Compare commits

...

2 Commits

Author SHA1 Message Date
YiYi Xu
6d9c5a8d3a Merge branch 'main' into modular-docs 2025-11-07 12:35:54 -10:00
Dhruv Nair
d6f66f4946 update 2025-11-07 08:22:39 +01:00
4 changed files with 11 additions and 22 deletions

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# LoopSequentialPipelineBlocks
[`~modular_pipelines.LoopSequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a loop. Data flows circularly, using `intermediate_inputs` and `intermediate_outputs`, and each block is run iteratively. This is typically used to create a denoising loop which is iterative by default.
[`~modular_pipelines.LoopSequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a loop. Data flows circularly, using `inputs` and `intermediate_outputs`, and each block is run iteratively. This is typically used to create a denoising loop which is iterative by default.
This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
@@ -21,7 +21,6 @@ This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBl
[`~modular_pipelines.LoopSequentialPipelineBlocks`], is also known as the *loop wrapper* because it defines the loop structure, iteration variables, and configuration. Within the loop wrapper, you need the following variables.
- `loop_inputs` are user provided values and equivalent to [`~modular_pipelines.ModularPipelineBlocks.inputs`].
- `loop_intermediate_inputs` are intermediate variables from the [`~modular_pipelines.PipelineState`] and equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_inputs`].
- `loop_intermediate_outputs` are new intermediate variables created by the block and added to the [`~modular_pipelines.PipelineState`]. It is equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_outputs`].
- `__call__` method defines the loop structure and iteration logic.
@@ -90,4 +89,4 @@ Add more loop blocks to run within each iteration with [`~modular_pipelines.Loop
```py
loop = LoopWrapper.from_blocks_dict({"block1": LoopBlock(), "block2": LoopBlock})
```
```

View File

@@ -37,17 +37,7 @@ A [`~modular_pipelines.ModularPipelineBlocks`] requires `inputs`, and `intermedi
]
```
- `intermediate_inputs` are values typically created from a previous block but it can also be directly provided if no preceding block generates them. Unlike `inputs`, `intermediate_inputs` can be modified.
Use `InputParam` to define `intermediate_inputs`.
```py
user_intermediate_inputs = [
InputParam(name="processed_image", type_hint="torch.Tensor", description="image that has been preprocessed and normalized"),
]
```
- `intermediate_outputs` are new values created by a block and added to the [`~modular_pipelines.PipelineState`]. The `intermediate_outputs` are available as `intermediate_inputs` for subsequent blocks or available as the final output from running the pipeline.
- `intermediate_outputs` are new values created by a block and added to the [`~modular_pipelines.PipelineState`]. The `intermediate_outputs` are available as `inputs` for subsequent blocks or available as the final output from running the pipeline.
Use `OutputParam` to define `intermediate_outputs`.
@@ -65,8 +55,8 @@ The intermediate inputs and outputs share data to connect blocks. They are acces
The computation a block performs is defined in the `__call__` method and it follows a specific structure.
1. Retrieve the [`~modular_pipelines.BlockState`] to get a local view of the `inputs` and `intermediate_inputs`.
2. Implement the computation logic on the `inputs` and `intermediate_inputs`.
1. Retrieve the [`~modular_pipelines.BlockState`] to get a local view of the `inputs`
2. Implement the computation logic on the `inputs`.
3. Update [`~modular_pipelines.PipelineState`] to push changes from the local [`~modular_pipelines.BlockState`] back to the global [`~modular_pipelines.PipelineState`].
4. Return the components and state which becomes available to the next block.
@@ -76,7 +66,7 @@ def __call__(self, components, state):
block_state = self.get_block_state(state)
# Your computation logic here
# block_state contains all your inputs and intermediate_inputs
# block_state contains all your inputs
# Access them like: block_state.image, block_state.processed_image
# Update the pipeline state with your updated block_states
@@ -112,4 +102,4 @@ def __call__(self, components, state):
unet = components.unet
vae = components.vae
scheduler = components.scheduler
```
```

View File

@@ -183,7 +183,7 @@ from diffusers.modular_pipelines import ComponentsManager
components = ComponentManager()
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff")
dd_pipeline.load_default_componenets(torch_dtype=torch.float16)
dd_pipeline.load_componenets(torch_dtype=torch.float16)
dd_pipeline.to("cuda")
```

View File

@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
# SequentialPipelineBlocks
[`~modular_pipelines.SequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a sequence. Data flows linearly from one block to the next using `intermediate_inputs` and `intermediate_outputs`. Each block in [`~modular_pipelines.SequentialPipelineBlocks`] usually represents a step in the pipeline, and by combining them, you gradually build a pipeline.
[`~modular_pipelines.SequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a sequence. Data flows linearly from one block to the next using `inputs` and `intermediate_outputs`. Each block in [`~modular_pipelines.SequentialPipelineBlocks`] usually represents a step in the pipeline, and by combining them, you gradually build a pipeline.
This guide shows you how to connect two blocks into a [`~modular_pipelines.SequentialPipelineBlocks`].
Create two [`~modular_pipelines.ModularPipelineBlocks`]. The first block, `InputBlock`, outputs a `batch_size` value and the second block, `ImageEncoderBlock` uses `batch_size` as `intermediate_inputs`.
Create two [`~modular_pipelines.ModularPipelineBlocks`]. The first block, `InputBlock`, outputs a `batch_size` value and the second block, `ImageEncoderBlock` uses `batch_size` as `inputs`.
<hfoptions id="sequential">
<hfoption id="InputBlock">
@@ -110,4 +110,4 @@ Inspect the sub-blocks in [`~modular_pipelines.SequentialPipelineBlocks`] by cal
```py
print(blocks)
print(blocks.doc)
```
```