples/community/hd_painter.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* make style

---------

Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 18:50:12 +05:30
Jiwook Han
355bb641e3 [doc] Fix some docstrings in src/diffusers/training_utils.py (#9606)
* refac: docstrings in training_utils.py

* fix: manual edits

* run make style

* add docstring at cast_training_params

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-15 18:47:52 +05:30
Charchit Sharma
92d2baf643 refactor image_processor.py file (#9608)
* refactor image_processor file

* changes as requested

* +1 edits

* quality fix

* indent issue

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-15 17:20:33 +05:30
0x名無し
dccf39f01e Dreambooth lora flux bug 3dtensor to 2dtensor (#9653)
* fixed issue #9350, Tensor is deprecated

* ran make style
2024-10-15 17:18:13 +05:30
Sayak Paul
99d87474fd [Chore] fix import of EntryNotFoundError. (#9676)
fix import of EntryNotFoundError.
2024-10-15 14:07:08 +05:30
Robin
79b118e863 [Fix] when run load pretain with local_files_only, local variable 'cached_folder' referenced before assignment (#9376)
Fix local variable 'cached_folder' referenced before assignment in hub_utils.py

Fix when use `local_files_only=True` with `subfolder`, local variable 'cached_folder' referenced before assignment issue.

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 20:49:36 -10:00
hlky
9d0616189e Slight performance improvement to Euler, EDMEuler, FlowMatchHeun, KDPM2Ancestral (#9616)
* Slight performance improvement to Euler

* Slight performance improvement to EDMEuler

* Slight performance improvement to FlowMatchHeun

* Slight performance improvement to KDPM2Ancestral

* Update KDPM2AncestralDiscreteSchedulerTest

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 19:34:25 -10:00
hlky
5f0df17703 Refactor SchedulerOutput and add pred_original_sample in DPMSolverSDE, Heun, KDPM2Ancestral and KDPM2 (#9650)
Refactor SchedulerOutput and add pred_original_sample

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 18:11:01 -10:00
hlky
957e5cabff Convert list/tuple of HunyuanDiT2DControlNetModel to HunyuanDiT2DMultiControlNetModel (#9651)
Convert list/tuple of HunyuanDiT2DControlNetModel to HunyuanDiT2DMultiControlNetModel

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 18:09:30 -10:00
hlky
3e4c5707c3 Convert list/tuple of SD3ControlNetModel to SD3MultiControlNetModel (#9652)
Convert list/tuple of SD3ControlNetModel to SD3MultiControlNetModel

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 17:57:34 -10:00
hlky
1bcd19e4d0 Add pred_original_sample to if not return_dict path (#9649)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 17:56:54 -10:00
SahilCarterr
22ed39f571 Added Lora Support to SD3 Img2Img Pipeline (#9659)
* add lora
2024-10-14 11:39:20 -10:00
Tolga Cangöz
56c21150d8 [Community Pipeline] Add 🪆Matryoshka Diffusion Models (#9157) 2024-10-14 11:38:44 -10:00
Leo Jiang
5956b68a69 Improve the performance and suitable for NPU computing (#9642)
* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU computing

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-14 21:39:33 +05:30
Yuxuan.Zhang
8d81564b27 CogView3Plus DiT (#9570)
* merge 9588

* max_shard_size="5GB" for colab running

* conversion script updates; modeling test; refactor transformer

* make fix-copies

* Update convert_cogview3_to_diffusers.py

* initial pipeline draft

* make style

* fight bugs 🐛🪳

* add example

* add tests; refactor

* make style

* make fix-copies

* add co-author

YiYi Xu <yixu310@gmail.com>

* remove files

* add docs

* add co-author

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* fight docs

* address reviews

* make style

* make model work

* remove qkv fusion

* remove qkv fusion tets

* address review comments

* fix make fix-copies error

* remove None and TODO

* for FP16(draft)

* make style

* remove dynamic cfg

* remove pooled_projection_dim as a parameter

* fix tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 19:30:36 +05:30
Ryan Lin
68d16f7806 Flux - soft inpainting via differential diffusion (#9268)
* Flux - soft inpainting via differential diffusion

* .

* track changes to FluxInpaintPipeline

* make mask arrangement simplier

* make style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: asomoza <somoza.alvaro@gmail.com>
2024-10-14 10:07:48 -03:00
Sayak Paul
86bcbc389e [Tests] increase transformers version in test_low_cpu_mem_usage_with_loading (#9662)
increase transformers version in test_low_cpu_mem_usage_with_loading
2024-10-13 22:39:38 +05:30
Jinzhe Pan
6a5f06488c [docs] Fix xDiT doc image damage (#9655)
* docs: fix xDiT doc image damage

* doc: move xdit images to hf dataset

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-12 13:05:07 +05:30
Sayak Paul
c7a6d77b5f [CI] replace ubuntu version to 22.04. (#9656)
replace ubuntu version to 22.04.
2024-10-12 11:55:36 +05:30
hlky
0f8fb75c7b FluxMultiControlNetModel (#9647) 2024-10-11 14:39:19 -03:00
M Saqlain
3033f08201 Add Differential Diffusion to Kolors (#9423)
* Added diff diff support for kolors img2img

* Fized relative imports

* Fized relative imports

* Added diff diff support for Kolors

* Fized import issues

* Added map

* Fized import issues

* Fixed naming issues

* Added diffdiff support for Kolors img2img pipeline

* Removed example docstrings

* Added map input

* Updated latents

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Updated `original_with_noise`

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Improved code quality

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2024-10-11 10:47:31 -03:00
GSSun
164ec9f423 fix IsADirectoryError when running the training code for sd3_dreambooth_lora_16gb.ipynb (#9634)
Add files via upload

fix IsADirectoryError when running the training code
2024-10-11 13:33:39 +05:30
Subho Ghosh
38a3e4df92 flux controlnet control_guidance_start and control_guidance_end implement (#9571)
* flux controlnet control_guidance_start and control_guidance_end implement

* minor fix - added docstrings, consistent controlnet scale flux and SD3
2024-10-10 09:29:02 -03:00
Sayak Paul
e16fd93d0a [LoRA] fix dora test to catch the warning properly. (#9627)
fix dora test.
2024-10-10 11:47:49 +05:30
Pakkapon Phongthawee
07bd2fabb6 make controlnet support interrupt (#9620)
* make controlnet support interrupt

* remove white space in controlnet interrupt
2024-10-09 12:03:13 -10:00
SahilCarterr
af28ae2d5b add PAG support for SD Img2Img (#9463)
* added pag to sd img2img pipeline


---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-09 10:40:58 -10:00
Sayak Paul
31058cdaef [LoRA] allow loras to be loaded with low_cpu_mem_usage. (#9510)
* allow loras to be loaded with low_cpu_mem_usage.

* add flux support but note https://github.com/huggingface/diffusers/pull/9510\#issuecomment-2378316687

* low_cpu_mem_usage.

* fix-copies

* fix-copies again

* tests

* _LOW_CPU_MEM_USAGE_DEFAULT_LORA

* _peft_version default.

* version checks.

* version check.

* version check.

* version check.

* require peft 0.13.1.

* explicitly specify low_cpu_mem_usage=False.

* docs.

* transformers version 4.45.2.

* update

* fix

* empty

* better name initialize_dummy_state_dict.

* doc todos.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

* fix-copies

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-09 10:57:16 +05:30
Yijun Lee
ec9e5264c0 refac/pipeline_output (#9582) 2024-10-08 16:11:13 -10:00
sanaka
acd6d2c42f Fix the bug that joint_attention_kwargs is not passed to the FLUX's transformer attention processors (#9517)
* Update transformer_flux.py
2024-10-08 11:25:48 -10:00
v2ray
86bd991ee5 Fixed noise_pred_text referenced before assignment. (#9537)
* Fixed local variable noise_pred_text referenced before assignment when using PAG with guidance scale and guidance rescale at the same time.

* Fixed style.

* Made returning text pred noise an argument.
2024-10-08 09:27:10 -10:00
Sayak Paul
02eeb8e77e [LoRA] Handle DoRA better (#9547)
* handle dora.

* print test

* debug

* fix

* fix-copies

* update logits

* add warning in the test.

* make is_dora check consistent.

* fix-copies
2024-10-08 21:47:44 +05:30
glide-the
66eef9a6dc fix: CogVideox train dataset _preprocess_data crop video (#9574)
* Removed int8 to float32 conversion (`* 2.0 - 1.0`) from `train_transforms` as it caused image overexposure.

Added `_resize_for_rectangle_crop` function to enable video cropping functionality. The cropping mode can be configured via `video_reshape_mode`, supporting options: ['center', 'random', 'none'].

* The number 127.5 may experience precision loss during division operations.

* wandb request pil image Type

* Resizing bug

* del jupyter

* make style

* Update examples/cogvideo/README.md

* make style

---------

Co-authored-by: --unset <--unset>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-08 12:52:52 +05:30
Sayak Paul
63a5c8742a Update distributed_inference.md to include transformer.device_map (#9553)
* Update distributed_inference.md to include `transformer.device_map`

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-08 08:03:51 +05:30
Eliseu Silva
1287822973 Fix for use_safetensors parameters, allow use of parameter on loading submodels (#9576) (#9587)
* Fix for use_safetensors parameters, allow use of parameter on loading submodels (#9576)
2024-10-07 10:41:32 -10:00
Yijun Lee
a80f689200 refac: docstrings in import_utils.py (#9583)
* refac: docstrings in import_utils.py

* Update import_utils.py
2024-10-07 13:27:35 -07:00
captainzz
2cb383f591 fix vae dtype when accelerate config using --mixed_precision="fp16" (#9601)
* fix vae dtype when accelerate config using --mixed_precision="fp16"

* Add param for upcast vae
2024-10-07 21:00:25 +05:30
Sayak Paul
31010ecc45 [Chore] add a note on the versions in Flux LoRA integration tests (#9598)
add a note on the versions.
2024-10-07 17:43:48 +05:30
Clem
3159e60d59 fix xlabs FLUX lora conversion typo (#9581)
* fix startswith syntax in xlabs lora conversion

* Trigger CI

https://github.com/huggingface/diffusers/pull/9581#issuecomment-2395530360
2024-10-07 10:47:54 +05:30
YiYi Xu
99f608218c [sd3] make sure height and size are divisible by 16 (#9573)
* check size

* up
2024-10-03 08:36:26 -10:00
Xiangchendong
7f323f0f31 fix cogvideox autoencoder decode (#9569)
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-02 09:07:06 -10:00
Darren Hsu
61d37640ad Support bfloat16 for Upsample2D (#9480)
* Support bfloat16 for Upsample2D

* Add test and use is_torch_version

* Resolve comments and add decorator

* Simplify require_torch_version_greater_equal decorator

* Run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-01 16:08:12 -10:00
JuanCarlosPi
33fafe3d14 Add PAG support to StableDiffusionControlNetPAGInpaintPipeline (#8875)
* Add pag to controlnet inpainting pipeline


---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-30 20:04:42 -10:00
hlky
c4a8979f30 Add beta sigmas to other schedulers and update docs (#9538) 2024-09-30 09:00:54 -10:00
Sayak Paul
f9fd511466 [LoRA] support Kohya Flux LoRAs that have text encoders as well (#9542)
* support kohya flux loras that have tes.
2024-09-30 07:59:39 -10:00
Sayak Paul
8e7d6c03a3 [chore] fix: retain memory utility. (#9543)
* fix: retain memory utility.

* fix

* quality

* free_memory.
2024-09-28 21:08:45 +05:30
Anand Kumar
b28675c605 [train_instruct_pix2pix.py]Fix the LR schedulers when num_train_epochs is passed in a distributed training env (#9316)
Fixed pix2pix lr scheduler

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-28 21:01:37 +05:30
Aryan
bd4df2856a [refactor] remove conv_cache from CogVideoX VAE (#9524)
* remove conv cache from the layer and pass as arg instead

* make style

* yiyi's cleaner implementation

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* sayak's compiled implementation

Co-Authored-By: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-28 17:09:30 +05:30
Sayak Paul
11542431a5 [Core] fix variant-identification. (#9253)
* fix variant-idenitification.

* fix variant

* fix sharded variant checkpoint loading.

* Apply suggestions from code review

* fixes.

* more fixes.

* remove print.

* fixes

* fixes

* comments

* fixes

* apply suggestions.

* hub_utils.py

* fix test

* updates

* fixes

* fixes

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* updates.

* removep patch file.

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-28 09:57:31 +05:30
Sayak Paul
81cf3b2f15 [Tests] [LoRA] clean up the serialization stuff. (#9512)
* clean up the serialization stuff.

* better
2024-09-27 07:57:09 -10:00
PromeAI
534848c370 [examples] add train flux-controlnet scripts in example. (#9324)
* add train flux-controlnet scripts in example.

* fix error

* fix subfolder error

* fix preprocess error

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix readme

* fix note error

* add some Tutorial for deepspeed

* fix some Format Error

* add dataset_path example

* remove print, add guidance_scale CLI, readable apply

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update,push_to_hub,save_weight_dtype,static method,clear_objs_and_retain_memory,report_to=wandb

* add push to hub in readme

* apply weighting schemes

* add note

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make code style and quality

* fix some unnoticed error

* make code style and quality

* add example controlnet in readme

* add test controlnet

* rm Remove duplicate notes

* Fix formatting errors

* add new control image

* add model cpu offload

* update help for adafactor

* make quality & style

* make quality and style

* rename flux_controlnet_model_name_or_path

* fix back src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

* fix dtype error by pre calculate text emb

* rm image save

* quality fix

* fix test

* fix tiny flux train error

* change report to to tensorboard

* fix save name error when test

* Fix shrinking errors

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Your Name <you@example.com>
2024-09-27 13:31:47 +05:30
Sayak Paul
2daedc0ad3 [LoRA] make set_adapters() method more robust. (#9535)
* make set_adapters() method more robust.

* remove patch

* better and concise code.

* Update src/diffusers/loaders/lora_base.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-27 07:32:43 +05:30
Aryan
665c6b47a2 [bug] Precedence of operations in VAE should be slicing -> tiling (#9342)
* bugfix: precedence of operations should be slicing -> tiling

* fix typo

* fix another typo

* deprecate current implementation of tiled_encode and use new impl

* Update src/diffusers/models/autoencoders/autoencoder_kl.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/autoencoder_kl.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-26 22:12:07 +05:30
Álvaro Somoza
066ea374c8 [Tests] Fix ChatGLMTokenizer (#9536)
fix
2024-09-25 22:10:15 -10:00
YiYi Xu
9cd37557d5 flux controlnet fix (control_modes batch & others) (#9507)
* flux controlnet mode to take into account batch size

* incorporate yiyixuxu's suggestions (cleaner logic) as well as clean up control mode handling for multi case

* fix

* fix use_guidance when controlnet is a multi and does not have config

---------

Co-authored-by: Christopher Beckham <christopher.j.beckham@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-25 19:09:54 -10:00
hlky
1c6ede9371 [Schedulers] Add beta sigmas / beta noise schedule (#9509)
Add beta sigmas / beta noise schedule
2024-09-25 13:30:32 -10:00
v2ray
aa3c46d99a [Doc] Improved level of clarity for latents_to_rgb. (#9529)
Fixed latents_to_rgb doc.

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2024-09-25 19:26:58 -03:00
YiYi Xu
c76e88405c update get_parameter_dtype (#9526)
* up

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-09-25 11:00:57 -10:00
Steven Liu
d9c969172d [docs] Model sharding (#9521)
* flux shard

* feedback
2024-09-25 09:33:54 -07:00
Lee Penkman
065ce07ac3 Update community_projects.md (#9266) 2024-09-25 08:54:36 -07:00
Sayak Paul
6ca5a58e43 [Community Pipeline] Batched implementation of Flux with CFG (#9513)
* batched implementation of flux cfg.

* style.

* readme

* remove comments.
2024-09-25 15:25:15 +05:30
hlky
b52684c3ed Add exponential sigmas to other schedulers and update docs (#9518) 2024-09-24 14:50:12 -10:00
YiYi Xu
bac8a2412d a few fix for SingleFile tests (#9522)
* update sd15 repo

* update more
2024-09-24 13:36:53 -10:00
Sayak Paul
28f9d84549 [CI] allow faster downloads from the Hub in CI. (#9478)
* allow faster downloads from the Hub in CI.

* HF_HUB_ENABLE_HF_TRANSFER: 1

* empty

* empty

* remove ENV HF_HUB_ENABLE_HF_TRANSFER=1.

* empty
2024-09-24 09:42:11 +05:30
LukeLin
2b5bc5be0b [Doc] Fix path and and also import imageio (#9506)
* Fix bug

* import imageio
2024-09-23 16:47:34 -07:00
captainzz
bab17789b5 fix bugs for sd3 controlnet training (#9489)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:40:44 -10:00
hlky
19547a5734 Add Noise Schedule/Schedule Type to Schedulers Overview documentation (#9504)
* Add Noise Schedule/Schedule Type to Schedulers Overview docs

* Update docs/source/en/api/schedulers/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-23 16:39:55 -07:00
Seongbin Lim
3e69e241f7 Allow DDPMPipeline half precision (#9222)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:28:14 -10:00
hlky
65f9439b56 [Schedulers] Add exponential sigmas / exponential noise schedule (#9499)
* exponential sigmas

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* make style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:12:51 -10:00
pibbo88
00f5b41862 Fix the bug of sd3 controlnet training when using gradient checkpointing. (#9498)
Fix the bug of sd3 controlnet training when using gradient_checkpointing. Refer to issue #9496
2024-09-23 12:30:24 -10:00
M Saqlain
14f6464bef [Tests] Reduce the model size in the lumina test (#8985)
* Reduced model size for lumina-tests

* Handled failing tests
2024-09-23 20:35:50 +05:30
Sayak Paul
ba5af5aebb [Cog] some minor fixes and nits (#9466)
* fix positional arguments in check_inputs().

* add video and latetns to check_inputs().

* prep latents_in_channels.

* quality

* multiple fixes.

* fix
2024-09-23 11:27:05 +05:30
Sayak Paul
aa73072f1f [CI] fix nightly model tests (#9483)
* check if default attn procs fix it.

* print

* print

* replace

* style./

* replace revision with variant.

* replace with stable-diffusion-v1-5/stable-diffusion-inpainting.

* replace with stable-diffusion-v1-5/stable-diffusion-v1-5.

* fix
2024-09-21 07:44:47 +05:30
Aryan
e5d0a328d6 [refactor] LoRA tests (#9481)
* refactor scheduler class usage

* reorder to make tests more readable

* remove pipeline specific checks and skip tests directly

* rewrite denoiser conditions cleaner

* bump tolerance for cog test
2024-09-21 07:10:36 +05:30
Vladimir Mandic
14a1b86fc7 Several fixes to Flux ControlNet pipelines (#9472)
* fix flux controlnet pipelines

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-09-19 15:49:36 -10:00
Aryan
2b443a5d62 [training] CogVideoX Lora (#9302)
* cogvideox lora training draft

* update

* update

* update

* update

* update

* make fix-copies

* update

* update

* apply suggestions from review

* apply suggestions from reveiw

* fix typo

* Update examples/cogvideo/train_cogvideox_lora.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix lora alpha

* use correct lora scaling for final test pipeline

* Update examples/cogvideo/train_cogvideox_lora.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* apply suggestions from review; prodigy optimizer

YiYi Xu <yixu310@gmail.com>

* add tests

* make style

* add README

* update

* update

* make style

* fix

* update

* add test skeleton

* revert lora utils changes

* add cleaner modifications to lora testing utils

* update lora tests

* deepspeed stuff

* add requirements.txt

* deepspeed refactor

* add lora stuff to img2vid pipeline to fix tests

* fight tests

* add co-authors

Co-Authored-By: Fu-Yun Wang <1697256461@qq.com>

Co-Authored-By: zR <2448370773@qq.com>

* fight lora runner tests

* import Dummy optim and scheduler only wheh required

* update docs

* add coauthors

Co-Authored-By: Fu-Yun Wang <1697256461@qq.com>

* remove option to train text encoder

Co-Authored-By: bghira <bghira@users.github.com>

* update tests

* fight more tests

* update

* fix vid2vid

* fix typo

* remove lora tests; todo in follow-up PR

* undo img2vid changes

* remove text encoder related changes in lora loader mixin

* Revert "remove text encoder related changes in lora loader mixin"

This reverts commit f8a8444487.

