mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-14 16:34:27 +08:00
Compare commits
17 Commits
cache-docs
...
sf-modular
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
15fb54de11 | ||
|
|
207847552d | ||
|
|
2cd7256ecb | ||
|
|
d391ace1ca | ||
|
|
546b6945df | ||
|
|
6bf668c4d2 | ||
|
|
e6d4612309 | ||
|
|
a88a7b4f03 | ||
|
|
c8656ed73c | ||
|
|
6dda0ecf67 | ||
|
|
fb1766ee4f | ||
|
|
8733fef39d | ||
|
|
a707e314ad | ||
|
|
c1c0e9a481 | ||
|
|
0a7bde9200 | ||
|
|
af48d815d8 | ||
|
|
bea02ccba3 |
@@ -29,7 +29,7 @@ Cache methods speedup diffusion transformers by storing and reusing intermediate
|
||||
|
||||
[[autodoc]] apply_faster_cache
|
||||
|
||||
## FirstBlockCacheConfig
|
||||
### FirstBlockCacheConfig
|
||||
|
||||
[[autodoc]] FirstBlockCacheConfig
|
||||
|
||||
|
||||
@@ -159,7 +159,7 @@ Change the [`~ComponentSpec.default_creation_method`] to `from_pretrained` and u
|
||||
```py
|
||||
guider_spec = t2i_pipeline.get_component_spec("guider")
|
||||
guider_spec.default_creation_method="from_pretrained"
|
||||
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
|
||||
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
|
||||
guider_spec.subfolder="pag_guider"
|
||||
pag_guider = guider_spec.load()
|
||||
t2i_pipeline.update_components(guider=pag_guider)
|
||||
|
||||
@@ -313,14 +313,14 @@ unet_spec
|
||||
ComponentSpec(
|
||||
name='unet',
|
||||
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
|
||||
repo='RunDiffusion/Juggernaut-XL-v9',
|
||||
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
|
||||
subfolder='unet',
|
||||
variant='fp16',
|
||||
default_creation_method='from_pretrained'
|
||||
)
|
||||
|
||||
# modify to load from a different repository
|
||||
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
|
||||
# load component with modified spec
|
||||
unet = unet_spec.load(torch_dtype=torch.float16)
|
||||
|
||||
@@ -66,8 +66,4 @@ config = FasterCacheConfig(
|
||||
tensor_format="BFCHW",
|
||||
)
|
||||
pipeline.transformer.enable_cache(config)
|
||||
```
|
||||
|
||||
## FirstBlockCache
|
||||
|
||||
[FirstBlock Cache](https://huggingface.co/docs/diffusers/main/en/api/cache#diffusers.FirstBlockCacheConfig) builds on the ideas of [TeaCache](https://huggingface.co/papers/2411.19108). It is much simpler to implement generically for a wide range of models and has been integrated first for experimental purposes.
|
||||
```
|
||||
@@ -157,7 +157,7 @@ guider.push_to_hub("YiYiXu/modular-loader-t2i-guider", subfolder="pag_guider")
|
||||
```py
|
||||
guider_spec = t2i_pipeline.get_component_spec("guider")
|
||||
guider_spec.default_creation_method="from_pretrained"
|
||||
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
|
||||
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
|
||||
guider_spec.subfolder="pag_guider"
|
||||
pag_guider = guider_spec.load()
|
||||
t2i_pipeline.update_components(guider=pag_guider)
|
||||
|
||||
@@ -313,14 +313,14 @@ unet_spec
|
||||
ComponentSpec(
|
||||
name='unet',
|
||||
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
|
||||
repo='RunDiffusion/Juggernaut-XL-v9',
|
||||
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
|
||||
subfolder='unet',
|
||||
variant='fp16',
|
||||
default_creation_method='from_pretrained'
|
||||
)
|
||||
|
||||
# 修改以从不同的仓库加载
|
||||
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
|
||||
# 使用修改后的规范加载组件
|
||||
unet = unet_spec.load(torch_dtype=torch.float16)
|
||||
|
||||
@@ -389,6 +389,14 @@ def is_valid_url(url):
|
||||
return False
|
||||
|
||||
|
||||
def _is_single_file_path_or_url(pretrained_model_name_or_path):
|
||||
if not os.path.isfile(pretrained_model_name_or_path) or not is_valid_url(pretrained_model_name_or_path):
|
||||
return False
|
||||
|
||||
repo_id, weight_name = _extract_repo_id_and_weights_name(pretrained_model_name_or_path)
|
||||
return bool(repo_id and weight_name)
|
||||
|
||||
|
||||
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
|
||||
if not is_valid_url(pretrained_model_name_or_path):
|
||||
raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.")
|
||||
@@ -400,7 +408,6 @@ def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
|
||||
pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
|
||||
match = re.match(pattern, pretrained_model_name_or_path)
|
||||
if not match:
|
||||
logger.warning("Unable to identify the repo_id and weights_name from the provided URL.")
|
||||
return repo_id, weights_name
|
||||
|
||||
repo_id = f"{match.group(1)}/{match.group(2)}"
|
||||
|
||||
@@ -41,11 +41,9 @@ class CacheMixin:
|
||||
Enable caching techniques on the model.
|
||||
|
||||
Args:
|
||||
config (`Union[PyramidAttentionBroadcastConfig, FasterCacheConfig, FirstBlockCacheConfig]`):
|
||||
config (`Union[PyramidAttentionBroadcastConfig]`):
|
||||
The configuration for applying the caching technique. Currently supported caching techniques are:
|
||||
- [`~hooks.PyramidAttentionBroadcastConfig`]
|
||||
- [`~hooks.FasterCacheConfig`]
|
||||
- [`~hooks.FirstBlockCacheConfig`]
|
||||
|
||||
Example:
|
||||
|
||||
|
||||
@@ -69,7 +69,10 @@ class TimestepEmbedder(nn.Module):
|
||||
|
||||
def forward(self, t):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
||||
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
|
||||
weight_dtype = self.mlp[0].weight.dtype
|
||||
if weight_dtype.is_floating_point:
|
||||
t_freq = t_freq.to(weight_dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
@@ -126,6 +129,10 @@ class ZSingleStreamAttnProcessor:
|
||||
dtype = query.dtype
|
||||
query, key = query.to(dtype), key.to(dtype)
|
||||
|
||||
# From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len]
|
||||
if attention_mask is not None and attention_mask.ndim == 2:
|
||||
attention_mask = attention_mask[:, None, None, :]
|
||||
|
||||
# Compute joint attention
|
||||
hidden_states = dispatch_attention_fn(
|
||||
query,
|
||||
@@ -306,6 +313,10 @@ class RopeEmbedder:
|
||||
if self.freqs_cis is None:
|
||||
self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
||||
self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
|
||||
else:
|
||||
# Ensure freqs_cis are on the same device as ids
|
||||
if self.freqs_cis[0].device != device:
|
||||
self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
|
||||
|
||||
result = []
|
||||
for i in range(len(self.axes_dims)):
|
||||
@@ -317,6 +328,7 @@ class RopeEmbedder:
|
||||
class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["ZImageTransformerBlock"]
|
||||
_skip_layerwise_casting_patterns = ["t_embedder", "cap_embedder"] # precision sensitive layers
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
@@ -553,8 +565,6 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
t = t * self.t_scale
|
||||
t = self.t_embedder(t)
|
||||
|
||||
adaln_input = t
|
||||
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
@@ -572,6 +582,9 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
|
||||
x = torch.cat(x, dim=0)
|
||||
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
|
||||
|
||||
# Match t_embedder output dtype to x for layerwise casting compatibility
|
||||
adaln_input = t.type_as(x)
|
||||
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
|
||||
x = list(x.split(x_item_seqlens, dim=0))
|
||||
x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split(x_item_seqlens, dim=0))
|
||||
|
||||
@@ -360,7 +360,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
collection: Optional[str] = None,
|
||||
) -> "ModularPipeline":
|
||||
"""
|
||||
create a ModularPipeline, optionally accept modular_repo to load from hub.
|
||||
create a ModularPipeline, optionally accept pretrained_model_name_or_path to load from hub.
|
||||
"""
|
||||
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(self.model_name, ModularPipeline.__name__)
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
@@ -1645,8 +1645,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`, optional):
|
||||
Path to a pretrained pipeline configuration. It will first try to load config from
|
||||
`modular_model_index.json`, then fallback to `model_index.json` for compatibility with standard
|
||||
non-modular repositories. If the repo does not contain any pipeline config, it will be set to None
|
||||
during initialization.
|
||||
non-modular repositories. If the pretrained_model_name_or_path does not contain any pipeline config, it
|
||||
will be set to None during initialization.
|
||||
trust_remote_code (`bool`, optional):
|
||||
Whether to trust remote code when loading the pipeline, need to be set to True if you want to create
|
||||
pipeline blocks based on the custom code in `pretrained_model_name_or_path`
|
||||
@@ -1807,7 +1807,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
library, class_name = None, None
|
||||
|
||||
# extract the loading spec from the updated component spec that'll be used as part of modular_model_index.json config
|
||||
# e.g. {"repo": "stabilityai/stable-diffusion-2-1",
|
||||
# e.g. {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1",
|
||||
# "type_hint": ("diffusers", "UNet2DConditionModel"),
|
||||
# "subfolder": "unet",
|
||||
# "variant": None,
|
||||
@@ -2111,8 +2111,10 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
**kwargs: additional kwargs to be passed to `from_pretrained()`.Can be:
|
||||
- a single value to be applied to all components to be loaded, e.g. torch_dtype=torch.bfloat16
|
||||
- a dict, e.g. torch_dtype={"unet": torch.bfloat16, "default": torch.float32}
|
||||
- if potentially override ComponentSpec if passed a different loading field in kwargs, e.g. `repo`,
|
||||
`variant`, `revision`, etc.
|
||||
- if potentially override ComponentSpec if passed a different loading field in kwargs, e.g.
|
||||
`pretrained_model_name_or_path`, `variant`, `revision`, etc.
|
||||
- if potentially override ComponentSpec if passed a different loading field in kwargs, e.g.
|
||||
`pretrained_model_name_or_path`, `variant`, `revision`, etc.
|
||||
"""
|
||||
|
||||
if names is None:
|
||||
@@ -2378,10 +2380,10 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
- "type_hint": Tuple[str, str]
|
||||
Library name and class name of the component. (e.g. ("diffusers", "UNet2DConditionModel"))
|
||||
- All loading fields defined by `component_spec.loading_fields()`, typically:
|
||||
- "repo": Optional[str]
|
||||
The model repository (e.g., "stabilityai/stable-diffusion-xl").
|
||||
- "pretrained_model_name_or_path": Optional[str]
|
||||
The model pretrained_model_name_or_pathsitory (e.g., "stabilityai/stable-diffusion-xl").
|
||||
- "subfolder": Optional[str]
|
||||
A subfolder within the repo where this component lives.
|
||||
A subfolder within the pretrained_model_name_or_path where this component lives.