* update

* round 1 of fighting tests

* round 2 of fighting tests

* fix copied from comment

* fix typo in lora test

* update styling

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: zR <2448370773@qq.com>
Co-authored-by: Fu-Yun Wang <1697256461@qq.com>
Co-authored-by: bghira <bghira@users.github.com>
2024-09-19 14:37:57 +05:30
Sayak Paul
d13b0d63c0 [Flux] add lora integration tests. (#9353)
* add lora integration tests.

* internal note

* add a skip marker.
2024-09-19 09:21:28 +05:30
Anatoly Belikov
5d476f57c5 adapt masked im2im pipeline for SDXL (#7790)
* adapt masked im2im pipeline for SDXL

* usage for masked im2im stable diffusion XL pipeline

* style

* style

* style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-17 16:55:49 -10:00
Aryan
da18fbd54c set max_shard_size to None for pipeline save_pretrained (#9447)
* update default max_shard_size

* add None check to fix tests

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-17 10:15:18 -10:00
Aryan
ba06124e4a Remove CogVideoX mentions from single file docs; Test updates (#9444)
* remove mentions from single file

* update tests

* update
2024-09-17 10:05:45 -10:00
Subho Ghosh
bb1b0fa1f9 Feature flux controlnet img2img and inpaint pipeline (#9408)
* Implemented FLUX controlnet support to Img2Img pipeline
2024-09-17 09:43:54 -10:00
Linoy Tsaban
8fcfb2a456 [Flux with CFG] add flux pipeline with cfg support (#9445)
* true_cfg

* add check negative prompt/embeds inputs

* move to community pipelines

* move to community pipelines

* revert true cfg changes to the orig pipline

* style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-16 12:09:34 -10:00
Sayak Paul
5440cbd34e [CI] updates to the CI report naming, and accelerate installation (#9429)
* chore: id accordingly to avoid duplicates.

* update properly.

* updates

* updates

* empty

* updates

* changing order helps?
2024-09-16 11:29:07 -10:00
suzukimain
b52119ae92 [docs] Replace runwayml/stable-diffusion-v1-5 with Lykon/dreamshaper-8 (#9428)
* [docs] Replace runwayml/stable-diffusion-v1-5 with Lykon/dreamshaper-8

Updated documentation as runwayml/stable-diffusion-v1-5 has been removed from Huggingface.

* Update docs/source/en/using-diffusers/inpaint.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Replace with stable-diffusion-v1-5/stable-diffusion-v1-5

* Update inpaint.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-16 10:18:45 -07:00
Yuxuan.Zhang
8336405e50 CogVideoX-5b-I2V support (#9418)
* draft Init

* draft

* vae encode image

* make style

* image latents preparation

* remove image encoder from conversion script

* fix minor bugs

* make pipeline work

* make style

* remove debug prints

* fix imports

* update example

* make fix-copies

* add fast tests

* fix import

* update vae

* update docs

* update image link

* apply suggestions from review

* apply suggestions from review

* add slow test

* make use of learned positional embeddings

* apply suggestions from review

* doc change

* Update convert_cogvideox_to_diffusers.py

* make style

* final changes

* make style

* fix tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-09-16 14:46:24 +05:30
Sayak Paul
2171f77ac5 [CI] make runner_type restricted. (#9441)
make runner_type restricted.
2024-09-16 12:09:31 +05:30
Aryan
2454b98af4 Allow max shard size to be specified when saving pipeline (#9440)
allow max shard size to be specified when saving pipeline
2024-09-16 08:36:07 +05:30
Linoy Tsaban
37e3603c4a [Flux Dreambooth lora] add latent caching (#9160)
* add ostris trainer to README & add cache latents of vae

* add ostris trainer to README & add cache latents of vae

* style

* readme

* add test for latent caching

* add ostris noise scheduler
9ee1ef2a0a/toolkit/samplers/custom_flowmatch_sampler.py (L95)

* style

* fix import

* style

* fix tests

* style

* --change upcasting of transformer?

* update readme according to main

* keep only latent caching

* add configurable param for final saving of trained layers- --upcast_before_saving

* style

* Update examples/dreambooth/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* use clear_objs_and_retain_memory from utilities

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-15 15:30:31 +03:00
Leo Jiang
e2ead7cdcc Fix the issue on sd3 dreambooth w./w.t. lora training (#9419)
* Fix dtype error

* [bugfix] Fixed the issue on sd3 dreambooth training

* [bugfix] Fixed the issue on sd3 dreambooth training

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-14 16:29:38 +05:30
Benjamin Bossan
48e36353d8 MAINT Permission for GH token in stale.yml (#9427)
* MAINT Permission for GH token in stale.yml

See https://github.com/huggingface/peft/pull/2061 for the equivalent PR
in PEFT.

This restores the functionality of the stale bot after permissions for
the token have been limited. The action still shows errors for PEFT but
the bot appears to work fine.

* Also add write permissions for PRs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-13 21:00:57 +05:30
Sayak Paul
6dc6486565 [LoRA] fix adapter movement when using DoRA. (#9411)
fix adapter movement when using DoRA.
2024-09-13 07:31:53 +05:30
Dhruv Nair
1e8cf2763d [CI] Nightly Test Updates (#9380)
* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-12 20:21:28 +05:30
Sayak Paul
6cf8d98ce1 [CI] update artifact uploader version (#9426)
update artifact uploader version
2024-09-12 19:26:09 +05:30
Juan Acevedo
45aa8bb187 Ptxla sd training (#9381)
* enable pxla training of stable diffusion 2.x models.

* run linter/style and run pipeline test for stable diffusion and fix issues.

* update xla libraries

* fix read me newline.

* move files to research folder.

* update per comments.

* rename readme.

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-12 08:35:06 +05:30
Aryan
5e1427a7da [docs] AnimateDiff FreeNoise (#9414)
* update docs

* apply suggestions from review

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions from review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-11 12:59:58 -07:00
asfiyab-nvidia
b9e2f886cd FluxPosEmbed: Remove Squeeze No-op (#9409)
Remove Squeeze op

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-10 19:12:36 -10:00
dianyo
b19827f6b4 Migrate the BrownianTree to BrownianInterval in DPM solver (#9335)
migrate the BrownianTree to BrownianInterval

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-10 18:29:15 -10:00
Yu Zheng
c002731d93 [examples] add controlnet sd3 example (#9249)
* add controlnet sd3 example

* add controlnet sd3 example

* update controlnet sd3 example

* add controlnet sd3 example test

* fix quality and style

* update test

* update test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-11 07:04:37 +05:30
Sayak Paul
adf1f911f0 [Tests] fix some fast gpu tests. (#9379)
fix some fast gpu tests.
2024-09-11 06:50:02 +05:30
captainzz
f28a8c257a fix from_transformer() with extra conditioning channels (#9364)
* fix from_transformer() with extra conditioning channels

* style fix

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <somoza.alvaro@gmail.com>
2024-09-09 07:51:48 -10:00
Jinzhe Pan
2c6a6c97b3 [docs] Add xDiT in section optimization (#9365)
* docs: add xDiT to optimization methods

* fix: picture layout problem

* docs: add more introduction about xdit & apply suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-09 10:31:07 -07:00
Igor Filippov
a7361dccdc [Pipeline] animatediff + vid2vid + controlnet (#9337)
* add animatediff + vid2vide + controlnet

* post tests fixes

* PR discussion fixes

* update docs

* change input video to links on HF + update an example

* make quality fix

* fix ip adapter test

* fix ip adapter test input

* update ip adapter test
2024-09-09 22:48:21 +05:30
YiYi Xu
485b8bb000 refactor get_timesteps for SDXL img2img + add set_begin_index (#9375)
* refator + add begin_index

* add kolors img2img to doc
2024-09-09 06:38:22 -10:00
Sayak Paul
d08ad65819 modify benchmarks to replace sdv1.5 with dreamshaper. (#9334) 2024-09-09 20:54:56 +05:30
YiYi Xu
8cdcdd9e32 add flux inpaint + img2img + controlnet to auto pipeline (#9367) 2024-09-06 07:14:48 -10:00
Dhruv Nair
d269cc8a4e [CI] Quick fix for Cog Video Test (#9373)
update
2024-09-06 15:25:53 +05:30
Aryan
6dfa49963c [core] Freenoise memory improvements (#9262)
* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* update

* chunk -> split

* remove changes from incorrect conflict resolution

* remove changes from incorrect conflict resolution

* add explanation of SplitInferenceModule

* update docs

* Revert "update docs"

This reverts commit c55a50a271.

* update docstring for freenoise split inference

* apply suggestions from review

* add tests

* apply suggestions from review
2024-09-06 12:51:20 +05:30
Haruya Ishikawa
5249a2666e fix one uncaught deprecation warning for accessing vae_latent_channels in VaeImagePreprocessor (#9372)
deprecation warning vae_latent_channels
2024-09-05 07:32:27 -10:00
Linoy Tsaban
55ac421f7b improve README for flux dreambooth lora (#9290)
* improve readme

* improve readme

* improve readme

* improve readme
2024-09-05 17:53:23 +05:30
Dhruv Nair
53051cf282 [CI] Update Single file Nightly Tests (#9357)
* update

* update
2024-09-05 14:33:44 +05:30
Tolga Cangöz
3000551729 Update UNet2DConditionModel's error messages (#9230)
* refactor
2024-09-04 10:49:56 -10:00
Vishnu V Jaddipal
249a9e48e8 Add Flux inpainting and Flux Img2Img (#9135)
---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-09-04 10:31:43 -10:00
Fanli Lin
2ee3215949 [tests] make 2 tests device-agnostic (#9347)
* enabel on xpu

* fix style
2024-09-03 16:34:03 -10:00
Eduardo Escobar
8ecf499d8b Enable load_lora_weights for StableDiffusion3InpaintPipeline (#9330)
Enable load_lora_weights for StableDiffusion3InpaintPipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 15:19:37 -10:00
YiYi Xu
dcf320f293 small update on rotary embedding (#9354)
* update

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 07:18:33 -10:00
Sayak Paul
8ba90aa706 chore: add a cleaning utility to be useful during training. (#9240) 2024-09-03 15:00:17 +05:30
Aryan
9d49b45b19 [refactor] move positional embeddings to patch embed layer for CogVideoX (#9263)
* remove frame limit in cogvideox

* remove debug prints

* Update src/diffusers/models/transformers/cogvideox_transformer_3d.py

* revert pipeline; remove frame limitation

* revert transformer changes

* address review comments

* add error message

* apply suggestions from review
2024-09-03 14:45:12 +05:30
Dhruv Nair
81da2e1c95 [CI] Add option to dispatch Fast GPU tests on main (#9355)
update
2024-09-03 14:35:13 +05:30
Aryan
24053832b5 [tests] remove/speedup some low signal tests (#9285)
* remove 2 shapes from SDFunctionTesterMixin::test_vae_tiling

* combine freeu enable/disable test to reduce many inference runs

* remove low signal unet test for signature

* remove low signal embeddings test

* remove low signal progress bar test from PipelineTesterMixin

* combine ip-adapter single and multi tests to save many inferences

* fix broken tests

* Update tests/pipelines/test_pipelines_common.py

* Update tests/pipelines/test_pipelines_common.py

* add progress bar tests
2024-09-03 13:59:18 +05:30
Dhruv Nair
f6f16a0c11 [CI] More Fast GPU Test Fixes (#9346)
* update

* update

* update

* update
2024-09-03 13:22:38 +05:30
Vishnu V Jaddipal
1c1ccaa03f Xlabs lora fix (#9348)
* Fix ```from_single_file``` for xl_inpaint

* Add basic flux inpaint pipeline

* style, quality, stray print

* Fix stray changes

* Add inpainting model support

* Change lora conversion for xlabs

* Fix stray changes

* Apply suggestions from code review

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 10:43:43 +05:30
Dhruv Nair
007ad0e2aa [CI] More fixes for Fast GPU Tests on main (#9300)
update
2024-09-02 17:51:48 +05:30
Aryan
0e6a8403f6 [core] Support VideoToVideo with CogVideoX (#9333)
* add vid2vid pipeline for cogvideox

* make fix-copies

* update docs

* fake context parallel cache, vae encode tiling

* add test for cog vid2vid

* use video link from HF docs repo

* add copied from comments; correctly rename test class
2024-09-02 16:54:58 +05:30
Aryan
af6c0fb766 [core] CogVideoX memory optimizations in VAE encode (#9340)
fake context parallel cache, vae encode tiling

(cherry picked from commit bf890bca0e)
2024-09-02 15:48:37 +05:30
YiYi Xu
d8a16635f4 update runway repo for single_file (#9323)
update to a place holder
2024-08-30 08:51:21 -10:00
Aryan
e417d02811 [docs] Add a note on torchao/quanto benchmarks for CogVideoX and memory-efficient inference (#9296)
* add a note on torchao/quanto benchmarks and memory-efficient inference

* apply suggestions from review

* update

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add note on enable sequential cpu offload

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-30 13:53:25 +05:30
Dhruv Nair
1d4d71875b [CI] Update Hub Token on nightly tests (#9318)
update
2024-08-30 10:23:50 +05:30
YiYi Xu
61d96c3ae7 refactor rotary embedding 3: so it is not on cpu (#9307)
change get_1d_rotary to accept pos as torch tensors
2024-08-30 01:07:15 +05:30
YiYi Xu
4f495b06dc rotary embedding refactor 2: update comments, fix dtype for use_real=False (#9312)
fix notes and dtype
2024-08-28 23:31:47 -10:00
Anand Kumar
40c13fe5b4 [train_custom_diffusion.py] Fix the LR schedulers when num_train_epochs is passed in a distributed training env (#9308)
* Update train_custom_diffusion.py to fix the LR schedulers for `num_train_epochs`

* Fix saving text embeddings during safe serialization

* Fixed formatting
2024-08-29 14:23:36 +05:30
Sayak Paul
2a3fbc2cc2 [LoRA] support kohya and xlabs loras for flux. (#9295)
* support kohya lora in flux.

* format

* support xlabs

* diffusion_model prefix.

* Apply suggestions from code review

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* empty commit.

Co-authored-by: Leommm-byte <leom20031@gmail.com>

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: Leommm-byte <leom20031@gmail.com>
2024-08-29 07:41:46 +05:30
apolinário
089cf798eb Change default for guidance_scalein FLUX (#9305)
To match the original code, 7.0 is too high
2024-08-28 07:39:45 -10:00
Aryan
cbc2ec8f44 AnimateDiff prompt travel (#9231)
* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* undo memory optimization changes

* update docstrings

* fix tests

* fix pia tests

* apply suggestions from review

* add tests

* update comment
2024-08-28 14:48:12 +05:30
Frank (Haofan) Wang
b5f591fea8 Update __init__.py (#9286) 2024-08-27 07:57:25 -10:00
Dhruv Nair
05b38c3c0d Fix Flux CLIP prompt embeds repeat for num_images_per_prompt > 1 (#9280)
update
2024-08-27 07:41:12 -10:00
Dhruv Nair
8f7fde5701 [CI] Update Release Tests (#9274)
* update

* update
2024-08-27 18:34:00 +05:30
Dhruv Nair
a59672655b Fix Freenoise for AnimateDiff V3 checkpoint. (#9288)
update
2024-08-27 18:30:39 +05:30
Marçal Comajoan Cara
9aca79f2b8 Replace transformers.deepspeed with transformers.integrations.deepspeed (#9281)
to avoid "FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations"

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-27 18:08:23 +05:30
Steven Liu
bbcf2a8589 [docs] Add pipelines to table (#9282)
update pipelines
2024-08-27 12:15:30 +05:30
Álvaro Somoza
4cfb2164fb [IP Adapter] Fix cache_dir and local_files_only for image encoder (#9272)
initial fix
2024-08-26 09:03:08 -10:00
Linoy Tsaban
c977966502 [Dreambooth flux] bug fix for dreambooth script (align with dreambooth lora) (#9257)
* fix shape

* fix prompt encoding

* style

* fix device

* add comment
2024-08-26 17:29:58 +05:30
YiYi Xu
1ca0a75567 refactor 3d rope for cogvideox (#9269)
* refactor 3d rope

* repeat -> expand
2024-08-25 11:57:12 -10:00
王奇勋
c1e6a32ae4 [Flux] Support Union ControlNet (#9175)
* refactor
---------

Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
2024-08-25 00:24:21 -10:00
yangpei-comp
77b2162817 Bugfix in pipeline_kandinsky2_2_combined.py: Image type check mismatch (#9256)
Update pipeline_kandinsky2_2_combined.py

Bugfix on image type check mismatch
2024-08-23 08:38:47 -10:00
Dhruv Nair
4e66513a74 [CI] Run Fast + Fast GPU Tests on release branches. (#9255)
* update

* update
2024-08-23 19:34:37 +05:30
Dhruv Nair
4e74206b0c [Single File] Add Flux Pipeline Support (#9244)
update
2024-08-23 14:40:43 +05:30
Dhruv Nair
255ac592c2 [Single File] Support loading Comfy UI Flux checkpoints (#9243)
update
2024-08-23 14:40:29 +05:30
Sayak Paul
2d9ccf39b5 [Core] fuse_qkv_projection() to Flux (#9185)
* start fusing flux.

* test

* finish fusion

* fix-copues
2024-08-23 10:54:13 +05:30
zR
960c149c77 Cogvideox-5B Model adapter change (#9203)
* draft of embedding

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-22 16:03:29 -10:00
YiYi Xu
dc07fc29da fix _identify_model_variants (#9247)
merge now, will add/fix test next
2024-08-22 12:00:17 -10:00
Elias Rad
805bf33fa7 Docs fix spelling issues (#9219)
* fix PHILOSOPHY.md

* fix CONTRIBUTING.md

* fix tutorial_overview.md

* fix stable_diffusion.md

* Update tutorial_overview.md
2024-08-22 13:38:07 -07:00
Aryan
0ec64fe9fc [tests] fix broken xformers tests (#9206)
* fix xformers tests

* remove unnecessary modifications to cogvideox tests

* update
2024-08-22 15:17:47 +05:30
Sayak Paul
5090b09d48 [Flux LoRA] support parsing alpha from a flux lora state dict. (#9236)
* support parsing alpha from a flux lora state dict.

* conditional import.

* fix breaking changes.

* safeguard alpha.

* fix
2024-08-22 07:01:52 +05:30
Sayak Paul
32d6492c7b [Core] Tear apart from_pretrained() of DiffusionPipeline (#8967)
* break from_pretrained part i.

* part ii.

* init_kwargs

* remove _fetch_init_kwargs

* type annotation

* dtyle

* switch to _check_and_update_init_kwargs_for_missing_modules.

* remove _check_and_update_init_kwargs_for_missing_modules.

* use pipeline_loading_kwargs.

* remove _determine_current_device_map.

* remove _filter_null_components.

* device_map fix.

* fix _update_init_kwargs_with_connected_pipeline.

* better handle custom pipeline.

* explain _maybe_raise_warning_for_inpainting.

* add example for model variant.

* fix
2024-08-22 06:50:57 +05:30
Steven Liu
43f1090a0f [docs] Network alpha docstring (#9238)
fix docstring

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-22 06:46:29 +05:30
YiYi Xu
c291617518 Flux followup (#9074)
* refactor rotary embeds

* adding jsmidt as co-author of this PR for https://github.com/huggingface/diffusers/pull/9133

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Joseph Smidt <josephsmidt@gmail.com>
2024-08-21 08:44:58 -10:00
satani99
9003d75f20 Add StableDiffusionXLControlNetPAGImg2ImgPipeline (#8990)
* Added pad controlnet sdxl img2img pipeline

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-21 07:24:22 -10:00
Dhruv Nair
750bd79206 [Single File] Fix configuring scheduler via legacy kwargs (#9229)
update
2024-08-21 21:15:20 +05:30
YiYi Xu
214372aa99 fix a regression in is_safetensors_compatible (#9234)
fix
2024-08-21 18:56:55 +05:30
Vinh H. Pham
867e0c919e StableDiffusionLatentUpscalePipeline - positive/negative prompt embeds support (#8947)
* make latent upscaler accept prompt embeds

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-20 18:00:55 -10:00
Sangwon Lee
16a3dad474 Fix StableDiffusionXLPAGInpaintPipeline (#9128) 2024-08-20 11:54:27 -10:00
Disty0
21682bab7e Custom sampler support for Stable Cascade Decoder (#9132)
Custom sampler support Stable Cascade Decoder
2024-08-20 09:56:53 -10:00
Vishnu V Jaddipal
214990e5f2 Fix ``from_single_file`` for xl_inpaint (#9054) 2024-08-20 12:09:01 +05:30
Dhruv Nair
cf2c49b179 Remove M1 runner from Nightly Test (#9193)
* update

* update
2024-08-20 11:44:58 +05:30
Leo Jiang
eda36c4c28 Fix dtype error for StableDiffusionXL (#9217)
Fix dtype error

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-20 06:58:50 +05:30
Zoltan
803e817e3e Add vae slicing and tiling to flux pipeline (#9122)
add vae slicing and tiling to flux pipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-19 10:39:45 -10:00
YiYi Xu
67f5cce294 fix autopipeline for kolors img2img (#9212)
fix
2024-08-19 07:40:15 -10:00
Jiwook Han
d72bbc68a9 Reflect few contributions on contribution.md that were not reflected on #8294 (#8938)
* incorrect_number_fix

* add_TOC

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* fix: manual edits

* fix: manual edtis

* fix: manual edits

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* fix: manual edits

---------

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
2024-08-19 09:54:38 -07:00
Dhruv Nair
9ab80a99a4 [CI] Add fail-fast=False to CUDA nightly and slow tests (#9214)
* update

* update
2024-08-19 16:08:35 +05:30
Dhruv Nair
940b8e0358 [CI] Multiple Slow Test fixes. (#9198)
* update

* update

* update

* update
2024-08-19 13:31:09 +05:30
Dhruv Nair
b2add10d13 Update is_safetensors_compatible check (#8991)
* update

* update

* update

* update

* update
2024-08-19 11:35:22 +05:30
Wenlong Wu
815d882217 Add loading text inversion (#9130) 2024-08-19 09:26:27 +05:30
M Saqlain
ba4348d9a7 [Tests] Improve transformers model test suite coverage - Lumina (#8987)
* Added test suite for lumina

* Fixed failing tests

* Improved code quality

* Added function docstrings

* Improved formatting
2024-08-19 08:29:03 +05:30
townwish4git
d25eb5d385 fix(sd3): fix deletion of text_encoders etc (#8951)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-18 15:37:40 -10:00
Tolga Cangöz
7ef8a46523 [Docs] Fix CPU offloading usage (#9207)
* chore: Fix cpu offloading usage

* Trim trailing white space

* docs: update Kolors model link in kolors.md
2024-08-18 13:12:12 -10:00
Sayak Paul
f848febacd feat: allow sharding for auraflow. (#8853) 2024-08-18 08:47:26 +05:30
Beinsezii
b38255006a Add Lumina T2I Auto Pipe Mapping (#8962) 2024-08-16 23:14:17 -10:00
Jianqi Pan
cba548d8a3 fix(pipeline): k sampler sigmas device (#9189)
If Karras is not enabled, a device inconsistency error will occur. This is due to the fact that sigmas were not moved to the specified device.
2024-08-16 22:43:42 -10:00
Álvaro Somoza
db829a4be4 [IP Adapter] Fix object has no attribute with image encoder (#9194)
* fix

* apply suggestion
2024-08-17 02:00:04 -04:00
Sayak Paul
e780c05cc3 [Chore] add set_default_attn_processor to pixart. (#9196)
add set_default_attn_processor to pixart.
2024-08-16 13:07:06 +05:30
C
e649678bf5 [Flux] Optimize guidance creation in flux pipeline by moving it outside the loop (#9153)
* optimize guidance creation in flux pipeline by moving it outside the loop

* use torch.full instead of torch.tensor to create a tensor with a single value

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-16 10:14:05 +05:30
Sayak Paul
39b87b14b5 feat: allow flux transformer to be sharded during inference (#9159)
* feat: support sharding for flux.

* tests
2024-08-16 10:00:51 +05:30
Dhruv Nair
3e46043223 Small improvements for video loading (#9183)
* update

* update
2024-08-16 09:36:58 +05:30
Simo Ryu
1a92bc05a7 Add Learned PE selection for Auraflow (#9182)
* add pe

* Update src/diffusers/models/transformers/auraflow_transformer_2d.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/transformers/auraflow_transformer_2d.py

* beauty

* retrigger ci.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-15 16:30:24 +05:30
dependabot[bot]
0c1e63bd11 Bump jinja2 from 3.1.3 to 3.1.4 in /examples/research_projects/realfill (#7873)
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.3 to 3.1.4.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.3...3.1.4)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-14 16:36:59 +05:30
dependabot[bot]
e7e45bd127 Bump torch from 2.0.1 to 2.2.0 in /examples/research_projects/realfill (#8971)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.0.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.0.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-14 16:36:46 +05:30
Álvaro Somoza
82058a5413 post release 0.30.0 (#9173)
* post release

* fix quality
2024-08-14 12:55:55 +05:30
Aryan
a85b34e7fd [refactor] CogVideoX followups + tiled decoding support (#9150)
* refactor context parallel cache; update torch compile time benchmark

* add tiling support

* make style

* remove num_frames % 8 == 0 requirement

* update default num_frames to original value

* add explanations + refactor

* update torch compile example

* update docs

* update

* clean up if-statements

* address review comments

* add test for vae tiling

* update docs

* update docs

* update docstrings

* add modeling test for cogvideox transformer

* make style
2024-08-14 03:53:21 +05:30
王奇勋
5ffbe14c32 [FLUX] Support ControlNet (#9126)
* cnt model

* cnt model

* cnt model

* fix Loader "Copied"

* format

* txt_ids for  multiple images

* add test and format

* typo

* Update pipeline_flux_controlnet.py

* remove

* make quality

* fix copy

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/models/controlnet_flux.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix

* make copies

* test

* bs

---------

Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
Co-authored-by: haofanwang <haofan@HaofandeMBP.lan>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-13 18:17:40 +05:30
林金鹏
cc0513091a Support SD3 controlnet inpainting (#9099)
* add controlnet inpainting pipeline

* [SD3] add controlnet inpaint example

* update example and fix code style

* fix code style with ruff

* Update controlnet_sd3.md : add control inpaint pipeline

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update __init__.py : add sd3 control pipelines

* Update pipeline : add new param doc & check input reference.

* fix typo

* make style & make quality

* add unittest for sd3 controlnet inpaint

---------

Co-authored-by: 鹏徙 <linjinpeng.ljp@alibaba-inc.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
2024-08-13 17:30:46 +05:30
Sayak Paul
15eb77bc4c Update distributed_inference.md to include a fuller example on distributed inference (#9152)
* Update distributed_inference.md

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-12 09:56:03 -07:00
Linoy Tsaban
413ca29b71 [Flux Dreambooth LoRA] - te bug fixes & updates (#9139)
* add requirements + fix link to bghira's guide

* text ecnoder training fixes

* text encoder training fixes

* text encoder training fixes

* text encoder training fixes

* style

* add tests

* fix encode_prompt call

* style

* unpack_latents test

* fix lora saving

* remove default val for max_sequenece_length in encode_prompt

* remove default val for max_sequenece_length in encode_prompt

* style

* testing

* style

* testing

* testing

* style

* fix sizing issue

* style

* revert scaling

* style

* style

* scaling test

* style

* scaling test

* remove model pred operation left from pre-conditioning

* remove model pred operation left from pre-conditioning

* fix trainable params

* remove te2 from casting

* transformer to accelerator

* remove prints

* empty commit
2024-08-12 11:58:03 +05:30
Dhruv Nair
10dc06c8d9 Update Video Loading/Export to use imageio (#9094)
* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-12 10:19:53 +05:30
Dibbla!
3ece143308 Errata - fix typo (#9100) 2024-08-12 07:30:19 +05:30
Steven Liu
98930ee131 [docs] Resolve internal links to PEFT (#9144)
* resolve peft links

* fuse_lora
2024-08-10 06:37:46 +05:30
Daniel Socek
c1079f0887 Fix textual inversion SDXL and add support for 2nd text encoder (#9010)
* Fix textual inversion SDXL and add support for 2nd text encoder

Signed-off-by: Daniel Socek <daniel.socek@intel.com>

* Fix style/quality of text inv for sdxl

Signed-off-by: Daniel Socek <daniel.socek@intel.com>

---------

Signed-off-by: Daniel Socek <daniel.socek@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-09 20:23:06 +05:30
Linoy Tsaban
65e30907b5 [Flux] Dreambooth LoRA training scripts (#9086)
* initial commit - dreambooth for flux

* update transformer to be FluxTransformer2DModel

* update training loop and validation inference

* fix sd3->flux docs

* add guidance handling, not sure if it makes sense(?)

* inital dreambooth lora commit

* fix text_ids in compute_text_embeddings

* fix imports of static methods

* fix pipeline loading in readme, remove auto1111 docs for now

* fix pipeline loading in readme, remove auto1111 docs for now, remove some irrelevant text_encoder_3 refs

* Update examples/dreambooth/train_dreambooth_flux.py

Co-authored-by: Bagheera <59658056+bghira@users.noreply.github.com>

* fix te2 loading and remove te2 refs from text encoder training

* fix tokenizer_2 initialization

* remove text_encoder training refs from lora script (for now)

* try with vae in bfloat16, fix model hook save

* fix tokenization

* fix static imports

* fix CLIP import

* remove text_encoder training refs (for now) from lora script

* fix minor bug in encode_prompt, add guidance def in lora script, ...

* fix unpack_latents args

* fix license in readme

* add "none" to weighting_scheme options for uniform sampling

* style

* adapt model saving - remove text encoder refs

* adapt model loading - remove text encoder refs

* initial commit for readme

* Update examples/dreambooth/train_dreambooth_lora_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/train_dreambooth_lora_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix vae casting

* remove precondition_outputs

* readme

* readme

* style

* readme

* readme

* update weighting scheme default & docs

* style

* add text_encoder training to lora script, change vae_scale_factor value in both

* style

* text encoder training fixes

* style

* update readme

* minor fixes

* fix te params

* fix te params

---------

Co-authored-by: Bagheera <59658056+bghira@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-09 07:31:04 +05:30
Sayak Paul
cee7c1b0fb Update README.md to include InstantID (#8770)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-08 10:14:12 -07:00
Monjoy Narayan Choudhury
1fcb811a8e Add Differential Diffusion to HunyuanDiT. (#9040)
* Add Differential Pipeline.

* Fix Styling Issue using ruff -fix

* Add details to Contributing.md

* Revert "Fix Styling Issue using ruff -fix"

This reverts commit d347de162d.

* Revert "Revert "Fix Styling Issue using ruff -fix""

This reverts commit ce7c3ff216.

* Revert README changes

* Restore README.md

* Update README.md

* Resolved Comments:

* Fix Readme based on review

* Fix formatting after make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-08 18:53:39 +05:30
David Steinberg
ae026db7aa Fix a dead link (#9116)
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-08 18:46:50 +05:30
sayantan sadhu
8e3affc669 fix for lr scheduler in distributed training (#9103)
* fix for lr scheduler in distributed training

* Fixed the recalculation of the total training step section

* Fixed lint error

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-08 08:45:48 +05:30
Steven Liu
ba7e48455a [docs] Organize model toctree (#9118)
* toctree

* fix
2024-08-08 08:31:58 +05:30
zR
2dad462d9b Add CogVideoX text-to-video generation model (#9082)
* add CogVideoX

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-06 21:23:57 -10:00
Dhruv Nair
e3568d14ba Freenoise change vae_batch_size to decode_chunk_size (#9110)
* update

* update
2024-08-07 12:47:18 +05:30
Aryan
f6df22447c [feat] allow sparsectrl to be loaded from single file (#9073)
* allow sparsectrl to be loaded with single file

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-07 11:12:30 +05:30
latentCall145
9b5180cb5f Flux fp16 inference fix (#9097)
* clipping for fp16

* fix typo

* added fp16 inference to docs

* fix docs typo

* include link for fp16 investigation

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 10:54:20 +05:30
Aryan
16a93f1a25 [core] FreeNoise (#8948)
* initial work draft for freenoise; needs massive cleanup

* fix freeinit bug

* add animatediff controlnet implementation

* revert attention changes

* add freenoise

* remove old helper functions

* add decode batch size param to all pipelines

* make style

* fix copied from comments

* make fix-copies

* make style

* copy animatediff controlnet implementation from #8972

* add experimental support for num_frames not perfectly fitting context length, ocntext stride

* make unet motion model lora work again based on #8995

* copy load video utils from #8972

* copied from AnimateDiff::prepare_latents

* address the case where last batch of frames does not match length of indices in prepare latents

* decode_batch_size->vae_batch_size; batch vae encode support in animatediff vid2vid

* revert sparsectrl and sdxl freenoise changes

* revert pia

* add freenoise tests

* make fix-copies

* improve docstrings

* add freenoise tests to animatediff controlnet

* update tests

* Update src/diffusers/models/unets/unet_motion_model.py

* add freenoise to animatediff pag

* address review comments

* make style

* update tests

* make fix-copies

* fix error message

* remove copied from comment

* fix imports in tests

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-07 10:35:18 +05:30
Sayak Paul
2d753b6fb5 fix train_dreambooth_lora_sd3.py loading hook (#9107) 2024-08-07 10:09:47 +05:30
Álvaro Somoza
39e1f7eaa4 [Kolors] Add PAG (#8934)
* txt2img pag added

* autopipe added, fixed case

* style

* apply suggestions

* added fast tests, added todo tests

* revert dummy objects for kolors

* fix pag dummies

* fix test imports

* update pag tests

* add kolor pag to docs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 09:29:52 +05:30
Dhruv Nair
e1b603dc2e [Single File] Add single file support for Flux Transformer (#9083)
* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 08:49:57 +05:30
Marc Sun
e4325606db Fix loading sharded checkpoints when we have variants (#9061)
* Fix loading sharded checkpoint when we have variant

* add test

* remote print

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 13:38:44 -10:00
Ahn Donghoon (안동훈 / suno)
926daa30f9 add PAG support for Stable Diffusion 3 (#8861)
add pag sd3


---------

Co-authored-by: HyoungwonCho <jhw9811@korea.ac.kr>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: crepejung00 <jaewoojung00@naver.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-06 09:11:35 -10:00
Dhruv Nair
325a5de3a9 [Docs] Add community projects section to docs (#9013)
* update

* update

* update
2024-08-06 08:59:39 -07:00
Dhruv Nair
4c6152c2fb update 2024-08-06 12:00:14 +00:00
Vinh H. Pham
87e50a2f1d [Tests] Improve transformers model test suite coverage - Hunyuan DiT (#8916)
* add hunyuan model test

* apply suggestions

* reduce dims further

* reduce dims further

* run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 12:59:30 +05:30
Aryan
a57a7af45c [bug] remove unreachable norm_type=ada_norm_continuous from norm3 initialization conditions (#9006)
remove ada_norm_continuous from norm3 list

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 07:23:48 +05:30
Sayak Paul
52f1378e64 [Core] add QKV fusion to AuraFlow and PixArt Sigma (#8952)
* add fusion support to pixart

* add to auraflow.

* add tests

* apply review feedback.

* add back args and kwargs

* style
2024-08-05 14:09:37 -10:00
Tolga Cangöz
3dc97bd148 Update CLIPFeatureExtractor to CLIPImageProcessor and DPTFeatureExtractor to DPTImageProcessor (#9002)
* fix: update `CLIPFeatureExtractor` to `CLIPImageProcessor` in codebase

* `make style && make quality`

* Update `DPTFeatureExtractor` to `DPTImageProcessor` in codebase

* `make style`

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-05 09:20:29 -10:00
omahs
6d32b29239 Fix typos (#9077)
* fix typo
2024-08-05 09:00:08 -10:00
YiYi Xu
bc3c73ad0b add sentencepiece as a soft dependency (#9065)
* add sentencepiece as  soft dependency for kolors

* up

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-05 08:04:51 -10:00
Sayak Paul
5934873b8f [Docs] add stable cascade unet doc. (#9066)
* add stable cascade unet doc.

* fix path
2024-08-05 21:28:48 +05:30
Aryan
b7058d142c PAG variant for HunyuanDiT, PAG refactor (#8936)
* copy hunyuandit pipeline

* pag variant of hunyuan dit

* add tests

* update docs

* make style

* make fix-copies

* Update src/diffusers/pipelines/pag/pag_utils.py

* remove incorrect copied from

* remove pag hunyuan attn procs to resolve conflicts

* add pag attn procs again

* new implementation for pag_utils

* revert pag changes

* add pag refactor back; update pixart sigma

* update pixart pag tests

* apply suggestions from review

Co-Authored-By: yixu310@gmail.com

* make style

* update docs, fix tests

* fix tests

* fix test_components_function since list not accepted as valid __init__ param

* apply patch to fix broken tests

Co-Authored-By: Sayak Paul <spsayakpaul@gmail.com>

* make style

* fix hunyuan tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-05 17:56:09 +05:30
Vinh H. Pham
e1d508ae92 [Tests] Improve transformers model test suite coverage - Latte (#8919)
* add LatteTransformer3DModel model test

* change patch_size to 1

* reduce req len

* reduce channel dims

* increase num_layers

* reduce dims further

* run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-05 17:13:03 +05:30
Sayak Paul
fc6a91e383 [FLUX] support LoRA (#9057)
* feat: lora support for Flux.

add tests

fix imports

major fixes.

* fix

fixes

final fixes?

* fix

* remove is_peft_available.
2024-08-05 10:24:05 +05:30
Aryan
2b76099610 [refactor] apply qk norm in attention processors (#9071)
* apply qk norm in attention processors

* revert attention processor

* qk-norm in only attention proc 2.0 and fused variant
2024-08-04 05:42:46 -10:00
psychedelicious
4f0d01d387 type get_attention_scores as optional in get_attention_scores (#9075)
`None` is valid for `get_attention_scores`, should be typed as such
2024-08-04 17:19:05 +05:30
asfiyab-nvidia
3dc10a535f Update TensorRT txt2img and inpaint community pipelines (#9037)
* Update TensorRT txt2img and inpaint community pipelines

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update tensorrt install instructions

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-04 16:00:40 +05:30
Sayak Paul
c370b90ff1 [Flux] minor documentation fixes for flux. (#9048)
* minor documentation fixes for flux.