|
||||
- "variant": Optional[str]
|
||||
An optional variant identifier for the model.
|
||||
- "revision": Optional[str]
|
||||
@@ -2398,11 +2400,13 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
Example:
|
||||
>>> from diffusers.pipelines.modular_pipeline_utils import ComponentSpec >>> from diffusers import
|
||||
UNet2DConditionModel >>> spec = ComponentSpec(
|
||||
... name="unet", ... type_hint=UNet2DConditionModel, ... config=None, ... repo="path/to/repo", ...
|
||||
subfolder="subfolder", ... variant=None, ... revision=None, ...
|
||||
default_creation_method="from_pretrained",
|
||||
... name="unet", ... type_hint=UNet2DConditionModel, ... config=None, ...
|
||||
pretrained_model_name_or_path="path/to/pretrained_model_name_or_path", ... subfolder="subfolder", ...
|
||||
variant=None, ... revision=None, ... default_creation_method="from_pretrained",
|
||||
... ) >>> ModularPipeline._component_spec_to_dict(spec) {
|
||||
"type_hint": ("diffusers", "UNet2DConditionModel"), "repo": "path/to/repo", "subfolder": "subfolder",
|
||||
"type_hint": ("diffusers", "UNet2DConditionModel"), "pretrained_model_name_or_path": "path/to/repo",
|
||||
"subfolder": "subfolder", "variant": None, "revision": None, "type_hint": ("diffusers",
|
||||
"UNet2DConditionModel"), "pretrained_model_name_or_path": "path/to/repo", "subfolder": "subfolder",
|
||||
"variant": None, "revision": None,
|
||||
}
|
||||
"""
|
||||
@@ -2432,10 +2436,10 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
- "type_hint": Tuple[str, str]
|
||||
Library name and class name of the component. (e.g. ("diffusers", "UNet2DConditionModel"))
|
||||
- All loading fields defined by `component_spec.loading_fields()`, typically:
|
||||
- "repo": Optional[str]
|
||||
- "pretrained_model_name_or_path": Optional[str]
|
||||
The model repository (e.g., "stabilityai/stable-diffusion-xl").
|
||||
- "subfolder": Optional[str]
|
||||
A subfolder within the repo where this component lives.
|
||||
A subfolder within the pretrained_model_name_or_path where this component lives.
|
||||
- "variant": Optional[str]
|
||||
An optional variant identifier for the model.
|
||||
- "revision": Optional[str]
|
||||
@@ -2452,11 +2456,20 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
ComponentSpec: A reconstructed ComponentSpec object.
|
||||
|
||||
Example:
|
||||
>>> spec_dict = { ... "type_hint": ("diffusers", "UNet2DConditionModel"), ... "repo":
|
||||
"stabilityai/stable-diffusion-xl", ... "subfolder": "unet", ... "variant": None, ... "revision": None, ...
|
||||
} >>> ModularPipeline._dict_to_component_spec("unet", spec_dict) ComponentSpec(
|
||||
name="unet", type_hint=UNet2DConditionModel, config=None, repo="stabilityai/stable-diffusion-xl",
|
||||
subfolder="unet", variant=None, revision=None, default_creation_method="from_pretrained"
|
||||
>>> spec_dict = { ... "type_hint": ("diffusers", "UNet2DConditionModel"), ...
|
||||
"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl", ... "subfolder": "unet", ... "variant":
|
||||
None, ... "revision": None, ... } >>> ModularPipeline._dict_to_component_spec("unet", spec_dict)
|
||||
ComponentSpec(
|
||||
name="unet", type_hint=UNet2DConditionModel, config=None,
|
||||
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl", subfolder="unet", variant=None,
|
||||
revision=None, default_creation_method="from_pretrained"
|
||||
>>> spec_dict = { ... "type_hint": ("diffusers", "UNet2DConditionModel"), ...
|
||||
"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl", ... "subfolder": "unet", ... "variant":
|
||||
None, ... "revision": None, ... } >>> ModularPipeline._dict_to_component_spec("unet", spec_dict)
|
||||
ComponentSpec(
|
||||
name="unet", type_hint=UNet2DConditionModel, config=None,
|
||||
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl", subfolder="unet", variant=None,
|
||||
revision=None, default_creation_method="from_pretrained"
|
||||
)
|
||||
"""
|
||||
# make a shallow copy so we can pop() safely
|
||||
|
||||
@@ -21,6 +21,7 @@ from typing import Any, Dict, List, Literal, Optional, Type, Union
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, FrozenDict
|
||||
from ..loaders.single_file_utils import _is_single_file_path_or_url
|
||||
from ..utils import is_torch_available, logging
|
||||
|
||||
|
||||
@@ -80,10 +81,10 @@ class ComponentSpec:
|
||||
type_hint: Type of the component (e.g. UNet2DConditionModel)
|
||||
description: Optional description of the component
|
||||
config: Optional config dict for __init__ creation
|
||||
repo: Optional repo path for from_pretrained creation
|
||||
subfolder: Optional subfolder in repo
|
||||
variant: Optional variant in repo
|
||||
revision: Optional revision in repo
|
||||
pretrained_model_name_or_path: Optional pretrained_model_name_or_path path for from_pretrained creation
|
||||
subfolder: Optional subfolder in pretrained_model_name_or_path
|
||||
variant: Optional variant in pretrained_model_name_or_path
|
||||
revision: Optional revision in pretrained_model_name_or_path
|
||||
default_creation_method: Preferred creation method - "from_config" or "from_pretrained"
|
||||
"""
|
||||
|
||||
@@ -91,13 +92,20 @@ class ComponentSpec:
|
||||
type_hint: Optional[Type] = None
|
||||
description: Optional[str] = None
|
||||
config: Optional[FrozenDict] = None
|
||||
# YiYi Notes: should we change it to pretrained_model_name_or_path for consistency? a bit long for a field name
|
||||
repo: Optional[Union[str, List[str]]] = field(default=None, metadata={"loading": True})
|
||||
pretrained_model_name_or_path: Optional[Union[str, List[str]]] = field(default=None, metadata={"loading": True})
|
||||
subfolder: Optional[str] = field(default="", metadata={"loading": True})
|
||||
variant: Optional[str] = field(default=None, metadata={"loading": True})
|
||||
revision: Optional[str] = field(default=None, metadata={"loading": True})
|
||||
default_creation_method: Literal["from_config", "from_pretrained"] = "from_pretrained"
|
||||
|
||||
# Deprecated
|
||||
repo: Optional[Union[str, List[str]]] = field(default=None, metadata={"loading": False})
|
||||
|
||||
def __post_init__(self):
|
||||
repo_value = self.repo
|
||||
if repo_value is not None and self.pretrained_model_name_or_path is None:
|
||||
object.__setattr__(self, "pretrained_model_name_or_path", repo_value)
|
||||
|
||||
def __hash__(self):
|
||||
"""Make ComponentSpec hashable, using load_id as the hash value."""