* clipskip

* add gist
2024-08-04 15:53:01 +05:30
Philip Rideout
ebf3ab1477 Fix grammar mistake. (#9072) 2024-08-04 04:32:03 +05:30
Aryan
fbe29c6298 [refactor] create modeling blocks specific to AnimateDiff (#8979)
* animatediff specific transformer model

* make style

* make fix-copies

* move blocks to unet motion model

* make style

* remove dummy object

* fix incorrectly passed param causing test failures

* rename model and output class

* fix sparsectrl imports

* remove todo comments

* remove temporal double self attn param from controlnet sparsectrl

* add deprecated versions of blocks

* apply suggestions from review

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-03 13:03:39 +05:30
Tolga Cangöz
7071b7461b Errata: Fix typos & \s+$ (#9008)
* Fix typos

* chore: Fix typos

* chore: Update README.md for promptdiffusion example

* Trim trailing white spaces

* Fix a typo

* update number

* chore: update number

* Trim trailing white space

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-02 21:24:25 -07:00
Frank (Haofan) Wang
a054c78495 Update transformer_flux.py (#9060) 2024-08-03 08:58:32 +05:30
Dhruv Nair
b1f43d7189 Fix Nightly Deps (#9036)
update
2024-08-02 15:18:54 +05:30
Sayak Paul
0e460675e2 [Flux] allow tests to run (#9050)
* fix tests

* fix

* float64 skip

* remove sample_size.

* remove

* remove more

* default_sample_size.

* credit black forest for flux model.

* skip

* fix: tests

* remove OriginalModelMixin

* add transformer model test

* add: transformer model tests
2024-08-02 11:49:59 +05:30
Sayak Paul
7b98c4cc67 [Core] Add PAG support for PixArtSigma (#8921)
* feat: add pixart sigma pag.

* inits.

* fixes

* fix

* remove print.

* copy paste methods to the pixart pag mixin

* fix-copies

* add documentation.

* add tests.

* remove correction file.

* remove pag_applied_layers

* empty
2024-08-02 07:12:41 +05:30
Sayak Paul
27637a5402 Flux pipeline (#9043)
add flux!

Signed-off-by: Adrien <adrien@huggingface.co>
Co-authored-by: Adrien <adrien.69740@gmail.com>
Co-authored-by: Anatoly Belikov <abelikov@singularitynet.io>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-08-01 11:30:52 -10:00
Aryan
2ea22e1cc7 [docs] fix pia example (#9015)
fix pia example docstring
2024-08-02 02:47:40 +05:30
YiYi Xu
95a7832879 fix load sharded checkpoint from a subfolder (local path) (#8913)
fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-01 20:15:42 +05:30
Dhruv Nair
c646fbc124 Updates deps for pipeline test fetcher (#9033)
update
2024-08-01 13:22:13 +05:30
Aryan
05b706c003 PAG variant for AnimateDiff (#8789)
* add animatediff pag pipeline

* remove unnecessary print

* make fix-copies

* fix ip-adapter bug

* update docs

* add fast tests and fix bugs

* update

* update

* address review comments

* update ip adapter single test expected slice

* implement test_from_pipe_consistent_config; fix expected slice values

* LoraLoaderMixin->StableDiffusionLoraLoaderMixin; add latest freeinit test
2024-08-01 12:39:39 +05:30
730 changed files with 112352 additions and 10187 deletions

View File

@@ -7,19 +7,20 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
jobs:
torch_pipelines_cuda_benchmark_tests:
env:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
name: Torch Core Pipelines CUDA Benchmarking Tests
strategy:
fail-fast: false
max-parallel: 1
runs-on:
runs-on:
group: aws-g6-4xlarge-plus
container:
image: diffusers/diffusers-pytorch-compile-cuda
@@ -50,7 +51,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs
@@ -59,7 +60,7 @@ jobs:
if: ${{ success() }}
run: |
pip install requests && python utils/notify_benchmarking_status.py --status=success
- name: Report failure status
if: ${{ failure() }}
run: |

View File

@@ -24,8 +24,8 @@ jobs:
mirror_community_pipeline:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
# Checkout to correct ref
# If workflow dispatch
@@ -95,7 +95,7 @@ jobs:
if: ${{ success() }}
run: |
pip install requests && python utils/notify_community_pipelines_mirror.py --status=success
- name: Report failure status
if: ${{ failure() }}
run: |

View File

@@ -32,7 +32,7 @@ jobs:
fetch-depth: 2
- name: Install dependencies
run: |
pip install -e .
pip install -e .[test]
pip install huggingface_hub
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
@@ -43,7 +43,7 @@ jobs:
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
@@ -72,14 +72,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Pipeline CUDA Test
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -95,7 +95,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -116,6 +116,7 @@ jobs:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file, examples]
@@ -129,8 +130,8 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -138,7 +139,7 @@ jobs:
- name: Run nightly PyTorch CUDA tests for non-pipeline modules
if: ${{ matrix.module != 'examples'}}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -151,7 +152,7 @@ jobs:
- name: Run nightly example tests with Torch
if: ${{ matrix.module == 'examples' }}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -168,7 +169,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
@@ -179,6 +180,62 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_big_gpu_torch_tests:
name: Torch tests on big GPU
strategy:
fail-fast: false
max-parallel: 2
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Selected Torch CUDA Test on big GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-m "big_gpu_with_torch_cuda" \
--make-reports=tests_big_gpu_torch_cuda \
--report-log=tests_big_gpu_torch_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_big_gpu_torch_cuda_stats.txt
cat reports/tests_big_gpu_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_big_gpu_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on: docker-tpu
@@ -200,7 +257,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
@@ -208,7 +265,7 @@ jobs:
- name: Run nightly Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
@@ -224,7 +281,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
@@ -256,14 +313,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
@@ -279,9 +336,9 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.config.report }}_test_reports
name: tests_onnx_cuda_reports
path: reports
- name: Generate Report and Notify Channel
@@ -290,64 +347,176 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_apple_m1:
name: Nightly PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
if: github.event_name == 'schedule'
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
matrix:
config:
- backend: "bitsandbytes"
test_location: "bnb"
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m uv pip install pytest-reportlog
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
python -m uv pip install pytest-reportlog
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run nightly PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
python utils/print_env.py
- name: ${{ matrix.config.backend }} quantization tests on GPU
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
--report-log=tests_torch_mps.log \
tests/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
run: |
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_mps_test_reports
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
# M1 runner currently not well supported
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
# run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -7,7 +7,7 @@ on:
jobs:
build:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_flax_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -171,7 +171,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -20,7 +20,7 @@ env:
jobs:
check_code_quality:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -40,7 +40,7 @@ jobs:
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -92,12 +92,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
# TODO (sayakpaul, DN6): revisit `--no-deps`
if [ "${{ matrix.lib-versions }}" == "main" ]; then
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
else
python -m uv pip install -U peft transformers accelerate
python -m uv pip install -U peft --no-deps
python -m uv pip install -U transformers accelerate --no-deps
fi
- name: Environment
@@ -110,23 +112,23 @@ jobs:
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
--make-reports=tests_${{ matrix.lib-versions }} \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_${{ matrix.config.report }} \
--make-reports=tests_models_lora_${{ matrix.lib-versions }} \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_${{ matrix.lib-versions }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.lib-versions }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
name: pr_${{ matrix.lib-versions }}_test_reports
path: reports

View File

@@ -22,13 +22,14 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -48,7 +49,7 @@ jobs:
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -168,9 +169,9 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
path: reports
run_staging_tests:
@@ -229,7 +230,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_torch_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -1,6 +1,7 @@
name: Slow Tests on main
name: Fast GPU Tests on main
on:
workflow_dispatch:
push:
branches:
- main
@@ -13,6 +14,7 @@ env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
@@ -45,7 +47,7 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
@@ -75,11 +77,11 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
@@ -96,7 +98,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -112,6 +114,8 @@ jobs:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
@@ -124,8 +128,8 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -139,20 +143,20 @@ jobs:
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda \
--make-reports=tests_torch_cuda_${{ matrix.module }} \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_stats.txt
cat reports/tests_torch_cuda_failures_short.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_cuda_test_reports
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
flax_tpu_tests:
@@ -174,13 +178,13 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
- name: Run Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
@@ -197,7 +201,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
@@ -222,13 +226,13 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
- name: Run ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
@@ -245,7 +249,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
@@ -288,7 +292,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
@@ -330,7 +334,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_xformers_test_reports
path: reports
@@ -381,7 +385,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -18,6 +18,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -119,7 +120,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -13,6 +13,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -69,7 +70,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_torch_mps_test_reports
path: reports

View File

@@ -10,7 +10,7 @@ on:
jobs:
find-and-checkout-latest-branch:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
outputs:
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
steps:
@@ -36,7 +36,7 @@ jobs:
release:
needs: find-and-checkout-latest-branch
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout Repo

389
.github/workflows/release_tests_fast.yml vendored Normal file
View File

@@ -0,0 +1,389 @@
# Duplicate workflow to push_tests.yml that is meant to run on release/patch branches as a final check
# Creating a duplicate workflow here is simpler than adding complex path/branch parsing logic to push_tests.yml
# Needs to be updated if push_tests.yml updated
name: (Release) Fast GPU Tests on main
on:
push:
branches:
- "v*.*.*-release"
- "v*.*.*-patch"
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
run_xformers_tests:
name: PyTorch xformers CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_xformers_test_reports
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -4,8 +4,13 @@ on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10 or t4)'
description: 'Type of runner to test (aws-g6-4xlarge-plus: a10, aws-g4dn-2xlarge: t4, aws-g6e-xlarge-plus: L40)'
type: choice
required: true
options:
- aws-g6-4xlarge-plus
- aws-g4dn-2xlarge
- aws-g6e-xlarge-plus
docker_image:
description: 'Name of the Docker image'
required: true

View File

@@ -8,7 +8,10 @@ jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/diffusers'
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
permissions:
issues: write
pull-requests: write
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:

View File

@@ -5,7 +5,7 @@ name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout code
uses: actions/checkout@v4

View File

@@ -5,7 +5,7 @@ on:
jobs:
build:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3

View File

@@ -57,13 +57,13 @@ Any question or comment related to the Diffusers library can be asked on the [di
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future that has the same question you're
share knowledge and might very well help a beginner in the future who has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
@@ -503,4 +503,4 @@ $ git push --set-upstream origin your-branch-for-syncing
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

View File

@@ -15,7 +15,7 @@ specific language governing permissions and limitations under the License.
🧨 Diffusers provides **state-of-the-art** pretrained diffusion models across multiple modalities.
Its purpose is to serve as a **modular toolbox** for both inference and training.
We aim at building a library that stands the test of time and therefore take API design very seriously.
We aim to build a library that stands the test of time and therefore take API design very seriously.
In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefore, most of our design choices are based on [PyTorch's Design Principles](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy). Let's go over the most important ones:
@@ -65,7 +65,7 @@ Pipelines are designed to be easy to use (therefore do not follow [*Simple over
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
@@ -107,4 +107,4 @@ The following design principles are followed:
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

@@ -67,13 +67,13 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 27.000+ checkpoints):
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 30,000+ checkpoints):
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
@@ -114,7 +114,7 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/fp16) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
@@ -144,7 +144,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
@@ -174,7 +174,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
@@ -202,6 +202,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/InstantID/InstantID
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
@@ -209,7 +210,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +12.000 other amazing GitHub repositories 💪
- +14,000 other amazing GitHub repositories 💪
Thank you for using us ❤️.

View File

@@ -34,7 +34,7 @@ from utils import ( # noqa: E402
RESOLUTION_MAPPING = {
"runwayml/stable-diffusion-v1-5": (512, 512),
"Lykon/DreamShaper": (512, 512),
"lllyasviel/sd-controlnet-canny": (512, 512),
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
@@ -268,7 +268,7 @@ class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel
root_ckpt = "runwayml/stable-diffusion-v1-5"
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
image = load_image(url).convert("RGB")
@@ -311,7 +311,7 @@ class ControlNetSDXLBenchmark(ControlNetBenchmark):
class T2IAdapterBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionAdapterPipeline
aux_network_class = T2IAdapter
root_ckpt = "CompVis/stable-diffusion-v1-4"
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
image = load_image(url).convert("L")

View File

@@ -7,7 +7,8 @@ from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
IP_ADAPTER_CKPTS = {
"runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
# because original SD v1.5 has been taken down.
"Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
}
@@ -17,7 +18,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="rstabilityai/stable-diffusion-xl-base-1.0",
choices=list(IP_ADAPTER_CKPTS.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=[
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=[
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
],

View File

@@ -7,7 +7,7 @@ from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa
ALL_T2I_CKPTS = [
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
@@ -21,7 +21,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -3,7 +3,7 @@ import sys
import pandas as pd
from huggingface_hub import hf_hub_download, upload_file
from huggingface_hub.utils._errors import EntryNotFoundError
from huggingface_hub.utils import EntryNotFoundError
sys.path.append(".")

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib
transformers matplotlib \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
pytorch-lightning
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
xformers
xformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -55,8 +55,10 @@
- sections:
- local: using-diffusers/overview_techniques
title: Overview
- local: using-diffusers/create_a_server
title: Create a server
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
title: Distributed inference
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
@@ -75,6 +77,8 @@
title: Outpainting
title: Advanced inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo
@@ -129,6 +133,8 @@
title: T2I-Adapters
- local: training/instructpix2pix
title: InstructPix2Pix
- local: training/cogvideox
title: CogVideoX
title: Models
- isExpanded: false
sections:
@@ -146,6 +152,12 @@
title: Reinforcement learning training with DDPO
title: Methods
title: Training
- sections:
- local: quantization/overview
title: Getting Started
- local: quantization/bitsandbytes
title: bitsandbytes
title: Quantization Methods
- sections:
- local: optimization/fp16
title: Speed up inference
@@ -161,6 +173,8 @@
title: DeepCache
- local: optimization/tgate
title: TGATE
- local: optimization/xdit
title: xDiT
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
@@ -176,6 +190,8 @@
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Habana Gaudi
- local: optimization/neuron
title: AWS Neuron
title: Optimized hardware
title: Accelerate inference and reduce memory
- sections:
@@ -190,6 +206,10 @@
- local: conceptual/evaluation
title: Evaluating Diffusion Models
title: Conceptual Guides
- sections:
- local: community_projects
title: Projects built with Diffusers
title: Community Projects
- sections:
- isExpanded: false
sections:
@@ -199,6 +219,8 @@
title: Logging
- local: api/outputs
title: Outputs
- local: api/quantization
title: Quantization
title: Main Classes
- isExpanded: false
sections:
@@ -219,65 +241,95 @@
sections:
- local: api/models/overview
title: Overview
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/autoencoder_oobleck
title: Oobleck AutoEncoder
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/mochi_transformer3d
title: MochiTransformer3DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
title: StableCascadeUNet
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
title: UNets
- sections:
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/autoencoderkl_allegro
title: AutoencoderKLAllegro
- local: api/models/autoencoderkl_cogvideox
title: AutoencoderKLCogVideoX
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/autoencoder_oobleck
title: Oobleck AutoEncoder
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/vq
title: VQModel
title: VAEs
title: Models
- isExpanded: false
sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
@@ -294,10 +346,16 @@
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_flux
title: ControlNet with Flux.1
- local: api/pipelines/controlnet_hunyuandit
title: ControlNet with Hunyuan-DiT
- local: api/pipelines/controlnet_sd3
@@ -320,6 +378,8 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/i2vgenxl
@@ -346,6 +406,8 @@
title: Lumina-T2X
- local: api/pipelines/marigold
title: Marigold
- local: api/pipelines/mochi
title: Mochi
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm

View File

@@ -51,6 +51,7 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`AutoencoderKL`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
- [`FluxTransformer2DModel`]
## FromSingleFileMixin

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AllegroTransformer3DModel
A Diffusion Transformer model for 3D data from [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AllegroTransformer3DModel
vae = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## AllegroTransformer3DModel
[[autodoc]] AllegroTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,37 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLAllegro
The 3D variational autoencoder (VAE) model with KL loss used in [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLAllegro
vae = AutoencoderKLCogVideoX.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLAllegro
[[autodoc]] AutoencoderKLAllegro
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,37 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLCogVideoX
The 3D variational autoencoder (VAE) model with KL loss used in [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLCogVideoX
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.float16).to("cuda")
```
## AutoencoderKLCogVideoX
[[autodoc]] AutoencoderKLCogVideoX
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMochi
The 3D variational autoencoder (VAE) model with KL loss used in [Mochi](https://github.com/genmoai/models) was introduced in [Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMochi
vae = AutoencoderKLMochi.from_pretrained("genmo/mochi-1-preview", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLMochi
[[autodoc]] AutoencoderKLMochi
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,30 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogVideoXTransformer3DModel
A Diffusion Transformer model for 3D data from [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogVideoXTransformer3DModel
vae = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## CogVideoXTransformer3DModel
[[autodoc]] CogVideoXTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,30 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogView3PlusTransformer2DModel
A Diffusion Transformer model for 2D data from [CogView3Plus](https://github.com/THUDM/CogView3) was introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogView3PlusTransformer2DModel
vae = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView3PlusTransformer2DModel
[[autodoc]] CogView3PlusTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -29,7 +29,7 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
url = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
@@ -39,7 +39,7 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
[[autodoc]] models.controlnets.controlnet.ControlNetOutput
## FlaxControlNetModel
@@ -47,4 +47,4 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput
[[autodoc]] models.controlnets.controlnet_flax.FlaxControlNetOutput

View File

@@ -0,0 +1,45 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxControlNetModel
FluxControlNetModel is an implementation of ControlNet for Flux.1.
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
By default the [`FluxControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import FluxControlNetPipeline
from diffusers.models import FluxControlNetModel, FluxMultiControlNetModel
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
```
## FluxControlNetModel
[[autodoc]] FluxControlNetModel
## FluxControlNetOutput
[[autodoc]] models.controlnet_flux.FluxControlNetOutput

View File

@@ -38,5 +38,5 @@ pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-di
## SD3ControlNetOutput
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput
[[autodoc]] models.controlnets.controlnet_sd3.SD3ControlNetOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxTransformer2DModel
A Transformer model for image-like data from [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).
## FluxTransformer2DModel
[[autodoc]] FluxTransformer2DModel