|
||||
return hash((self.name, self.load_id, self.default_creation_method))
|
||||
@@ -182,8 +190,8 @@ class ComponentSpec:
|
||||
@property
|
||||
def load_id(self) -> str:
|
||||
"""
|
||||
Unique identifier for this spec's pretrained load, composed of repo|subfolder|variant|revision (no empty
|
||||
segments).
|
||||
Unique identifier for this spec's pretrained load, composed of
|
||||
pretrained_model_name_or_path|subfolder|variant|revision (no empty segments).
|
||||
"""
|
||||
if self.default_creation_method == "from_config":
|
||||
return "null"
|
||||
@@ -197,12 +205,13 @@ class ComponentSpec:
|
||||
Decode a load_id string back into a dictionary of loading fields and values.
|
||||
|
||||
Args:
|
||||
load_id: The load_id string to decode, format: "repo|subfolder|variant|revision"
|
||||
load_id: The load_id string to decode, format: "pretrained_model_name_or_path|subfolder|variant|revision"
|
||||
where None values are represented as "null"
|
||||
|
||||
Returns:
|
||||
Dict mapping loading field names to their values. e.g. {
|
||||
"repo": "path/to/repo", "subfolder": "subfolder", "variant": "variant", "revision": "revision"
|
||||
"pretrained_model_name_or_path": "path/to/repo", "subfolder": "subfolder", "variant": "variant",
|
||||
"revision": "revision"
|
||||
} If a segment value is "null", it's replaced with None. Returns None if load_id is "null" (indicating
|
||||
component not created with `load` method).
|
||||
"""
|
||||
@@ -259,34 +268,45 @@ class ComponentSpec:
|
||||
# YiYi TODO: add guard for type of model, if it is supported by from_pretrained
|
||||
def load(self, **kwargs) -> Any:
|
||||
"""Load component using from_pretrained."""
|
||||
|
||||
# select loading fields from kwargs passed from user: e.g. repo, subfolder, variant, revision, note the list could change
|
||||
# select loading fields from kwargs passed from user: e.g. pretrained_model_name_or_path, subfolder, variant, revision, note the list could change
|
||||
passed_loading_kwargs = {key: kwargs.pop(key) for key in self.loading_fields() if key in kwargs}
|
||||
# merge loading field value in the spec with user passed values to create load_kwargs
|
||||
load_kwargs = {key: passed_loading_kwargs.get(key, getattr(self, key)) for key in self.loading_fields()}
|
||||
# repo is a required argument for from_pretrained, a.k.a. pretrained_model_name_or_path
|
||||
repo = load_kwargs.pop("repo", None)
|
||||
if repo is None:
|
||||
|
||||
pretrained_model_name_or_path = load_kwargs.pop("pretrained_model_name_or_path", None)
|
||||
if pretrained_model_name_or_path is None:
|
||||
raise ValueError(
|
||||
"`repo` info is required when using `load` method (you can directly set it in `repo` field of the ComponentSpec or pass it as an argument)"
|
||||
"`pretrained_model_name_or_path` info is required when using `load` method (you can directly set it in `pretrained_model_name_or_path` field of the ComponentSpec or pass it as an argument)"
|
||||
)
|
||||
is_single_file = _is_single_file_path_or_url(pretrained_model_name_or_path)
|
||||
if is_single_file and self.type_hint is None:
|
||||
raise ValueError(
|
||||
f"`type_hint` is required when loading a single file model but is missing for component: {self.name}"
|
||||
)
|
||||
|
||||
if self.type_hint is None:
|
||||
try:
|
||||
from diffusers import AutoModel
|
||||
|
||||
component = AutoModel.from_pretrained(repo, **load_kwargs, **kwargs)
|
||||
component = AutoModel.from_pretrained(pretrained_model_name_or_path, **load_kwargs, **kwargs)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Unable to load {self.name} without `type_hint`: {e}")
|
||||
# update type_hint if AutoModel load successfully
|
||||
self.type_hint = component.__class__
|
||||
else:
|
||||
# determine load method
|
||||
load_method = (
|
||||
getattr(self.type_hint, "from_single_file")
|
||||
if is_single_file
|
||||
else getattr(self.type_hint, "from_pretrained")
|
||||
)
|
||||
|
||||
try:
|
||||
component = self.type_hint.from_pretrained(repo, **load_kwargs, **kwargs)
|
||||
component = load_method(pretrained_model_name_or_path, **load_kwargs, **kwargs)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Unable to load {self.name} using load method: {e}")
|
||||
|
||||
self.repo = repo
|
||||
self.pretrained_model_name_or_path = pretrained_model_name_or_path
|
||||
for k, v in load_kwargs.items():
|
||||
setattr(self, k, v)
|
||||
component._diffusers_load_id = self.load_id
|
||||
|
||||
@@ -861,7 +861,6 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
torch.save({"pred": latents}, "pred_d.pt")
|
||||
latents = self._unpack_latents_with_ids(latents, latent_ids)
|
||||
|
||||
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
|
||||
|
||||
@@ -165,21 +165,16 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
@@ -193,8 +188,6 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
negative_prompt_embeds = self._encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
@@ -206,12 +199,9 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
max_sequence_length: int = 512,
|
||||
) -> List[torch.FloatTensor]:
|
||||
assert num_images_per_prompt == 1
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is not None:
|
||||
@@ -417,8 +407,6 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
f"Please adjust the width to a multiple of {vae_scale}."