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# MochiTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Mochi-1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Genmo.
The model can be loaded with the following code snippet.
```python
from diffusers import MochiTransformer3DModel
vae = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## MochiTransformer3DModel
[[autodoc]] MochiTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# StableCascadeUNet
A UNet model from the [Stable Cascade pipeline](../pipelines/stable_cascade.md).
## StableCascadeUNet
[[autodoc]] models.unets.unet_stable_cascade.StableCascadeUNet

View File

@@ -0,0 +1,34 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Allegro
[Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) from RhymesAI, by Yuan Zhou, Qiuyue Wang, Yuxuan Cai, Huan Yang.
The abstract from the paper is:
*Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AllegroPipeline
[[autodoc]] AllegroPipeline
- all
- __call__
## AllegroPipelineOutput
[[autodoc]] pipelines.allegro.pipeline_output.AllegroPipelineOutput

View File

@@ -29,6 +29,7 @@ The abstract of the paper is the following:
| [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* |
| [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py) | *Video-to-Video Generation with AnimateDiff using ControlNet* |
## Available checkpoints
@@ -518,6 +519,97 @@ Here are some sample outputs:
</tr>
</table>
### AnimateDiffVideoToVideoControlNetPipeline
AnimateDiff can be used together with ControlNets to enhance video-to-video generation by allowing for precise control over the output. ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala, and allows you to condition Stable Diffusion with an additional control image to ensure that the spatial information is preserved throughout the video.
This pipeline allows you to condition your generation both on the original video and on a sequence of control images.
```python
import torch
from PIL import Image
from tqdm.auto import tqdm
from controlnet_aux.processor import OpenposeDetector
from diffusers import AnimateDiffVideoToVideoControlNetPipeline
from diffusers.utils import export_to_gif, load_video
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
# Load the ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
# Load the motion adapter
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
# Load SD 1.5 based finetuned model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
# Enable LCM to speed up inference
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif")
video = [frame.convert("RGB") for frame in video]
prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
# Create controlnet preprocessor
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
# Preprocess controlnet images
conditioning_frames = []
for frame in tqdm(video):
conditioning_frames.append(open_pose(frame))
strength = 0.8
with torch.inference_mode():
video = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=10,
guidance_scale=2.0,
controlnet_conditioning_scale=0.75,
conditioning_frames=conditioning_frames,
strength=strength,
generator=torch.Generator().manual_seed(42),
).frames[0]
video = [frame.resize(conditioning_frames[0].size) for frame in video]
export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)
```
Here are some sample outputs:
<table align="center">
<tr>
<th align="center">Source Video</th>
<th align="center">Output Video</th>
</tr>
<tr>
<td align="center">
anime girl, dancing
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif" alt="anime girl, dancing" />
</td>
<td align="center">
astronaut in space, dancing
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_vid2vid_controlnet.gif" alt="astronaut in space, dancing" />
</td>
</tr>
</table>
**The lights and composition were transferred from the Source Video.**
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
@@ -822,6 +914,89 @@ export_to_gif(frames, "animatelcm-motion-lora.gif")
</tr>
</table>
## Using FreeNoise
[FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling](https://arxiv.org/abs/2310.15169) by Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, Ziwei Liu.
FreeNoise is a sampling mechanism that can generate longer videos with short-video generation models by employing noise-rescheduling, temporal attention over sliding windows, and weighted averaging of latent frames. It also can be used with multiple prompts to allow for interpolated video generations. More details are available in the paper.
The currently supported AnimateDiff pipelines that can be used with FreeNoise are:
- [`AnimateDiffPipeline`]
- [`AnimateDiffControlNetPipeline`]
- [`AnimateDiffVideoToVideoPipeline`]
- [`AnimateDiffVideoToVideoControlNetPipeline`]
In order to use FreeNoise, a single line needs to be added to the inference code after loading your pipelines.
```diff
+ pipe.enable_free_noise()
```
After this, either a single prompt could be used, or multiple prompts can be passed as a dictionary of integer-string pairs. The integer keys of the dictionary correspond to the frame index at which the influence of that prompt would be maximum. Each frame index should map to a single string prompt. The prompts for intermediate frame indices, that are not passed in the dictionary, are created by interpolating between the frame prompts that are passed. By default, simple linear interpolation is used. However, you can customize this behaviour with a callback to the `prompt_interpolation_callback` parameter when enabling FreeNoise.
Full example:
```python
import torch
from diffusers import AutoencoderKL, AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_video, load_image
# Load pipeline
dtype = torch.float16
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=motion_adapter, vae=vae, torch_dtype=dtype)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights(
"wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm_lora"
)
pipe.set_adapters(["lcm_lora"], [0.8])
# Enable FreeNoise for long prompt generation
pipe.enable_free_noise(context_length=16, context_stride=4)
pipe.to("cuda")
# Can be a single prompt, or a dictionary with frame timesteps
prompt = {
0: "A caterpillar on a leaf, high quality, photorealistic",
40: "A caterpillar transforming into a cocoon, on a leaf, near flowers, photorealistic",
80: "A cocoon on a leaf, flowers in the backgrond, photorealistic",
120: "A cocoon maturing and a butterfly being born, flowers and leaves visible in the background, photorealistic",
160: "A beautiful butterfly, vibrant colors, sitting on a leaf, flowers in the background, photorealistic",
200: "A beautiful butterfly, flying away in a forest, photorealistic",
240: "A cyberpunk butterfly, neon lights, glowing",
}
negative_prompt = "bad quality, worst quality, jpeg artifacts"
# Run inference
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=256,
guidance_scale=2.5,
num_inference_steps=10,
generator=torch.Generator("cpu").manual_seed(0),
)
# Save video
frames = output.frames[0]
export_to_video(frames, "output.mp4", fps=16)
```
### FreeNoise memory savings
Since FreeNoise processes multiple frames together, there are parts in the modeling where the memory required exceeds that available on normal consumer GPUs. The main memory bottlenecks that we identified are spatial and temporal attention blocks, upsampling and downsampling blocks, resnet blocks and feed-forward layers. Since most of these blocks operate effectively only on the channel/embedding dimension, one can perform chunked inference across the batch dimensions. The batch dimension in AnimateDiff are either spatial (`[B x F, H x W, C]`) or temporal (`B x H x W, F, C`) in nature (note that it may seem counter-intuitive, but the batch dimension here are correct, because spatial blocks process across the `B x F` dimension while the temporal blocks process across the `B x H x W` dimension). We introduce a `SplitInferenceModule` that makes it easier to chunk across any dimension and perform inference. This saves a lot of memory but comes at the cost of requiring more time for inference.
```diff
# Load pipeline and adapters
# ...
+ pipe.enable_free_noise_split_inference()
+ pipe.unet.enable_forward_chunking(16)
```
The call to `pipe.enable_free_noise_split_inference` method accepts two parameters: `spatial_split_size` (defaults to `256`) and `temporal_split_size` (defaults to `16`). These can be configured based on how much VRAM you have available. A lower split size results in lower memory usage but slower inference, whereas a larger split size results in faster inference at the cost of more memory.
## Using `from_single_file` with the MotionAdapter
@@ -866,6 +1041,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all
- __call__
## AnimateDiffVideoToVideoControlNetPipeline
[[autodoc]] AnimateDiffVideoToVideoControlNetPipeline
- all
- __call__
## AnimateDiffPipelineOutput
[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

View File

@@ -18,7 +18,7 @@ It was developed by the Fal team and more details about it can be found in [this
<Tip>
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
</Tip>

View File

@@ -0,0 +1,149 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogVideoX
[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://arxiv.org/abs/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
The abstract from the paper is:
*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
There are two official CogVideoX checkpoints available for image-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
For the CogVideoX 1.5 series:
- Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
- Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
## Inference
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
First, load the pipeline:
```python
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video,load_image
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b").to("cuda") # or "THUDM/CogVideoX-2b"
```
If you are using the image-to-video pipeline, load it as follows:
```python
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
```
Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
```python
pipe.transformer.to(memory_format=torch.channels_last)
```
Compile the components and run inference:
```python
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
# CogVideoX works well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```
The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
```
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
```
### Memory optimization
CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
- `pipe.enable_model_cpu_offload()`:
- Without enabling cpu offloading, memory usage is `33 GB`
- With enabling cpu offloading, memory usage is `19 GB`
- `pipe.enable_sequential_cpu_offload()`:
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
- When enabled, memory usage is under `4 GB`
- `pipe.vae.enable_tiling()`:
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
### Quantized inference
[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs!
It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below.
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
## CogVideoXPipeline
[[autodoc]] CogVideoXPipeline
- all
- __call__
## CogVideoXImageToVideoPipeline
[[autodoc]] CogVideoXImageToVideoPipeline
- all
- __call__
## CogVideoXVideoToVideoPipeline
[[autodoc]] CogVideoXVideoToVideoPipeline
- all
- __call__
## CogVideoXFunControlPipeline
[[autodoc]] CogVideoXFunControlPipeline
- all
- __call__
## CogVideoXPipelineOutput
[[autodoc]] pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput

View File

@@ -0,0 +1,40 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogView3Plus
[CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) from Tsinghua University & ZhipuAI, by Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong, Ming Ding, Jie Tang.
The abstract from the paper is:
*Recent advancements in text-to-image generative systems have been largely driven by diffusion models. However, single-stage text-to-image diffusion models still face challenges, in terms of computational efficiency and the refinement of image details. To tackle the issue, we propose CogView3, an innovative cascaded framework that enhances the performance of text-to-image diffusion. CogView3 is the first model implementing relay diffusion in the realm of text-to-image generation, executing the task by first creating low-resolution images and subsequently applying relay-based super-resolution. This methodology not only results in competitive text-to-image outputs but also greatly reduces both training and inference costs. Our experimental results demonstrate that CogView3 outperforms SDXL, the current state-of-the-art open-source text-to-image diffusion model, by 77.0% in human evaluations, all while requiring only about 1/2 of the inference time. The distilled variant of CogView3 achieves comparable performance while only utilizing 1/10 of the inference time by SDXL.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
## CogView3PlusPipeline
[[autodoc]] CogView3PlusPipeline
- all
- __call__
## CogView3PipelineOutput
[[autodoc]] pipelines.cogview3.pipeline_output.CogView3PipelineOutput

View File

@@ -0,0 +1,56 @@
<!--Copyright 2024 The HuggingFace Team, The InstantX Team, and the XLabs Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Flux.1
FluxControlNetPipeline is an implementation of ControlNet for Flux.1.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This controlnet code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for Flux-ControlNet in the table below:
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny) |
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Depth) |
| Union | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union) |
XLabs ControlNets are also supported, which was contributed by the [XLabs team](https://huggingface.co/XLabs-AI).
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-canny-diffusers) |
| Depth | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-depth-diffusers) |
| HED | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-hed-diffusers) |
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## FluxControlNetPipeline
[[autodoc]] FluxControlNetPipeline
- all
- __call__
## FluxPipelineOutput
[[autodoc]] pipelines.flux.pipeline_output.FluxPipelineOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2023 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -22,7 +22,17 @@ The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for SD3-ControlNet on [The InstantX Team](https://huggingface.co/InstantX) Hub profile.
This controlnet code is mainly implemented by [The InstantX Team](https://huggingface.co/InstantX). The inpainting-related code was developed by [The Alimama Creative Team](https://huggingface.co/alimama-creative). You can find pre-trained checkpoints for SD3-ControlNet in the table below:
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Canny) |
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Depth) |
| Pose | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Pose) |
| Tile | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Tile) |
| Inpainting | [The AlimamaCreative Team](https://huggingface.co/alimama-creative) | [link](https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting) |
<Tip>
@@ -35,5 +45,10 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
- all
- __call__
## StableDiffusion3ControlNetInpaintingPipeline
[[autodoc]] pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet_inpainting.StableDiffusion3ControlNetInpaintingPipeline
- all
- __call__
## StableDiffusion3PipelineOutput
[[autodoc]] pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput

View File

@@ -0,0 +1,347 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Flux
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original [blog post](https://blackforestlabs.ai/announcing-black-forest-labs/) by the creators of Flux, Black Forest Labs.
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).
<Tip>
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
</Tip>
Flux comes in the following variants:
| model type | model id |
|:----------:|:--------:|
| Timestep-distilled | [`black-forest-labs/FLUX.1-schnell`](https://huggingface.co/black-forest-labs/FLUX.1-schnell) |
| Guidance-distilled | [`black-forest-labs/FLUX.1-dev`](https://huggingface.co/black-forest-labs/FLUX.1-dev) |
| Fill Inpainting/Outpainting (Guidance-distilled) | [`black-forest-labs/FLUX.1-Fill-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev) |
| Canny Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Canny-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
| Depth Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Depth-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
| Canny Control (LoRA) | [`black-forest-labs/FLUX.1-Canny-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora) |
| Depth Control (LoRA) | [`black-forest-labs/FLUX.1-Depth-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora) |
| Redux (Adapter) | [`black-forest-labs/FLUX.1-Redux-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev) |
All checkpoints have different usage which we detail below.
### Timestep-distilled
* `max_sequence_length` cannot be more than 256.
* `guidance_scale` needs to be 0.
* As this is a timestep-distilled model, it benefits from fewer sampling steps.
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
```
### Guidance-distilled
* The guidance-distilled variant takes about 50 sampling steps for good-quality generation.
* It doesn't have any limitations around the `max_sequence_length`.
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "a tiny astronaut hatching from an egg on the moon"
out = pipe(
prompt=prompt,
guidance_scale=3.5,
height=768,
width=1360,
num_inference_steps=50,
).images[0]
out.save("image.png")
```
### Fill Inpainting/Outpainting
* Flux Fill pipeline does not require `strength` as an input like regular inpainting pipelines.
* It supports both inpainting and outpainting.
```python
import torch
from diffusers import FluxFillPipeline
from diffusers.utils import load_image
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
image = pipe(
prompt="a white paper cup",
image=image,
mask_image=mask,
height=1632,
width=1232,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"output.png")
```
### Canny Control
**Note:** `black-forest-labs/Flux.1-Canny-dev` is _not_ a [`ControlNetModel`] model. ControlNet models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Canny Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
```python
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
).images[0]
image.save("output.png")
```
### Depth Control
**Note:** `black-forest-labs/Flux.1-Depth-dev` is _not_ a ControlNet model. [`ControlNetModel`] models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
```python
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=30,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
### Redux
* Flux Redux pipeline is an adapter for FLUX.1 base models. It can be used with both flux-dev and flux-schnell, for image-to-image generation.
* You can first use the `FluxPriorReduxPipeline` to get the `prompt_embeds` and `pooled_prompt_embeds`, and then feed them into the `FluxPipeline` for image-to-image generation.
* When use `FluxPriorReduxPipeline` with a base pipeline, you can set `text_encoder=None` and `text_encoder_2=None` in the base pipeline, in order to save VRAM.
```python
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16
repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev"
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
pipe = FluxPipeline.from_pretrained(
repo_base,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to(device)
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
guidance_scale=2.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
**pipe_prior_output,
).images
images[0].save("flux-redux.png")
```
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
FP16 inference code:
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) # can replace schnell with dev
# to run on low vram GPUs (i.e. between 4 and 32 GB VRAM)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(torch.float16) # casting here instead of in the pipeline constructor because doing so in the constructor loads all models into CPU memory at once
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
```
## Single File Loading for the `FluxTransformer2DModel`
The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
<Tip>
`FP8` inference can be brittle depending on the GPU type, CUDA version, and `torch` version that you are using. It is recommended that you use the `optimum-quanto` library in order to run FP8 inference on your machine.
</Tip>
The following example demonstrates how to run Flux with less than 16GB of VRAM.
First install `optimum-quanto`
```shell
pip install optimum-quanto
```
Then run the following example
```python
import torch
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from optimum.quanto import freeze, qfloat8, quantize
bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co/Kijai/flux-fp8/blob/main/flux1-dev-fp8.safetensors", torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=3.5,
output_type="pil",
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-fp8-dev.png")
```
## FluxPipeline
[[autodoc]] FluxPipeline
- all
- __call__
## FluxImg2ImgPipeline
[[autodoc]] FluxImg2ImgPipeline
- all
- __call__
## FluxInpaintPipeline
[[autodoc]] FluxInpaintPipeline
- all
- __call__
## FluxControlNetInpaintPipeline
[[autodoc]] FluxControlNetInpaintPipeline
- all
- __call__
## FluxControlNetImg2ImgPipeline
[[autodoc]] FluxControlNetImg2ImgPipeline
- all
- __call__
## FluxControlPipeline
[[autodoc]] FluxControlPipeline
- all
- __call__
## FluxControlImg2ImgPipeline
[[autodoc]] FluxControlImg2ImgPipeline
- all
- __call__
## FluxPriorReduxPipeline
[[autodoc]] FluxPriorReduxPipeline
- all
- __call__
## FluxFillPipeline
[[autodoc]] FluxFillPipeline
- all
- __call__

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/kolors_header_collage.png)
Kolors is a large-scale text-to-image generation model based on latent diffusion, developed by [the Kuaishou Kolors team](kwai-kolors@kuaishou.com). Trained on billions of text-image pairs, Kolors exhibits significant advantages over both open-source and closed-source models in visual quality, complex semantic accuracy, and text rendering for both Chinese and English characters. Furthermore, Kolors supports both Chinese and English inputs, demonstrating strong performance in understanding and generating Chinese-specific content. For more details, please refer to this [technical report](https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf).
Kolors is a large-scale text-to-image generation model based on latent diffusion, developed by [the Kuaishou Kolors team](https://github.com/Kwai-Kolors/Kolors). Trained on billions of text-image pairs, Kolors exhibits significant advantages over both open-source and closed-source models in visual quality, complex semantic accuracy, and text rendering for both Chinese and English characters. Furthermore, Kolors supports both Chinese and English inputs, demonstrating strong performance in understanding and generating Chinese-specific content. For more details, please refer to this [technical report](https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf).
The abstract from the technical report is:
@@ -74,7 +74,7 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pipe = KolorsPipeline.from_pretrained(
"Kwai-Kolors/Kolors-diffusers", image_encoder=image_encoder, torch_dtype=torch.float16, variant="fp16"
).to("cuda")
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter(
@@ -105,3 +105,11 @@ image.save("kolors_ipa_sample.png")
- all
- __call__
## KolorsImg2ImgPipeline
[[autodoc]] KolorsImg2ImgPipeline
- all
- __call__