|
||||
)
|
||||
|
||||
assert self.dtype == torch.bfloat16
|
||||
dtype = self.dtype
|
||||
device = self._execution_device
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
@@ -434,10 +422,6 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
else:
|
||||
batch_size = len(prompt_embeds)
|
||||
|
||||
lora_scale = (
|
||||
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
||||
)
|
||||
|
||||
# If prompt_embeds is provided and prompt is None, skip encoding
|
||||
if prompt_embeds is not None and prompt is None:
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
@@ -455,11 +439,8 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
@@ -475,6 +456,14 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# Repeat prompt_embeds for num_images_per_prompt
|
||||
if num_images_per_prompt > 1:
|
||||
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds:
|
||||
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
|
||||
actual_batch_size = batch_size * num_images_per_prompt
|
||||
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
@@ -523,12 +512,12 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
|
||||
|
||||
if apply_cfg:
|
||||
latents_typed = latents if latents.dtype == dtype else latents.to(dtype)
|
||||
latents_typed = latents.to(self.transformer.dtype)
|
||||
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
|
||||
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
||||
timestep_model_input = timestep.repeat(2)
|
||||
else:
|
||||
latent_model_input = latents if latents.dtype == dtype else latents.to(dtype)
|
||||
latent_model_input = latents.to(self.transformer.dtype)
|
||||
prompt_embeds_model_input = prompt_embeds
|
||||
timestep_model_input = timestep
|
||||
|
||||
@@ -543,11 +532,11 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
|
||||
if apply_cfg:
|
||||
# Perform CFG
|
||||
pos_out = model_out_list[:batch_size]
|
||||
neg_out = model_out_list[batch_size:]
|
||||
pos_out = model_out_list[:actual_batch_size]
|
||||
neg_out = model_out_list[actual_batch_size:]
|
||||
|
||||
noise_pred = []
|
||||
for j in range(batch_size):
|
||||
for j in range(actual_batch_size):
|
||||
pos = pos_out[j].float()
|
||||
neg = neg_out[j].float()
|
||||
|
||||
@@ -588,11 +577,11 @@ class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
latents = latents.to(dtype)
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
|
||||
@@ -429,7 +429,22 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return x_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -452,6 +467,10 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
|
||||
@@ -401,6 +401,17 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
@@ -808,7 +819,22 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise NotImplementedError("only support log-rho multistep deis now")
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -831,6 +857,10 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
@@ -927,6 +957,21 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Add noise to the original samples according to the noise schedule at the specified timesteps.
|
||||
|
||||
Args:
|
||||
original_samples (`torch.Tensor`):
|
||||
The original samples without noise.
|
||||
noise (`torch.Tensor`):
|
||||
The noise to add to the samples.
|
||||
timesteps (`torch.IntTensor`):
|
||||
The timesteps at which to add noise to the samples.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The noisy samples.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
|
||||
@@ -127,18 +127,17 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||||
solver_order (`int`, defaults to 2):
|
||||
The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
|
||||
sampling, and `solver_order=3` for unconditional sampling.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample), `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://imagen.research.google/video/paper.pdf) paper), or `flow_prediction`.
|
||||
prediction_type (`"epsilon"`, `"sample"`, `"v_prediction"`, or `"flow_prediction"`, defaults to `"epsilon"`):
|
||||
Prediction type of the scheduler function. `epsilon` predicts the noise of the diffusion process, `sample`
|
||||
directly predicts the noisy sample, `v_prediction` predicts the velocity (see section 2.4 of [Imagen
|
||||
Video](https://huggingface.co/papers/2210.02303) paper), and `flow_prediction` predicts the flow.
|
||||
thresholding (`bool`, defaults to `False`):
|
||||
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
||||
as Stable Diffusion.
|
||||
@@ -147,15 +146,14 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sample_max_value (`float`, defaults to 1.0):
|
||||
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
||||
`algorithm_type="dpmsolver++"`.
|
||||
algorithm_type (`str`, defaults to `dpmsolver++`):
|
||||
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
|
||||
`dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
|
||||
paper, and the `dpmsolver++` type implements the algorithms in the
|
||||
[DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
|
||||
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
||||
solver_type (`str`, defaults to `midpoint`):
|
||||
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
||||
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
||||
algorithm_type (`"dpmsolver"`, `"dpmsolver++"`, `"sde-dpmsolver"`, or `"sde-dpmsolver++"`, defaults to `"dpmsolver++"`):
|
||||
Algorithm type for the solver. The `dpmsolver` type implements the algorithms in the
|
||||
[DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the `dpmsolver++` type implements the
|
||||
algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use
|
||||
`dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
||||
solver_type (`"midpoint"` or `"heun"`, defaults to `"midpoint"`):
|
||||
Solver type for the second-order solver. The solver type slightly affects the sample quality, especially
|
||||
for a small number of steps. It is recommended to use `midpoint` solvers.
|
||||
lower_order_final (`bool`, defaults to `True`):
|
||||
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
||||
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
||||
@@ -179,16 +177,16 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
|
||||
flow_shift (`float`, *optional*, defaults to 1.0):
|
||||
The shift value for the timestep schedule for flow matching.
|
||||
final_sigmas_type (`str`, defaults to `"zero"`):
|
||||
final_sigmas_type (`"zero"` or `"sigma_min"`, *optional*, defaults to `"zero"`):
|
||||
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||||
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||||
sigma is the same as the last sigma in the training schedule. If `"zero"`, the final sigma is set to 0.
|
||||
lambda_min_clipped (`float`, defaults to `-inf`):
|
||||
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
||||
cosine (`squaredcos_cap_v2`) noise schedule.
|
||||
variance_type (`str`, *optional*):
|
||||
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
|
||||
contains the predicted Gaussian variance.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
variance_type (`"learned"` or `"learned_range"`, *optional*):
|
||||
Set to `"learned"` or `"learned_range"` for diffusion models that predict variance. If set, the model's
|
||||
output contains the predicted Gaussian variance.
|
||||
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
@@ -197,6 +195,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||||
use_dynamic_shifting (`bool`, defaults to `False`):
|
||||
Whether to use dynamic shifting for the timestep schedule.
|
||||
time_shift_type (`"exponential"`, defaults to `"exponential"`):
|
||||
The type of time shift to apply when using dynamic shifting.
|
||||
"""
|
||||
|
||||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
@@ -208,15 +210,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
solver_order: int = 2,
|
||||
prediction_type: str = "epsilon",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
|
||||
thresholding: bool = False,
|
||||
dynamic_thresholding_ratio: float = 0.995,
|
||||
sample_max_value: float = 1.0,
|
||||
algorithm_type: str = "dpmsolver++",
|
||||
solver_type: str = "midpoint",
|
||||
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"] = "dpmsolver++",
|
||||
solver_type: Literal["midpoint", "heun"] = "midpoint",
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
@@ -225,14 +227,14 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_lu_lambdas: Optional[bool] = False,
|
||||
use_flow_sigmas: Optional[bool] = False,
|
||||
flow_shift: Optional[float] = 1.0,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
final_sigmas_type: Optional[Literal["zero", "sigma_min"]] = "zero",
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
variance_type: Optional[str] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
variance_type: Optional[Literal["learned", "learned_range"]] = None,
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
|
||||
steps_offset: int = 0,
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
use_dynamic_shifting: bool = False,
|
||||
time_shift_type: str = "exponential",
|
||||
time_shift_type: Literal["exponential"] = "exponential",
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
@@ -331,19 +333,22 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
mu: Optional[float] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
num_inference_steps (`int`, *optional*):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
mu (`float`, *optional*):
|
||||
The mu parameter for dynamic shifting. If provided, requires `use_dynamic_shifting=True` and
|
||||
`time_shift_type="exponential"`.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
|
||||
based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
|
||||
@@ -503,7 +508,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return sample
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert sigma values to corresponding timestep values through interpolation.
|
||||
|
||||
@@ -539,7 +544,18 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
t = t.reshape(sigma.shape)
|
||||
return t
|
||||
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
@@ -588,8 +604,21 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Lu et al. (2022)."""
|
||||
def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""
|
||||
Construct the noise schedule as proposed in [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model
|
||||
Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) by Lu et al. (2022).
|
||||
|
||||
Args:
|
||||
in_lambdas (`torch.Tensor`):
|
||||
The input lambda values to be converted.
|
||||
num_inference_steps (`int`):
|
||||
The number of inference steps to generate the noise schedule for.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The converted lambda values following the Lu noise schedule.
|
||||
"""
|
||||
|
||||
lambda_min: float = in_lambdas[-1].item()
|
||||
lambda_max: float = in_lambdas[0].item()
|
||||
@@ -1069,7 +1098,22 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
return x_t
|
||||
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -1088,9 +1132,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
return step_index
|
||||
|
||||
def _init_step_index(self, timestep):
|
||||
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
@@ -1105,7 +1153,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
sample: torch.Tensor,
|
||||
generator=None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
variance_noise: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
@@ -1115,22 +1163,22 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
The direct output from the learned diffusion model.