View File

@@ -59,7 +59,7 @@ First, load the pipeline:
```python
from diffusers import LuminaText2ImgPipeline
import torch
import torch
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
@@ -87,4 +87,4 @@ image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit w
[[autodoc]] LuminaText2ImgPipeline
- all
- __call__

View File

@@ -0,0 +1,36 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# Mochi
[Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo.
*Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. The model is released under a permissive Apache 2.0 license.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## MochiPipeline
[[autodoc]] MochiPipeline
- all
- __call__
## MochiPipelineOutput
[[autodoc]] pipelines.mochi.pipeline_output.MochiPipelineOutput

View File

@@ -30,63 +30,64 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| Pipeline | Tasks |
|---|---|
| [AltDiffusion](alt_diffusion) | image2image |
| [aMUSEd](amused) | text2image |
| [AnimateDiff](animatediff) | text2video |
| [Attend-and-Excite](attend_and_excite) | text2image |
| [Audio Diffusion](audio_diffusion) | image2audio |
| [AudioLDM](audioldm) | text2audio |
| [AudioLDM2](audioldm2) | text2audio |
| [AuraFlow](auraflow) | text2image |
| [BLIP Diffusion](blip_diffusion) | text2image |
| [CogVideoX](cogvideox) | text2video |
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
| [ControlNet with Flux.1](controlnet_flux) | text2image |
| [ControlNet with Hunyuan-DiT](controlnet_hunyuandit) | text2image |
| [ControlNet with Stable Diffusion 3](controlnet_sd3) | text2image |
| [ControlNet with Stable Diffusion XL](controlnet_sdxl) | text2image |
| [ControlNet-XS](controlnetxs) | text2image |
| [ControlNet-XS with Stable Diffusion XL](controlnetxs_sdxl) | text2image |
| [Cycle Diffusion](cycle_diffusion) | image2image |
| [Dance Diffusion](dance_diffusion) | unconditional audio generation |
| [DDIM](ddim) | unconditional image generation |
| [DDPM](ddpm) | unconditional image generation |
| [DeepFloyd IF](deepfloyd_if) | text2image, image2image, inpainting, super-resolution |
| [DiffEdit](diffedit) | inpainting |
| [DiT](dit) | text2image |
| [GLIGEN](stable_diffusion/gligen) | text2image |
| [Flux](flux) | text2image |
| [Hunyuan-DiT](hunyuandit) | text2image |
| [I2VGen-XL](i2vgenxl) | text2video |
| [InstructPix2Pix](pix2pix) | image editing |
| [Kandinsky 2.1](kandinsky) | text2image, image2image, inpainting, interpolation |
| [Kandinsky 2.2](kandinsky_v22) | text2image, image2image, inpainting |
| [Kandinsky 3](kandinsky3) | text2image, image2image |
| [Kolors](kolors) | text2image |
| [Latent Consistency Models](latent_consistency_models) | text2image |
| [Latent Diffusion](latent_diffusion) | text2image, super-resolution |
| [LDM3D](stable_diffusion/ldm3d_diffusion) | text2image, text-to-3D, text-to-pano, upscaling |
| [Latte](latte) | text2image |
| [LEDITS++](ledits_pp) | image editing |
| [Lumina-T2X](lumina) | text2image |
| [Marigold](marigold) | depth |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [PAG](pag) | text2image |
| [Paint by Example](paint_by_example) | inpainting |
| [ParaDiGMS](paradigms) | text2image |
| [Pix2Pix Zero](pix2pix_zero) | image editing |
| [PIA](pia) | image2video |
| [PixArt-α](pixart) | text2image |
| [PNDM](pndm) | unconditional image generation |
| [RePaint](repaint) | inpainting |
| [Score SDE VE](score_sde_ve) | unconditional image generation |
| [PixArt-Σ](pixart_sigma) | text2image |
| [Self-Attention Guidance](self_attention_guidance) | text2image |
| [Semantic Guidance](semantic_stable_diffusion) | text2image |
| [Shap-E](shap_e) | text-to-3D, image-to-3D |
| [Spectrogram Diffusion](spectrogram_diffusion) | |
| [Stable Audio](stable_audio) | text2audio |
| [Stable Cascade](stable_cascade) | text2image |
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
| [Stable Diffusion Model Editing](model_editing) | model editing |
| [Stable Diffusion XL](stable_diffusion/stable_diffusion_xl) | text2image, image2image, inpainting |
| [Stable Diffusion XL Turbo](stable_diffusion/sdxl_turbo) | text2image, image2image, inpainting |
| [Stable unCLIP](stable_unclip) | text2image, image variation |
| [Stochastic Karras VE](stochastic_karras_ve) | unconditional image generation |
| [T2I-Adapter](stable_diffusion/adapter) | text2image |
| [Text2Video](text_to_video) | text2video, video2video |
| [Text2Video-Zero](text_to_video_zero) | text2video |
| [unCLIP](unclip) | text2image, image variation |
| [Unconditional Latent Diffusion](latent_diffusion_uncond) | unconditional image generation |
| [UniDiffuser](unidiffuser) | text2image, image2text, image variation, text variation, unconditional image generation, unconditional audio generation |
| [Value-guided planning](value_guided_sampling) | value guided sampling |
| [Versatile Diffusion](versatile_diffusion) | text2image, image variation |
| [VQ Diffusion](vq_diffusion) | text2image |
| [Wuerstchen](wuerstchen) | text2image |
## DiffusionPipeline

View File

@@ -20,13 +20,49 @@ The abstract from the paper is:
*Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.*
PAG can be used by specifying the `pag_applied_layers` as a parameter when instantiating a PAG pipeline. It can be a single string or a list of strings. Each string can be a unique layer identifier or a regular expression to identify one or more layers.
- Full identifier as a normal string: `down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor`
- Full identifier as a RegEx: `down_blocks.2.(attentions|motion_modules).0.transformer_blocks.0.attn1.processor`
- Partial identifier as a RegEx: `down_blocks.2`, or `attn1`
- List of identifiers (can be combo of strings and ReGex): `["blocks.1", "blocks.(14|20)", r"down_blocks\.(2,3)"]`
<Tip warning={true}>
Since RegEx is supported as a way for matching layer identifiers, it is crucial to use it correctly otherwise there might be unexpected behaviour. The recommended way to use PAG is by specifying layers as `blocks.{layer_index}` and `blocks.({layer_index_1|layer_index_2|...})`. Using it in any other way, while doable, may bypass our basic validation checks and give you unexpected results.
</Tip>
## AnimateDiffPAGPipeline
[[autodoc]] AnimateDiffPAGPipeline
- all
- __call__
## HunyuanDiTPAGPipeline
[[autodoc]] HunyuanDiTPAGPipeline
- all
- __call__
## KolorsPAGPipeline
[[autodoc]] KolorsPAGPipeline
- all
- __call__
## StableDiffusionPAGPipeline
[[autodoc]] StableDiffusionPAGPipeline
- all
- __call__
## StableDiffusionPAGImg2ImgPipeline
[[autodoc]] StableDiffusionPAGImg2ImgPipeline
- all
- __call__
## StableDiffusionControlNetPAGPipeline
[[autodoc]] StableDiffusionControlNetPAGPipeline
## StableDiffusionControlNetPAGInpaintPipeline
[[autodoc]] StableDiffusionControlNetPAGInpaintPipeline
- all
- __call__
@@ -49,3 +85,23 @@ The abstract from the paper is:
[[autodoc]] StableDiffusionXLControlNetPAGPipeline
- all
- __call__
## StableDiffusionXLControlNetPAGImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetPAGImg2ImgPipeline
- all
- __call__
## StableDiffusion3PAGPipeline
[[autodoc]] StableDiffusion3PAGPipeline
- all
- __call__
## StableDiffusion3PAGImg2ImgPipeline
[[autodoc]] StableDiffusion3PAGImg2ImgPipeline
- all
- __call__
## PixArtSigmaPAGPipeline
[[autodoc]] PixArtSigmaPAGPipeline
- all
- __call__

View File

@@ -16,12 +16,12 @@ Stable Audio was proposed in [Stable Audio Open](https://arxiv.org/abs/2407.1435
Stable Audio Open generates variable-length (up to 47s) stereo audio at 44.1kHz from text prompts. It comprises three components: an autoencoder that compresses waveforms into a manageable sequence length, a T5-based text embedding for text conditioning, and a transformer-based diffusion (DiT) model that operates in the latent space of the autoencoder.
Stable Audio is trained on a corpus of around 48k audio recordings, where around 47k are from Freesound and the rest are from the Free Music Archive (FMA). All audio files are licensed under CC0, CC BY, or CC Sampling+. This data is used to train the autoencoder and the DiT.
Stable Audio is trained on a corpus of around 48k audio recordings, where around 47k are from Freesound and the rest are from the Free Music Archive (FMA). All audio files are licensed under CC0, CC BY, or CC Sampling+. This data is used to train the autoencoder and the DiT.
The abstract of the paper is the following:
*Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.*
This pipeline was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe). The original codebase can be found at [Stability-AI/stable-audio-tool](https://github.com/Stability-AI/stable-audio-tool).
This pipeline was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe). The original codebase can be found at [Stability-AI/stable-audio-tools](https://github.com/Stability-AI/stable-audio-tools).
## Tips

View File

@@ -19,7 +19,7 @@ The Stable Diffusion model can also be applied to inpainting which lets you edit
It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such
as [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting). Default
text-to-image Stable Diffusion checkpoints, such as
[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) are also compatible but they might be less performant.
[stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are also compatible but they might be less performant.
<Tip>

View File

@@ -203,7 +203,7 @@ from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
gr.Interface.from_pipeline(pipe).launch()
```

View File

@@ -54,6 +54,11 @@ image = pipe(
image.save("sd3_hello_world.png")
```
**Note:** Stable Diffusion 3.5 can also be run using the SD3 pipeline, and all mentioned optimizations and techniques apply to it as well. In total there are three official models in the SD3 family:
- [`stabilityai/stable-diffusion-3-medium-diffusers`](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers)
- [`stabilityai/stable-diffusion-3.5-large`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large)
- [`stabilityai/stable-diffusion-3.5-large-turbo`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large-turbo)
## Memory Optimisations for SD3
SD3 uses three text encoders, one if which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
@@ -308,6 +313,26 @@ image = pipe("a picture of a cat holding a sign that says hello world").images[0
image.save('sd3-single-file-t5-fp8.png')
```
### Loading the single file checkpoint for the Stable Diffusion 3.5 Transformer Model
```python
import torch
from diffusers import SD3Transformer2DModel, StableDiffusion3Pipeline
transformer = SD3Transformer2DModel.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo/blob/main/sd3.5_large.safetensors",
torch_dtype=torch.bfloat16,
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
image = pipe("a cat holding a sign that says hello world").images[0]
image.save("sd35.png")
```
## StableDiffusion3Pipeline
[[autodoc]] StableDiffusion3Pipeline

View File

@@ -40,8 +40,9 @@ To generate a video from prompt, run the following Python code:
```python
import torch
from diffusers import TextToVideoZeroPipeline
import imageio
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
prompt = "A panda is playing guitar on times square"
@@ -63,7 +64,7 @@ import torch
from diffusers import TextToVideoZeroPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
seed = 0
video_length = 24 #24 ÷ 4fps = 6 seconds
@@ -137,7 +138,7 @@ To generate a video from prompt with additional pose control
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16

View File

@@ -0,0 +1,33 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quantization
Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Diffusers supports 8-bit and 4-bit quantization with [bitsandbytes](https://huggingface.co/docs/bitsandbytes/en/index).
Quantization techniques that aren't supported in Transformers can be added with the [`DiffusersQuantizer`] class.
<Tip>
Learn how to quantize models in the [Quantization](../quantization/overview) guide.
</Tip>
## BitsAndBytesConfig
[[autodoc]] BitsAndBytesConfig
## DiffusersQuantizer
[[autodoc]] quantizers.base.DiffusersQuantizer

View File

@@ -45,6 +45,15 @@ Many schedulers are implemented from the [k-diffusion](https://github.com/crowso
| N/A | [`DEISMultistepScheduler`] | |
| N/A | [`UniPCMultistepScheduler`] | |
## Noise schedules and schedule types
| A1111/k-diffusion | 🤗 Diffusers |
|--------------------------|----------------------------------------------------------------------------|
| Karras | init with `use_karras_sigmas=True` |
| sgm_uniform | init with `timestep_spacing="trailing"` |
| simple | init with `timestep_spacing="trailing"` |
| exponential | init with `timestep_spacing="linspace"`, `use_exponential_sigmas=True` |
| beta | init with `timestep_spacing="linspace"`, `use_beta_sigmas=True` |
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
## SchedulerMixin

View File

@@ -0,0 +1,82 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Community Projects
Welcome to Community Projects. This space is dedicated to showcasing the incredible work and innovative applications created by our vibrant community using the `diffusers` library.
This section aims to:
- Highlight diverse and inspiring projects built with `diffusers`
- Foster knowledge sharing within our community
- Provide real-world examples of how `diffusers` can be leveraged
Happy exploring, and thank you for being part of the Diffusers community!
<table>
<tr>
<th>Project Name</th>
<th>Description</th>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/carson-katri/dream-textures"> dream-textures </a></td>
<td>Stable Diffusion built-in to Blender</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/megvii-research/HiDiffusion"> HiDiffusion </a></td>
<td>Increases the resolution and speed of your diffusion model by only adding a single line of code</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/lllyasviel/IC-Light"> IC-Light </a></td>
<td>IC-Light is a project to manipulate the illumination of images</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/InstantID/InstantID"> InstantID </a></td>
<td>InstantID : Zero-shot Identity-Preserving Generation in Seconds</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Sanster/IOPaint"> IOPaint </a></td>
<td>Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/bmaltais/kohya_ss"> Kohya </a></td>
<td>Gradio GUI for Kohya's Stable Diffusion trainers</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/magic-research/magic-animate"> MagicAnimate </a></td>
<td>MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/levihsu/OOTDiffusion"> OOTDiffusion </a></td>
<td>Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/vladmandic/automatic"> SD.Next </a></td>
<td>SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/ashawkey/stable-dreamfusion"> stable-dreamfusion </a></td>
<td>Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/HVision-NKU/StoryDiffusion"> StoryDiffusion </a></td>
<td>StoryDiffusion can create a magic story by generating consistent images and videos.</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/cumulo-autumn/StreamDiffusion"> StreamDiffusion </a></td>
<td>A Pipeline-Level Solution for Real-Time Interactive Generation</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>A server configured for Inpainting/Generation/img2img with one stable diffusion model</td>
</tr>
</table>

View File

@@ -92,7 +92,7 @@ images = sd_pipeline(sample_prompts, num_images_per_prompt=1, generator=generato
![parti-prompts-14](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-14.png)
We can also set `num_images_per_prompt` accordingly to compare different images for the same prompt. Running the same pipeline but with a different checkpoint ([v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)), yields:
We can also set `num_images_per_prompt` accordingly to compare different images for the same prompt. Running the same pipeline but with a different checkpoint ([v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)), yields:
![parti-prompts-15](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-15.png)
@@ -177,11 +177,11 @@ generator = torch.manual_seed(seed)
images = sd_pipeline(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
Then we load the [v1-5 checkpoint](https://huggingface.co/runwayml/stable-diffusion-v1-5) to generate images:
Then we load the [v1-5 checkpoint](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) to generate images:
```python
model_ckpt_1_5 = "runwayml/stable-diffusion-v1-5"
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=weight_dtype).to(device)
model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5"
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=torch.float16).to("cuda")
images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
@@ -198,7 +198,7 @@ print(f"CLIP Score with v-1-5: {sd_clip_score_1_5}")
# CLIP Score with v-1-5: 36.2137
```
It seems like the [v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint performs better than its predecessor. Note, however, that the number of prompts we used to compute the CLIP scores is quite low. For a more practical evaluation, this number should be way higher, and the prompts should be diverse.
It seems like the [v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint performs better than its predecessor. Note, however, that the number of prompts we used to compute the CLIP scores is quite low. For a more practical evaluation, this number should be way higher, and the prompts should be diverse.
<Tip warning={true}>
@@ -280,7 +280,7 @@ from diffusers import StableDiffusionInstructPix2PixPipeline
instruct_pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16
).to(device)
).to("cuda")
```
Now, we perform the edits:
@@ -326,9 +326,9 @@ from transformers import (
clip_id = "openai/clip-vit-large-patch14"
tokenizer = CLIPTokenizer.from_pretrained(clip_id)
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to(device)
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to("cuda")
image_processor = CLIPImageProcessor.from_pretrained(clip_id)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to("cuda")
```
Notice that we are using a particular CLIP checkpoint, i.e., `openai/clip-vit-large-patch14`. This is because the Stable Diffusion pre-training was performed with this CLIP variant. For more details, refer to the [documentation](https://huggingface.co/docs/transformers/model_doc/clip).
@@ -350,7 +350,7 @@ class DirectionalSimilarity(nn.Module):
def preprocess_image(self, image):
image = self.image_processor(image, return_tensors="pt")["pixel_values"]
return {"pixel_values": image.to(device)}
return {"pixel_values": image.to("cuda")}
def tokenize_text(self, text):
inputs = self.tokenizer(
@@ -360,7 +360,7 @@ class DirectionalSimilarity(nn.Module):
truncation=True,
return_tensors="pt",
)
return {"input_ids": inputs.input_ids.to(device)}
return {"input_ids": inputs.input_ids.to("cuda")}
def encode_image(self, image):
preprocessed_image = self.preprocess_image(image)
@@ -459,6 +459,7 @@ with ZipFile(local_filepath, "r") as zipper:
```python
from PIL import Image
import os
import numpy as np
dataset_path = "sample-imagenet-images"
image_paths = sorted([os.path.join(dataset_path, x) for x in os.listdir(dataset_path)])
@@ -477,6 +478,7 @@ Now that the images are loaded, let's apply some lightweight pre-processing on t
```python
from torchvision.transforms import functional as F
import torch
def preprocess_image(image):
@@ -498,6 +500,10 @@ dit_pipeline = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=
dit_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(dit_pipeline.scheduler.config)
dit_pipeline = dit_pipeline.to("cuda")
seed = 0
generator = torch.manual_seed(seed)
words = [
"cassette player",
"chainsaw",

View File

@@ -65,7 +65,7 @@ Pipelines are designed to be easy to use (therefore do not follow [*Simple over
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.

View File

@@ -95,17 +95,17 @@ print(f"Model downloaded at {model_path}")
Once you have downloaded a snapshot of the model, you can test it using Apple's Python script.
```shell
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i models/coreml-stable-diffusion-v1-4_original_packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i ./models/coreml-stable-diffusion-v1-4_original_packages/original/packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
```
Pass the path of the downloaded checkpoint with `-i` flag to the script. `--compute-unit` indicates the hardware you want to allow for inference. It must be one of the following options: `ALL`, `CPU_AND_GPU`, `CPU_ONLY`, `CPU_AND_NE`. You may also provide an optional output path, and a seed for reproducibility.
The inference script assumes you're using the original version of the Stable Diffusion model, `CompVis/stable-diffusion-v1-4`. If you use another model, you *have* to specify its Hub id in the inference command line, using the `--model-version` option. This works for models already supported and custom models you trained or fine-tuned yourself.
For example, if you want to use [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5):
For example, if you want to use [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5):
```shell
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" --compute-unit ALL -o output --seed 93 -i models/coreml-stable-diffusion-v1-5_original_packages --model-version runwayml/stable-diffusion-v1-5
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" --compute-unit ALL -o output --seed 93 -i models/coreml-stable-diffusion-v1-5_original_packages --model-version stable-diffusion-v1-5/stable-diffusion-v1-5
```
## Core ML inference in Swift

View File

@@ -23,7 +23,7 @@ Then load and enable the [`DeepCacheSDHelper`](https://github.com/horseee/DeepCa
```diff
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
+ from DeepCache import DeepCacheSDHelper
+ helper = DeepCacheSDHelper(pipe=pipe)

View File

@@ -47,7 +47,7 @@ import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -125,3 +125,5 @@ image
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder</figcaption>
</div>
</div>
More tiny autoencoder models for other Stable Diffusion models, like Stable Diffusion 3, are available from [madebyollin](https://huggingface.co/madebyollin).

View File

@@ -61,7 +61,7 @@ For more information, check out 🤗 Optimum Habana's [documentation](https://hu
We benchmarked Habana's first-generation Gaudi and Gaudi2 with the [Habana/stable-diffusion](https://huggingface.co/Habana/stable-diffusion) and [Habana/stable-diffusion-2](https://huggingface.co/Habana/stable-diffusion-2) Gaudi configurations (mixed precision bf16/fp32) to demonstrate their performance.
For [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on 512x512 images:
For [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) on 512x512 images:
| | Latency (batch size = 1) | Throughput |
| ---------------------- |:------------------------:|:---------------------------:|

View File

@@ -41,7 +41,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -66,7 +66,7 @@ import torch
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -92,7 +92,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -140,7 +140,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -201,7 +201,7 @@ def generate_inputs():
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
@@ -265,7 +265,7 @@ class UNet2DConditionOutput:
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
@@ -315,7 +315,7 @@ from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")

View File

@@ -24,7 +24,7 @@ The `mps` backend uses PyTorch's `.to()` interface to move the Stable Diffusion
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe = pipe.to("mps")
# Recommended if your computer has < 64 GB of RAM
@@ -46,7 +46,7 @@ If you're using **PyTorch 1.13**, you need to "prime" the pipeline with an addit
```diff
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("mps")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5").to("mps")
pipe.enable_attention_slicing()
prompt = "a photo of an astronaut riding a horse on mars"
@@ -67,7 +67,7 @@ To prevent this from happening, we recommend *attention slicing* to reduce memor
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("mps")
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("mps")
pipeline.enable_attention_slicing()
```

View File

@@ -0,0 +1,61 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AWS Neuron
Diffusers functionalities are available on [AWS Inf2 instances](https://aws.amazon.com/ec2/instance-types/inf2/), which are EC2 instances powered by [Neuron machine learning accelerators](https://aws.amazon.com/machine-learning/inferentia/). These instances aim to provide better compute performance (higher throughput, lower latency) with good cost-efficiency, making them good candidates for AWS users to deploy diffusion models to production.
[Optimum Neuron](https://huggingface.co/docs/optimum-neuron/en/index) is the interface between Hugging Face libraries and AWS Accelerators, including AWS [Trainium](https://aws.amazon.com/machine-learning/trainium/) and AWS [Inferentia](https://aws.amazon.com/machine-learning/inferentia/). It supports many of the features in Diffusers with similar APIs, so it is easier to learn if you're already familiar with Diffusers. Once you have created an AWS Inf2 instance, install Optimum Neuron.
```bash
python -m pip install --upgrade-strategy eager optimum[neuronx]
```
<Tip>
We provide pre-built [Hugging Face Neuron Deep Learning AMI](https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2) (DLAMI) and Optimum Neuron containers for Amazon SageMaker. It's recommended to correctly set up your environment.
</Tip>
The example below demonstrates how to generate images with the Stable Diffusion XL model on an inf2.8xlarge instance (you can switch to cheaper inf2.xlarge instances once the model is compiled). To generate some images, use the [`~optimum.neuron.NeuronStableDiffusionXLPipeline`] class, which is similar to the [`StableDiffusionXLPipeline`] class in Diffusers.
Unlike Diffusers, you need to compile models in the pipeline to the Neuron format, `.neuron`. Launch the following command to export the model to the `.neuron` format.
```bash
optimum-cli export neuron --model stabilityai/stable-diffusion-xl-base-1.0 \
--batch_size 1 \
--height 1024 `# height in pixels of generated image, eg. 768, 1024` \
--width 1024 `# width in pixels of generated image, eg. 768, 1024` \
--num_images_per_prompt 1 `# number of images to generate per prompt, defaults to 1` \
--auto_cast matmul `# cast only matrix multiplication operations` \
--auto_cast_type bf16 `# cast operations from FP32 to BF16` \
sd_neuron_xl/
```
Now generate some images with the pre-compiled SDXL model.
```python
>>> from optimum.neuron import NeuronStableDiffusionXLPipeline
>>> stable_diffusion_xl = NeuronStableDiffusionXLPipeline.from_pretrained("sd_neuron_xl/")
>>> prompt = "a pig with wings flying in floating US dollar banknotes in the air, skyscrapers behind, warm color palette, muted colors, detailed, 8k"
>>> image = stable_diffusion_xl(prompt).images[0]
```
<img
src="https://huggingface.co/datasets/Jingya/document_images/resolve/main/optimum/neuron/sdxl_pig.png"
width="256"
height="256"
alt="peggy generated by sdxl on inf2"
/>
Feel free to check out more guides and examples on different use cases from the Optimum Neuron [documentation](https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/stable_diffusion#generate-images-with-stable-diffusion-models-on-aws-inferentia)!

View File

@@ -27,7 +27,7 @@ To load and run inference, use the [`~optimum.onnxruntime.ORTStableDiffusionPipe
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "sailing ship in storm by Leonardo da Vinci"
image = pipeline(prompt).images[0]
@@ -44,7 +44,7 @@ To export the pipeline in the ONNX format offline and use it later for inference
use the [`optimum-cli export`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) command:
```bash
optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/
optimum-cli export onnx --model stable-diffusion-v1-5/stable-diffusion-v1-5 sd_v15_onnx/
```
Then to perform inference (you don't have to specify `export=True` again):

View File

@@ -29,7 +29,7 @@ To load and run inference, use the [`~optimum.intel.OVStableDiffusionPipeline`].
```python
from optimum.intel import OVStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "sailing ship in storm by Rembrandt"
image = pipeline(prompt).images[0]

View File

@@ -28,7 +28,7 @@ You can use ToMe from the [`tomesd`](https://github.com/dbolya/tomesd) library w
import tomesd
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
+ tomesd.apply_patch(pipeline, ratio=0.5)

View File

@@ -34,7 +34,7 @@ However, if you want to explicitly enable it, you can set a [`DiffusionPipeline`
from diffusers import DiffusionPipeline
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
@@ -49,7 +49,7 @@ In some cases - such as making the pipeline more deterministic or converting it
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_default_attn_processor()
prompt = "a photo of an astronaut riding a horse on mars"
@@ -64,7 +64,7 @@ The `torch.compile` function can often provide an additional speed-up to your Py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images[0]
```
@@ -92,7 +92,7 @@ Expand the dropdown below to find the code used to benchmark each pipeline:
from diffusers import DiffusionPipeline
import torch
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
@@ -122,7 +122,7 @@ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/st
init_image = load_image(url)
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
@@ -183,7 +183,7 @@ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/st
init_image = load_image(url)
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True)

View File

@@ -0,0 +1,121 @@
# xDiT
[xDiT](https://github.com/xdit-project/xDiT) is an inference engine designed for the large scale parallel deployment of Diffusion Transformers (DiTs). xDiT provides a suite of efficient parallel approaches for Diffusion Models, as well as GPU kernel accelerations.
There are four parallel methods supported in xDiT, including [Unified Sequence Parallelism](https://arxiv.org/abs/2405.07719), [PipeFusion](https://arxiv.org/abs/2405.14430), CFG parallelism and data parallelism. The four parallel methods in xDiT can be configured in a hybrid manner, optimizing communication patterns to best suit the underlying network hardware.
Optimization orthogonal to parallelization focuses on accelerating single GPU performance. In addition to utilizing well-known Attention optimization libraries, we leverage compilation acceleration technologies such as torch.compile and onediff.
The overview of xDiT is shown as follows.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/methods/xdit_overview.png">
</div>
You can install xDiT using the following command:
```bash
pip install xfuser
```
Here's an example of using xDiT to accelerate inference of a Diffusers model.
```diff
import torch
from diffusers import StableDiffusion3Pipeline
from xfuser import xFuserArgs, xDiTParallel
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import get_world_group
def main():
+ parser = FlexibleArgumentParser(description="xFuser Arguments")
+ args = xFuserArgs.add_cli_args(parser).parse_args()
+ engine_args = xFuserArgs.from_cli_args(args)
+ engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
pipe = StableDiffusion3Pipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
torch_dtype=torch.float16,
).to(f"cuda:{local_rank}")
# do anything you want with pipeline here
+ pipe = xDiTParallel(pipe, engine_config, input_config)
pipe(
height=input_config.height,
width=input_config.height,
prompt=input_config.prompt,
num_inference_steps=input_config.num_inference_steps,
output_type=input_config.output_type,
generator=torch.Generator(device="cuda").manual_seed(input_config.seed),
)
+ if input_config.output_type == "pil":
+ pipe.save("results", "stable_diffusion_3")
if __name__ == "__main__":
main()
```
As you can see, we only need to use xFuserArgs from xDiT to get configuration parameters, and pass these parameters along with the pipeline object from the Diffusers library into xDiTParallel to complete the parallelization of a specific pipeline in Diffusers.
xDiT runtime parameters can be viewed in the command line using `-h`, and you can refer to this [usage](https://github.com/xdit-project/xDiT?tab=readme-ov-file#2-usage) example for more details.
xDiT needs to be launched using torchrun to support its multi-node, multi-GPU parallel capabilities. For example, the following command can be used for 8-GPU parallel inference:
```bash
torchrun --nproc_per_node=8 ./inference.py --model models/FLUX.1-dev --data_parallel_degree 2 --ulysses_degree 2 --ring_degree 2 --prompt "A snowy mountain" "A small dog" --num_inference_steps 50
```
## Supported models
A subset of Diffusers models are supported in xDiT, such as Flux.1, Stable Diffusion 3, etc. The latest supported models can be found [here](https://github.com/xdit-project/xDiT?tab=readme-ov-file#-supported-dits).
## Benchmark
We tested different models on various machines, and here is some of the benchmark data.
### Flux.1-schnell
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/flux/Flux-2k-L40.png">
</div>
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/flux/Flux-2K-A100.png">
</div>
### Stable Diffusion 3
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/sd3/L40-SD3.png">
</div>
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/sd3/A100-SD3.png">
</div>
### HunyuanDiT
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/L40-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/V100-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/T4-HunyuanDiT.png">
</div>
More detailed performance metric can be found on our [github page](https://github.com/xdit-project/xDiT?tab=readme-ov-file#perf).
## Reference
[xDiT-project](https://github.com/xdit-project/xDiT)
[USP: A Unified Sequence Parallelism Approach for Long Context Generative AI](https://arxiv.org/abs/2405.07719)
[PipeFusion: Displaced Patch Pipeline Parallelism for Inference of Diffusion Transformer Models](https://arxiv.org/abs/2405.14430)

View File

@@ -0,0 +1,260 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# bitsandbytes
[bitsandbytes](https://huggingface.co/docs/bitsandbytes/index) is the easiest option for quantizing a model to 8 and 4-bit. 8-bit quantization multiplies outliers in fp16 with non-outliers in int8, converts the non-outlier values back to fp16, and then adds them together to return the weights in fp16. This reduces the degradative effect outlier values have on a model's performance.
4-bit quantization compresses a model even further, and it is commonly used with [QLoRA](https://hf.co/papers/2305.14314) to finetune quantized LLMs.
To use bitsandbytes, make sure you have the following libraries installed:
```bash
pip install diffusers transformers accelerate bitsandbytes -U
```
Now you can quantize a model by passing a [`BitsAndBytesConfig`] to [`~ModelMixin.from_pretrained`]. This works for any model in any modality, as long as it supports loading with [Accelerate](https://hf.co/docs/accelerate/index) and contains `torch.nn.Linear` layers.
<hfoptions id="bnb">
<hfoption id="8-bit">
Quantizing a model in 8-bit halves the memory-usage:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config
)
```
By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.float32
)
model_8bit.transformer_blocks.layers[-1].norm2.weight.dtype
```
Once a model is quantized, you can push the model to the Hub with the [`~ModelMixin.push_to_hub`] method. The quantization `config.json` file is pushed first, followed by the quantized model weights. You can also save the serialized 4-bit models locally with [`~ModelMixin.save_pretrained`].
</hfoption>
<hfoption id="4-bit">
Quantizing a model in 4-bit reduces your memory-usage by 4x:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config
)
```
By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.float32
)
model_4bit.transformer_blocks.layers[-1].norm2.weight.dtype
```
Call [`~ModelMixin.push_to_hub`] after loading it in 4-bit precision. You can also save the serialized 4-bit models locally with [`~ModelMixin.save_pretrained`].
</hfoption>
</hfoptions>
<Tip warning={true}>
Training with 8-bit and 4-bit weights are only supported for training *extra* parameters.
</Tip>
Check your memory footprint with the `get_memory_footprint` method:
```py
print(model.get_memory_footprint())
```
Quantized models can be loaded from the [`~ModelMixin.from_pretrained`] method without needing to specify the `quantization_config` parameters:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer"
)
```
## 8-bit (LLM.int8() algorithm)
<Tip>
Learn more about the details of 8-bit quantization in this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration)!
</Tip>
This section explores some of the specific features of 8-bit models, such as outlier thresholds and skipping module conversion.
### Outlier threshold
An "outlier" is a hidden state value greater than a certain threshold, and these values are computed in fp16. While the values are usually normally distributed ([-3.5, 3.5]), this distribution can be very different for large models ([-60, 6] or [6, 60]). 8-bit quantization works well for values ~5, but beyond that, there is a significant performance penalty. A good default threshold value is 6, but a lower threshold may be needed for more unstable models (small models or finetuning).
To find the best threshold for your model, we recommend experimenting with the `llm_int8_threshold` parameter in [`BitsAndBytesConfig`]:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_threshold=10,
)
model_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
)
```
### Skip module conversion
For some models, you don't need to quantize every module to 8-bit which can actually cause instability. For example, for diffusion models like [Stable Diffusion 3](../api/pipelines/stable_diffusion/stable_diffusion_3), the `proj_out` module can be skipped using the `llm_int8_skip_modules` parameter in [`BitsAndBytesConfig`]:
```py
from diffusers import SD3Transformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_skip_modules=["proj_out"],
)
model_8bit = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
quantization_config=quantization_config,
)
```
## 4-bit (QLoRA algorithm)
<Tip>
Learn more about its details in this [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
</Tip>
This section explores some of the specific features of 4-bit models, such as changing the compute data type, using the Normal Float 4 (NF4) data type, and using nested quantization.
### Compute data type
To speedup computation, you can change the data type from float32 (the default value) to bf16 using the `bnb_4bit_compute_dtype` parameter in [`BitsAndBytesConfig`]:
```py
import torch
from diffusers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
```
### Normal Float 4 (NF4)
NF4 is a 4-bit data type from the [QLoRA](https://hf.co/papers/2305.14314) paper, adapted for weights initialized from a normal distribution. You should use NF4 for training 4-bit base models. This can be configured with the `bnb_4bit_quant_type` parameter in the [`BitsAndBytesConfig`]:
```py
from diffusers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
model_nf4 = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
quantization_config=nf4_config,
)
```
For inference, the `bnb_4bit_quant_type` does not have a huge impact on performance. However, to remain consistent with the model weights, you should use the `bnb_4bit_compute_dtype` and `torch_dtype` values.
### Nested quantization
Nested quantization is a technique that can save additional memory at no additional performance cost. This feature performs a second quantization of the already quantized weights to save an additional 0.4 bits/parameter.
```py
from diffusers import BitsAndBytesConfig
double_quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
double_quant_model = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
quantization_config=double_quant_config,
)
```
## Dequantizing `bitsandbytes` models
Once quantized, you can dequantize the model to the original precision but this might result in a small quality loss of the model. Make sure you have enough GPU RAM to fit the dequantized model.
```python
from diffusers import BitsAndBytesConfig
double_quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
double_quant_model = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
quantization_config=double_quant_config,
)
model.dequantize()
```
## Resources
* [End-to-end notebook showing Flux.1 Dev inference in a free-tier Colab](https://gist.github.com/sayakpaul/c76bd845b48759e11687ac550b99d8b4)
* [Training](https://gist.github.com/sayakpaul/05afd428bc089b47af7c016e42004527)

View File

@@ -0,0 +1,35 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quantization
Quantization techniques focus on representing data with less information while also trying to not lose too much accuracy. This often means converting a data type to represent the same information with fewer bits. For example, if your model weights are stored as 32-bit floating points and they're quantized to 16-bit floating points, this halves the model size which makes it easier to store and reduces memory-usage. Lower precision can also speedup inference because it takes less time to perform calculations with fewer bits.
<Tip>
Interested in adding a new quantization method to Transformers? Refer to the [Contribute new quantization method guide](https://huggingface.co/docs/transformers/main/en/quantization/contribute) to learn more about adding a new quantization method.
</Tip>
<Tip>
If you are new to the quantization field, we recommend you to check out these beginner-friendly courses about quantization in collaboration with DeepLearning.AI:
* [Quantization Fundamentals with Hugging Face](https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face/)
* [Quantization in Depth](https://www.deeplearning.ai/short-courses/quantization-in-depth/)
</Tip>
## When to use what?
This section will be expanded once Diffusers has multiple quantization backends. Currently, we only support `bitsandbytes`. [This resource](https://huggingface.co/docs/transformers/main/en/quantization/overview#when-to-use-what) provides a good overview of the pros and cons of different quantization techniques.

View File

@@ -54,7 +54,7 @@ The [`DiffusionPipeline`] is the easiest way to use a pretrained diffusion syste
Start by creating an instance of a [`DiffusionPipeline`] and specify which pipeline checkpoint you would like to download.
You can use the [`DiffusionPipeline`] for any [checkpoint](https://huggingface.co/models?library=diffusers&sort=downloads) stored on the Hugging Face Hub.
In this quicktour, you'll load the [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint for text-to-image generation.
In this quicktour, you'll load the [`stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint for text-to-image generation.
<Tip warning={true}>
@@ -67,7 +67,7 @@ Load the model with the [`~DiffusionPipeline.from_pretrained`] method:
```python
>>> from diffusers import DiffusionPipeline
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components. You'll see that the Stable Diffusion pipeline is composed of the [`UNet2DConditionModel`] and [`PNDMScheduler`] among other things:
@@ -124,7 +124,7 @@ You can also use the pipeline locally. The only difference is you need to downlo
```bash
!git lfs install
!git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
!git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```
Then load the saved weights into the pipeline:
@@ -142,7 +142,7 @@ Different schedulers come with different denoising speeds and quality trade-offs
```py
>>> from diffusers import EulerDiscreteScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```

View File

@@ -20,12 +20,12 @@ This is why it's important to get the most *computational* (speed) and *memory*
This tutorial walks you through how to generate faster and better with the [`DiffusionPipeline`].
Begin by loading the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) model:
Begin by loading the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) model:
```python
from diffusers import DiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
```
@@ -238,7 +238,7 @@ Pretty impressive! Let's tweak the second image - corresponding to the `Generato
```python
prompts = [
"portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of an old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
]

View File

@@ -6,12 +6,12 @@ This guide will show you how to adapt a pretrained text-to-image model for inpai
## Configure UNet2DConditionModel parameters
A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) and take a look at the number of `in_channels`:
A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) and take a look at the number of `in_channels`:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
pipeline.unet.config["in_channels"]
4
```
@@ -33,7 +33,7 @@ Initialize a [`UNet2DConditionModel`] with the pretrained text-to-image model we
```py
from diffusers import UNet2DConditionModel
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",