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
variance_noise (`torch.Tensor`):
|
||||
variance_noise (`torch.Tensor`, *optional*):
|
||||
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
||||
itself. Useful for methods such as [`LEdits++`].
|
||||
return_dict (`bool`):
|
||||
return_dict (`bool`, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||||
If `return_dict` is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
@@ -1210,6 +1258,21 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Add noise to the original samples according to the noise schedule at the specified timesteps.
|
||||
|
||||
Args:
|
||||
original_samples (`torch.Tensor`):
|
||||
The original samples without noise.
|
||||
noise (`torch.Tensor`):
|
||||
The noise to add to the samples.
|
||||
timesteps (`torch.IntTensor`):
|
||||
The timesteps at which to add noise to the samples.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The noisy samples.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
|
||||
@@ -413,6 +413,17 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
|
||||
@@ -491,6 +491,17 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
@@ -1079,7 +1090,22 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
raise ValueError(f"Order must be 1, 2, 3, got {order}")
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -1102,6 +1128,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
@@ -1204,6 +1234,21 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Add noise to the original samples according to the noise schedule at the specified timesteps.
|
||||
|
||||
Args:
|
||||
original_samples (`torch.Tensor`):
|
||||
The original samples without noise.
|
||||
noise (`torch.Tensor`):
|
||||
The noise to add to the samples.
|
||||
timesteps (`torch.IntTensor`):
|
||||
The timesteps at which to add noise to the samples.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The noisy samples.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
|
||||
@@ -578,7 +578,22 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return x_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -601,6 +616,10 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
|
||||
@@ -423,6 +423,17 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
@@ -1103,7 +1114,22 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
return x_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -1126,6 +1152,10 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
|
||||
@@ -513,6 +513,17 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
Args:
|
||||
sigma (`torch.Tensor`):
|
||||
The sigma value(s) to convert.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, torch.Tensor]`:
|
||||
A tuple containing (alpha_t, sigma_t) values.
|
||||
"""
|
||||
if self.config.use_flow_sigmas:
|
||||
alpha_t = 1 - sigma
|
||||
sigma_t = sigma
|
||||
@@ -984,7 +995,22 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return x_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The timestep for which to find the index.
|
||||
schedule_timesteps (`torch.Tensor`, *optional*):
|
||||
The timestep schedule to search in. If `None`, uses `self.timesteps`.
|
||||
|
||||
Returns:
|
||||
`int`:
|
||||
The index of the timestep in the schedule.
|
||||
"""
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -1007,6 +1033,10 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
|
||||
Args:
|
||||
timestep (`int` or `torch.Tensor`):
|
||||
The current timestep for which to initialize the step index.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
@@ -1119,6 +1149,21 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Add noise to the original samples according to the noise schedule at the specified timesteps.
|
||||
|
||||
Args:
|
||||
original_samples (`torch.Tensor`):
|
||||
The original samples without noise.
|
||||
noise (`torch.Tensor`):
|
||||
The noise to add to the samples.
|
||||
timesteps (`torch.IntTensor`):
|
||||
The timesteps at which to add noise to the samples.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The noisy samples.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
|
||||
@@ -36,7 +36,7 @@ from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
class TestFluxModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxModularPipeline
|
||||
pipeline_blocks_class = FluxAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
@@ -62,7 +62,7 @@ class TestFluxModularPipelineFast(ModularPipelineTesterMixin):
|
||||
class TestFluxImg2ImgModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxModularPipeline
|
||||
pipeline_blocks_class = FluxAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
@@ -128,7 +128,7 @@ class TestFluxImg2ImgModularPipelineFast(ModularPipelineTesterMixin):
|
||||
class TestFluxKontextModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxKontextModularPipeline
|
||||
pipeline_blocks_class = FluxKontextAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-kontext-pipe"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-kontext-pipe"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
@@ -32,7 +32,7 @@ from ..test_modular_pipelines_common import ModularGuiderTesterMixin, ModularPip
|
||||
class TestQwenImageModularPipelineFast(ModularPipelineTesterMixin, ModularGuiderTesterMixin):
|
||||
pipeline_class = QwenImageModularPipeline
|
||||
pipeline_blocks_class = QwenImageAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-qwenimage-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image", "mask_image"])
|
||||
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
|
||||
@@ -58,7 +58,7 @@ class TestQwenImageModularPipelineFast(ModularPipelineTesterMixin, ModularGuider
|
||||
class TestQwenImageEditModularPipelineFast(ModularPipelineTesterMixin, ModularGuiderTesterMixin):
|
||||
pipeline_class = QwenImageEditModularPipeline
|
||||
pipeline_blocks_class = QwenImageEditAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-qwenimage-edit-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-edit-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image", "mask_image"])
|
||||
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
|
||||
@@ -84,7 +84,7 @@ class TestQwenImageEditModularPipelineFast(ModularPipelineTesterMixin, ModularGu
|
||||
class TestQwenImageEditPlusModularPipelineFast(ModularPipelineTesterMixin, ModularGuiderTesterMixin):
|
||||
pipeline_class = QwenImageEditPlusModularPipeline
|
||||
pipeline_blocks_class = QwenImageEditPlusAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-qwenimage-edit-plus-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-edit-plus-modular"
|
||||
|
||||
# No `mask_image` yet.
|
||||
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image"])
|
||||
|
||||
@@ -105,7 +105,7 @@ class SDXLModularIPAdapterTesterMixin:
|
||||
|
||||
blocks = self.pipeline_blocks_class()
|
||||
_ = blocks.sub_blocks.pop("ip_adapter")
|
||||
pipe = blocks.init_pipeline(self.repo)
|
||||
pipe = blocks.init_pipeline(self.pretrained_model_name_or_path)
|
||||
pipe.load_components(torch_dtype=torch.float32)
|
||||
pipe = pipe.to(torch_device)
|
||||
|
||||
@@ -278,7 +278,7 @@ class TestSDXLModularPipelineFast(
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
@@ -325,7 +325,7 @@ class TestSDXLImg2ImgModularPipelineFast(
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
@@ -378,7 +378,7 @@ class SDXLInpaintingModularPipelineFastTests(
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
|
||||
@@ -43,9 +43,9 @@ class ModularPipelineTesterMixin:
|
||||
)
|
||||
|
||||
@property
|
||||
def repo(self) -> str:
|
||||
def pretrained_model_name_or_path(self) -> str:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `repo` in the child test class. See existing pipeline tests for reference."