View File

@@ -0,0 +1,291 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoX
CogVideoX is a text-to-video generation model focused on creating more coherent videos aligned with a prompt. It achieves this using several methods.
- a 3D variational autoencoder that compresses videos spatially and temporally, improving compression rate and video accuracy.
- an expert transformer block to help align text and video, and a 3D full attention module for capturing and creating spatially and temporally accurate videos.
The actual test of the video instruction dimension found that CogVideoX has good effects on consistent theme, dynamic information, consistent background, object information, smooth motion, color, scene, appearance style, and temporal style but cannot achieve good results with human action, spatial relationship, and multiple objects.
Finetuning with Diffusers can help make up for these poor results.
## Data Preparation
The training scripts accepts data in two formats.
The first format is suited for small-scale training, and the second format uses a CSV format, which is more appropriate for streaming data for large-scale training. In the future, Diffusers will support the `<Video>` tag.
### Small format
Two files where one file contains line-separated prompts and another file contains line-separated paths to video data (the path to video files must be relative to the path you pass when specifying `--instance_data_root`). Let's take a look at an example to understand this better!
Assume you've specified `--instance_data_root` as `/dataset`, and that this directory contains the files: `prompts.txt` and `videos.txt`.
The `prompts.txt` file should contain line-separated prompts:
```
A black and white animated sequence featuring a rabbit, named Rabbity Ribfried, and an anthropomorphic goat in a musical, playful environment, showcasing their evolving interaction.
A black and white animated sequence on a ship's deck features a bulldog character, named Bully Bulldoger, showcasing exaggerated facial expressions and body language. The character progresses from confident to focused, then to strained and distressed, displaying a range of emotions as it navigates challenges. The ship's interior remains static in the background, with minimalistic details such as a bell and open door. The character's dynamic movements and changing expressions drive the narrative, with no camera movement to distract from its evolving reactions and physical gestures.
...
```
The `videos.txt` file should contain line-separate paths to video files. Note that the path should be _relative_ to the `--instance_data_root` directory.
```
videos/00000.mp4
videos/00001.mp4
...
```
Overall, this is how your dataset would look like if you ran the `tree` command on the dataset root directory:
```
/dataset
├── prompts.txt
├── videos.txt
├── videos
├── videos/00000.mp4
├── videos/00001.mp4
├── ...
```
When using this format, the `--caption_column` must be `prompts.txt` and `--video_column` must be `videos.txt`.
### Stream format
You could use a single CSV file. For the sake of this example, assume you have a `metadata.csv` file. The expected format is:
```
<CAPTION_COLUMN>,<PATH_TO_VIDEO_COLUMN>
"""A black and white animated sequence featuring a rabbit, named Rabbity Ribfried, and an anthropomorphic goat in a musical, playful environment, showcasing their evolving interaction.""","""00000.mp4"""
"""A black and white animated sequence on a ship's deck features a bulldog character, named Bully Bulldoger, showcasing exaggerated facial expressions and body language. The character progresses from confident to focused, then to strained and distressed, displaying a range of emotions as it navigates challenges. The ship's interior remains static in the background, with minimalistic details such as a bell and open door. The character's dynamic movements and changing expressions drive the narrative, with no camera movement to distract from its evolving reactions and physical gestures.""","""00001.mp4"""
...
```
In this case, the `--instance_data_root` should be the location where the videos are stored and `--dataset_name` should be either a path to local folder or a [`~datasets.load_dataset`] compatible dataset hosted on the Hub. Assuming you have videos of Minecraft gameplay at `https://huggingface.co/datasets/my-awesome-username/minecraft-videos`, you would have to specify `my-awesome-username/minecraft-videos`.
When using this format, the `--caption_column` must be `<CAPTION_COLUMN>` and `--video_column` must be `<PATH_TO_VIDEO_COLUMN>`.
You are not strictly restricted to the CSV format. Any format works as long as the `load_dataset` method supports the file format to load a basic `<PATH_TO_VIDEO_COLUMN>` and `<CAPTION_COLUMN>`. The reason for going through these dataset organization gymnastics for loading video data is because `load_dataset` does not fully support all kinds of video formats.
> [!NOTE]
> CogVideoX works best with long and descriptive LLM-augmented prompts for video generation. We recommend pre-processing your videos by first generating a summary using a VLM and then augmenting the prompts with an LLM. To generate the above captions, we use [MiniCPM-V-26](https://huggingface.co/openbmb/MiniCPM-V-2_6) and [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). A very barebones and no-frills example for this is available [here](https://gist.github.com/a-r-r-o-w/4dee20250e82f4e44690a02351324a4a). The official recommendation for augmenting prompts is [ChatGLM](https://huggingface.co/THUDM?search_models=chatglm) and a length of 50-100 words is considered good.
>![NOTE]
> It is expected that your dataset is already pre-processed. If not, some basic pre-processing can be done by playing with the following parameters:
> `--height`, `--width`, `--fps`, `--max_num_frames`, `--skip_frames_start` and `--skip_frames_end`.
> Presently, all videos in your dataset should contain the same number of video frames when using a training batch size > 1.
<!-- TODO: Implement frame packing in future to address above issue. -->
## Training
You need to setup your development environment by installing the necessary requirements. The following packages are required:
- Torch 2.0 or above based on the training features you are utilizing (might require latest or nightly versions for quantized/deepspeed training)
- `pip install diffusers transformers accelerate peft huggingface_hub` for all things modeling and training related
- `pip install datasets decord` for loading video training data
- `pip install bitsandbytes` for using 8-bit Adam or AdamW optimizers for memory-optimized training
- `pip install wandb` optionally for monitoring training logs
- `pip install deepspeed` optionally for [DeepSpeed](https://github.com/microsoft/DeepSpeed) training
- `pip install prodigyopt` optionally if you would like to use the Prodigy optimizer for training
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
Before running the script, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
- PyTorch
```bash
cd examples/cogvideo
pip install -r requirements.txt
```
And initialize an [🤗 Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell (e.g., a notebook)
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if you use torch.compile, there can be dramatic speedups. The PEFT library is used as a backend for LoRA training, so make sure to have `peft>=0.6.0` installed in your environment.
If you would like to push your model to the Hub after training is completed with a neat model card, make sure you're logged in:
```bash
huggingface-cli login
# Alternatively, you could upload your model manually using:
# huggingface-cli upload my-cool-account-name/my-cool-lora-name /path/to/awesome/lora
```
Make sure your data is prepared as described in [Data Preparation](#data-preparation). When ready, you can begin training!
Assuming you are training on 50 videos of a similar concept, we have found 1500-2000 steps to work well. The official recommendation, however, is 100 videos with a total of 4000 steps. Assuming you are training on a single GPU with a `--train_batch_size` of `1`:
- 1500 steps on 50 videos would correspond to `30` training epochs
- 4000 steps on 100 videos would correspond to `40` training epochs
```bash
#!/bin/bash
GPU_IDS="0"
accelerate launch --gpu_ids $GPU_IDS examples/cogvideo/train_cogvideox_lora.py \
--pretrained_model_name_or_path THUDM/CogVideoX-2b \
--cache_dir <CACHE_DIR> \
--instance_data_root <PATH_TO_WHERE_VIDEO_FILES_ARE_STORED> \
--dataset_name my-awesome-name/my-awesome-dataset \
--caption_column <CAPTION_COLUMN> \
--video_column <PATH_TO_VIDEO_COLUMN> \
--id_token <ID_TOKEN> \
--validation_prompt "<ID_TOKEN> Spiderman swinging over buildings:::A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance" \
--validation_prompt_separator ::: \
--num_validation_videos 1 \
--validation_epochs 10 \
--seed 42 \
--rank 64 \
--lora_alpha 64 \
--mixed_precision fp16 \
--output_dir /raid/aryan/cogvideox-lora \
--height 480 --width 720 --fps 8 --max_num_frames 49 --skip_frames_start 0 --skip_frames_end 0 \
--train_batch_size 1 \
--num_train_epochs 30 \
--checkpointing_steps 1000 \
--gradient_accumulation_steps 1 \
--learning_rate 1e-3 \
--lr_scheduler cosine_with_restarts \
--lr_warmup_steps 200 \
--lr_num_cycles 1 \
--enable_slicing \
--enable_tiling \
--optimizer Adam \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--max_grad_norm 1.0 \
--report_to wandb
```
To better track our training experiments, we're using the following flags in the command above:
* `--report_to wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Setting the `<ID_TOKEN>` is not necessary. From some limited experimentation, we found it works better (as it resembles [Dreambooth](https://huggingface.co/docs/diffusers/en/training/dreambooth) training) than without. When provided, the `<ID_TOKEN>` is appended to the beginning of each prompt. So, if your `<ID_TOKEN>` was `"DISNEY"` and your prompt was `"Spiderman swinging over buildings"`, the effective prompt used in training would be `"DISNEY Spiderman swinging over buildings"`. When not provided, you would either be training without any additional token or could augment your dataset to apply the token where you wish before starting the training.
> [!NOTE]
> You can pass `--use_8bit_adam` to reduce the memory requirements of training.
> [!IMPORTANT]
> The following settings have been tested at the time of adding CogVideoX LoRA training support:
> - Our testing was primarily done on CogVideoX-2b. We will work on CogVideoX-5b and CogVideoX-5b-I2V soon
> - One dataset comprised of 70 training videos of resolutions `200 x 480 x 720` (F x H x W). From this, by using frame skipping in data preprocessing, we created two smaller 49-frame and 16-frame datasets for faster experimentation and because the maximum limit recommended by the CogVideoX team is 49 frames. Out of the 70 videos, we created three groups of 10, 25 and 50 videos. All videos were similar in nature of the concept being trained.
> - 25+ videos worked best for training new concepts and styles.
> - We found that it is better to train with an identifier token that can be specified as `--id_token`. This is similar to Dreambooth-like training but normal finetuning without such a token works too.
> - Trained concept seemed to work decently well when combined with completely unrelated prompts. We expect even better results if CogVideoX-5B is finetuned.
> - The original repository uses a `lora_alpha` of `1`. We found this not suitable in many runs, possibly due to difference in modeling backends and training settings. Our recommendation is to set to the `lora_alpha` to either `rank` or `rank // 2`.
> - If you're training on data whose captions generate bad results with the original model, a `rank` of 64 and above is good and also the recommendation by the team behind CogVideoX. If the generations are already moderately good on your training captions, a `rank` of 16/32 should work. We found that setting the rank too low, say `4`, is not ideal and doesn't produce promising results.
> - The authors of CogVideoX recommend 4000 training steps and 100 training videos overall to achieve the best result. While that might yield the best results, we found from our limited experimentation that 2000 steps and 25 videos could also be sufficient.
> - When using the Prodigy opitimizer for training, one can follow the recommendations from [this](https://huggingface.co/blog/sdxl_lora_advanced_script) blog. Prodigy tends to overfit quickly. From my very limited testing, I found a learning rate of `0.5` to be suitable in addition to `--prodigy_use_bias_correction`, `prodigy_safeguard_warmup` and `--prodigy_decouple`.
> - The recommended learning rate by the CogVideoX authors and from our experimentation with Adam/AdamW is between `1e-3` and `1e-4` for a dataset of 25+ videos.
>
> Note that our testing is not exhaustive due to limited time for exploration. Our recommendation would be to play around with the different knobs and dials to find the best settings for your data.
<!-- TODO: Test finetuning with CogVideoX-5b and CogVideoX-5b-I2V and update scripts accordingly -->
## Inference
Once you have trained a lora model, the inference can be done simply loading the lora weights into the `CogVideoXPipeline`.
```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16)
# pipe.load_lora_weights("/path/to/lora/weights", adapter_name="cogvideox-lora") # Or,
pipe.load_lora_weights("my-awesome-hf-username/my-awesome-lora-name", adapter_name="cogvideox-lora") # If loading from the HF Hub
pipe.to("cuda")
# Assuming lora_alpha=32 and rank=64 for training. If different, set accordingly
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
frames = pipe(prompt, guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(frames, "output.mp4", fps=8)
```
## Reduce memory usage
While testing using the diffusers library, all optimizations included in the diffusers library were enabled. This
scheme has not been tested for actual memory usage on devices outside of **NVIDIA A100 / H100** architectures.
Generally, this scheme can be adapted to all **NVIDIA Ampere architecture** and above devices. If optimizations are
disabled, memory consumption will multiply, with peak memory usage being about 3 times the value in the table.
However, speed will increase by about 3-4 times. You can selectively disable some optimizations, including:
```
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
```
+ For multi-GPU inference, the `enable_sequential_cpu_offload()` optimization needs to be disabled.
+ Using INT8 models will slow down inference, which is done to accommodate lower-memory GPUs while maintaining minimal
video quality loss, though inference speed will significantly decrease.
+ The CogVideoX-2B model was trained in `FP16` precision, and all CogVideoX-5B models were trained in `BF16` precision.
We recommend using the precision in which the model was trained for inference.
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
used to quantize the text encoder, transformer, and VAE modules to reduce the memory requirements of CogVideoX. This
allows the model to run on free T4 Colabs or GPUs with smaller memory! Also, note that TorchAO quantization is fully
compatible with `torch.compile`, which can significantly improve inference speed. FP8 precision must be used on
devices with NVIDIA H100 and above, requiring source installation of `torch`, `torchao`, `diffusers`, and `accelerate`
Python packages. CUDA 12.4 is recommended.
+ The inference speed tests also used the above memory optimization scheme. Without memory optimization, inference speed
increases by about 10%. Only the `diffusers` version of the model supports quantization.
+ The model only supports English input; other languages can be translated into English for use via large model
refinement.
+ The memory usage of model fine-tuning is tested in an `8 * H100` environment, and the program automatically
uses `Zero 2` optimization. If a specific number of GPUs is marked in the table, that number or more GPUs must be used
for fine-tuning.
| **Attribute** | **CogVideoX-2B** | **CogVideoX-5B** |
| ------------------------------------ | ---------------------------------------------------------------------- | ---------------------------------------------------------------------- |
| **Model Name** | CogVideoX-2B | CogVideoX-5B |
| **Inference Precision** | FP16* (Recommended), BF16, FP32, FP8*, INT8, Not supported INT4 | BF16 (Recommended), FP16, FP32, FP8*, INT8, Not supported INT4 |
| **Single GPU Inference VRAM** | FP16: Using diffusers 12.5GB* INT8: Using diffusers with torchao 7.8GB* | BF16: Using diffusers 20.7GB* INT8: Using diffusers with torchao 11.4GB* |
| **Multi GPU Inference VRAM** | FP16: Using diffusers 10GB* | BF16: Using diffusers 15GB* |
| **Inference Speed** | Single A100: ~90 seconds, Single H100: ~45 seconds | Single A100: ~180 seconds, Single H100: ~90 seconds |
| **Fine-tuning Precision** | FP16 | BF16 |
| **Fine-tuning VRAM Consumption** | 47 GB (bs=1, LORA) 61 GB (bs=2, LORA) 62GB (bs=1, SFT) | 63 GB (bs=1, LORA) 80 GB (bs=2, LORA) 75GB (bs=1, SFT) |

View File

@@ -276,7 +276,7 @@ That's it! You don't need to add any additional parameters to your training comm
<hfoption id="PyTorch">
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export MODEL_DIR="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="path/to/save/model"
accelerate launch train_controlnet.py \

View File

@@ -1,6 +1,6 @@
# Create a dataset for training
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](hf.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](https://huggingface.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
This guide will show you two ways to create a dataset to finetune on:
@@ -78,7 +78,7 @@ Now the dataset is available for training by passing the dataset name to the `--
```bash
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
--pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \
--dataset_name="name_of_your_dataset" \
<other-arguments>
```
@@ -87,4 +87,4 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Distributed inference with multiple GPUs
# Distributed inference
On distributed setups, you can run inference across multiple GPUs with 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) or [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html), which is useful for generating with multiple prompts in parallel.
@@ -30,7 +30,7 @@ from accelerate import PartialState
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
distributed_state = PartialState()
pipeline.to(distributed_state.device)
@@ -48,7 +48,7 @@ accelerate launch run_distributed.py --num_processes=2
<Tip>
To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) guide.
Refer to this minimal example [script](https://gist.github.com/sayakpaul/cfaebd221820d7b43fae638b4dfa01ba) for running inference across multiple GPUs. To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) guide.
</Tip>
@@ -66,7 +66,7 @@ import torch.multiprocessing as mp
from diffusers import DiffusionPipeline
sd = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
```
@@ -108,4 +108,132 @@ torchrun run_distributed.py --nproc_per_node=2
```
> [!TIP]
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
## Model sharding
Modern diffusion systems such as [Flux](../api/pipelines/flux) are very large and have multiple models. For example, [Flux.1-Dev](https://hf.co/black-forest-labs/FLUX.1-dev) is made up of two text encoders - [T5-XXL](https://hf.co/google/t5-v1_1-xxl) and [CLIP-L](https://hf.co/openai/clip-vit-large-patch14) - a [diffusion transformer](../api/models/flux_transformer), and a [VAE](../api/models/autoencoderkl). With a model this size, it can be challenging to run inference on consumer GPUs.
Model sharding is a technique that distributes models across GPUs when the models don't fit on a single GPU. The example below assumes two 16GB GPUs are available for inference.
Start by computing the text embeddings with the text encoders. Keep the text encoders on two GPUs by setting `device_map="balanced"`. The `balanced` strategy evenly distributes the model on all available GPUs. Use the `max_memory` parameter to allocate the maximum amount of memory for each text encoder on each GPU.
> [!TIP]
> **Only** load the text encoders for this step! The diffusion transformer and VAE are loaded in a later step to preserve memory.
```py
from diffusers import FluxPipeline
import torch
prompt = "a photo of a dog with cat-like look"
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=None,
vae=None,
device_map="balanced",
max_memory={0: "16GB", 1: "16GB"},
torch_dtype=torch.bfloat16
)
with torch.no_grad():
print("Encoding prompts.")
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=prompt, prompt_2=None, max_sequence_length=512
)
```
Once the text embeddings are computed, remove them from the GPU to make space for the diffusion transformer.
```py
import gc
def flush():
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
del pipeline.text_encoder
del pipeline.text_encoder_2
del pipeline.tokenizer
del pipeline.tokenizer_2
del pipeline
flush()
```
Load the diffusion transformer next which has 12.5B parameters. This time, set `device_map="auto"` to automatically distribute the model across two 16GB GPUs. The `auto` strategy is backed by [Accelerate](https://hf.co/docs/accelerate/index) and available as a part of the [Big Model Inference](https://hf.co/docs/accelerate/concept_guides/big_model_inference) feature. It starts by distributing a model across the fastest device first (GPU) before moving to slower devices like the CPU and hard drive if needed. The trade-off of storing model parameters on slower devices is slower inference latency.
```py
from diffusers import FluxTransformer2DModel
import torch
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
device_map="auto",
torch_dtype=torch.bfloat16
)
```
> [!TIP]
> At any point, you can try `print(pipeline.hf_device_map)` to see how the various models are distributed across devices. This is useful for tracking the device placement of the models. You can also try `print(transformer.hf_device_map)` to see how the transformer model is sharded across devices.
Add the transformer model to the pipeline for denoising, but set the other model-level components like the text encoders and VAE to `None` because you don't need them yet.
```py
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder=None,
text_encoder_2=None,
tokenizer=None,
tokenizer_2=None,
vae=None,
transformer=transformer,
torch_dtype=torch.bfloat16
)
print("Running denoising.")
height, width = 768, 1360
latents = pipeline(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=50,
guidance_scale=3.5,
height=height,
width=width,
output_type="latent",
).images
```
Remove the pipeline and transformer from memory as they're no longer needed.
```py
del pipeline.transformer
del pipeline
flush()
```
Finally, decode the latents with the VAE into an image. The VAE is typically small enough to be loaded on a single GPU.
```py
from diffusers import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():
print("Running decoding.")
latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
image = vae.decode(latents, return_dict=False)[0]
image = image_processor.postprocess(image, output_type="pil")
image[0].save("split_transformer.png")
```
By selectively loading and unloading the models you need at a given stage and sharding the largest models across multiple GPUs, it is possible to run inference with large models on consumer GPUs.

View File

@@ -315,7 +315,7 @@ That's it! You don't need to add any additional parameters to your training comm
<hfoption id="PyTorch">
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path_to_saved_model"
@@ -374,7 +374,7 @@ unet = UNet2DConditionModel.from_pretrained("path/to/model/checkpoint-100/unet")
text_encoder = CLIPTextModel.from_pretrained("path/to/model/checkpoint-100/checkpoint-100/text_encoder")
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16,
"stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16,
).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[InstructPix2Pix](https://hf.co/papers/2211.09800) is a Stable Diffusion model trained to edit images from human-provided instructions. For example, your prompt can be "turn the clouds rainy" and the model will edit the input image accordingly. This model is conditioned on the text prompt (or editing instruction) and the input image.
This guide will explore the [train_instruct_pix2pix.py](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py) training script to help you become familiar with it, and how you can adapt it for your own use-case.
This guide will explore the [train_instruct_pix2pix.py](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py) training script to help you become familiar with it, and how you can adapt it for your own use case.
Before running the script, make sure you install the library from source:
@@ -117,7 +117,7 @@ optimizer = optimizer_cls(
)
```
Next, the edited images and and edit instructions are [preprocessed](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L624) and [tokenized](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L610C24-L610C24). It is important the same image transformations are applied to the original and edited images.
Next, the edited images and edit instructions are [preprocessed](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L624) and [tokenized](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L610C24-L610C24). It is important the same image transformations are applied to the original and edited images.
```py
def preprocess_train(examples):
@@ -249,4 +249,4 @@ The SDXL training script is discussed in more detail in the [SDXL training](sdxl
Congratulations on training your own InstructPix2Pix model! 🥳 To learn more about the model, it may be helpful to:
- Read the [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd) blog post to learn more about some experiments we've done with InstructPix2Pix, dataset preparation, and results for different instructions.
- Read the [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd) blog post to learn more about some experiments we've done with InstructPix2Pix, dataset preparation, and results for different instructions.

View File

@@ -193,7 +193,7 @@ Now you're ready to launch the training script and start distilling!
For this guide, you'll use the `--train_shards_path_or_url` to specify the path to the [Conceptual Captions 12M](https://github.com/google-research-datasets/conceptual-12m) dataset stored on the Hub [here](https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset). Set the `MODEL_DIR` environment variable to the name of the teacher model and `OUTPUT_DIR` to where you want to save the model.
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export MODEL_DIR="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_sd_wds.py \
@@ -225,7 +225,7 @@ from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
import torch
unet = UNet2DConditionModel.from_pretrained("your-username/your-model", torch_dtype=torch.float16, variant="fp16")
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipeline.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipeline.to("cuda")

View File

@@ -184,7 +184,7 @@ A full training run takes ~5 hours on a 2080 Ti GPU with 11GB of VRAM.
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="/sddata/finetune/lora/naruto"
export HUB_MODEL_ID="naruto-lora"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
@@ -218,7 +218,7 @@ Once training has been completed, you can use your model for inference:
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
image = pipeline("A naruto with blue eyes").images[0]
```

View File

@@ -167,7 +167,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export dataset_name="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
@@ -201,7 +201,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export dataset_name="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \

View File

@@ -193,7 +193,7 @@ One more thing before you launch the script. If you're interested in following a
<hfoption id="PyTorch">
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export DATA_DIR="./cat"
accelerate launch textual_inversion.py \
@@ -248,7 +248,7 @@ After training is complete, you can use your newly trained model for inference l
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("sd-concepts-library/cat-toy")
image = pipeline("A <cat-toy> train", num_inference_steps=50).images[0]
image.save("cat-train.png")

Some files were not shown because too many files have changed in this diff Show More