|
||||
"You need to set the attribute `pretrained_model_name_or_path` in the child test class. See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -103,7 +103,9 @@ class ModularPipelineTesterMixin:
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
|
||||
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
|
||||
pipeline = self.pipeline_blocks_class().init_pipeline(
|
||||
self.pretrained_model_name_or_path, components_manager=components_manager
|
||||
)
|
||||
pipeline.load_components(torch_dtype=torch_dtype)
|
||||
pipeline.set_progress_bar_config(disable=None)
|
||||
return pipeline
|
||||
|
||||
306
tests/pipelines/z_image/test_z_image.py
Normal file
306
tests/pipelines/z_image/test_z_image.py
Normal file
@@ -0,0 +1,306 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
ZImagePipeline,
|
||||
ZImageTransformer2DModel,
|
||||
)
|
||||
|
||||
from ...testing_utils import torch_device
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
||||
|
||||
|
||||
# Z-Image requires torch.use_deterministic_algorithms(False) due to complex64 RoPE operations
|
||||
# Cannot use enable_full_determinism() which sets it to True
|
||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
torch.use_deterministic_algorithms(False)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
if hasattr(torch.backends, "cuda"):
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
# Note: Some tests (test_float16_inference, test_save_load_float16) may fail in full suite
|
||||
# due to RopeEmbedder cache state pollution between tests. They pass when run individually.
|
||||
# This is a known test isolation issue, not a functional bug.
|
||||
|
||||
|
||||
class ZImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = ZImagePipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
supports_dduf = False
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = True
|
||||
test_group_offloading = True
|
||||
|
||||
def setUp(self):
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = ZImageTransformer2DModel(
|
||||
all_patch_size=(2,),
|
||||
all_f_patch_size=(1,),
|
||||
in_channels=16,
|
||||
dim=32,
|
||||
n_layers=2,
|
||||
n_refiner_layers=1,
|
||||
n_heads=2,
|
||||
n_kv_heads=2,
|
||||
norm_eps=1e-5,
|
||||
qk_norm=True,
|
||||
cap_feat_dim=16,
|
||||
rope_theta=256.0,
|
||||
t_scale=1000.0,
|
||||
axes_dims=[8, 4, 4],
|
||||
axes_lens=[256, 32, 32],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
block_out_channels=[32, 64],
|
||||
layers_per_block=1,
|
||||
latent_channels=16,
|
||||
norm_num_groups=32,
|
||||
sample_size=32,
|
||||
scaling_factor=0.3611,
|
||||
shift_factor=0.1159,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = Qwen3Config(
|
||||
hidden_size=16,
|
||||
intermediate_size=16,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=2,
|
||||
num_key_value_heads=2,
|
||||
vocab_size=151936,
|
||||
max_position_embeddings=512,
|
||||
)
|
||||
text_encoder = Qwen3Model(config)
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "bad quality",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 3.0,
|
||||
"cfg_normalization": False,
|
||||
"cfg_truncation": 1.0,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
generated_image = image[0]
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.4521, 0.4512, 0.4693, 0.5115, 0.5250, 0.5271, 0.4776, 0.4688, 0.2765, 0.2164, 0.5656, 0.6909, 0.3831, 0.5431, 0.5493, 0.4732])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=5e-2))
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
|
||||
|
||||
def test_num_images_per_prompt(self):
|
||||
import inspect
|
||||
|
||||
sig = inspect.signature(self.pipeline_class.__call__)
|
||||
|
||||
if "num_images_per_prompt" not in sig.parameters:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
batch_sizes = [1, 2]
|
||||
num_images_per_prompts = [1, 2]
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
for num_images_per_prompt in num_images_per_prompts:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
for key in inputs.keys():
|
||||
if key in self.batch_params:
|
||||
inputs[key] = batch_size * [inputs[key]]
|
||||
|
||||
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
|
||||
|
||||
assert images.shape[0] == batch_size * num_images_per_prompt
|
||||
|
||||
del pipe
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def test_attention_slicing_forward_pass(
|
||||
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
||||
):
|
||||
if not self.test_attention_slicing:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_without_slicing = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=1)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing1 = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=2)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing2 = pipe(**inputs)[0]
|
||||
|
||||
if test_max_difference:
|
||||
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
||||
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
||||
self.assertLess(
|
||||
max(max_diff1, max_diff2),
|
||||
expected_max_diff,
|
||||
"Attention slicing should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
||||
generator_device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to("cpu")
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Without tiling
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_without_tiling = pipe(**inputs)[0]
|
||||
|
||||
# With tiling (standard AutoencoderKL doesn't accept parameters)
|
||||
pipe.vae.enable_tiling()
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_with_tiling = pipe(**inputs)[0]
|
||||
|
||||
self.assertLess(
|
||||
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
||||
expected_diff_max,
|
||||
"VAE tiling should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=5e-4):
|
||||
# Z-Image RoPE embeddings (complex64) have slightly higher numerical tolerance
|
||||
super().test_pipeline_with_accelerator_device_map(expected_max_difference=expected_max_difference)
|
||||
|
||||
def test_group_offloading_inference(self):
|
||||
# Block-level offloading conflicts with RoPE cache. Pipeline-level offloading (tested separately) works fine.
|
||||
self.skipTest("Using test_pipeline_level_group_offloading_inference instead")
|
||||
|
||||
def test_save_load_float16(self, expected_max_diff=1e-2):
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
super().test_save_load_float16(expected_max_diff=expected_max_diff)
|
||||
Reference in New Issue
Block a user