Compare commits

..

14 Commits

Author SHA1 Message Date
yiyi@huggingface.co
c91835c943 u pup 2026-02-05 09:06:00 +00:00
yiyi@huggingface.co
98b3a31259 does not need to specify the params: 2026-02-05 09:05:25 +00:00
yiyi@huggingface.co
4c1a5bcfeb fix more 2026-02-05 08:40:52 +00:00
yiyi@huggingface.co
027394d392 up up 2026-02-04 19:48:56 +00:00
yiyi@huggingface.co
5c378a9415 text_encoder should not be auto for qwen-image 2026-02-04 19:48:11 +00:00
yiyi@huggingface.co
f34cc7b344 style 2026-02-04 11:31:16 +00:00
yiyi@huggingface.co
24c4b1c47d add required param tests 2026-02-04 11:30:38 +00:00
yiyi@huggingface.co
13c922972e more fix 2026-02-04 11:13:58 +00:00
yiyi@huggingface.co
f4d27b9a8a style 2026-02-04 11:00:12 +00:00
yiyi@huggingface.co
1a2e736166 try to fix modular tests 2026-02-04 10:59:03 +00:00
yiyi@huggingface.co
c293ad7899 fix default_repo_id 2026-02-04 10:07:58 +00:00
YiYi Xu
2c7f5d7421 Merge branch 'main' into modular-test 2026-02-03 22:43:09 -10:00
yiyixuxu
fb6ec06a39 style etc 2026-01-22 03:14:15 +01:00
yiyixuxu
ea63cccb8c add modular test and loading from standard repo 2026-01-22 03:13:32 +01:00
36 changed files with 196 additions and 1814 deletions

View File

@@ -53,41 +53,6 @@ image = pipe(
image.save("zimage_img2img.png")
```
## Inpainting
Use [`ZImageInpaintPipeline`] to inpaint specific regions of an image based on a text prompt and mask.
```python
import torch
import numpy as np
from PIL import Image
from diffusers import ZImageInpaintPipeline
from diffusers.utils import load_image
pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
init_image = load_image(url).resize((1024, 1024))
# Create a mask (white = inpaint, black = preserve)
mask = np.zeros((1024, 1024), dtype=np.uint8)
mask[256:768, 256:768] = 255 # Inpaint center region
mask_image = Image.fromarray(mask)
prompt = "A beautiful lake with mountains in the background"
image = pipe(
prompt,
image=init_image,
mask_image=mask_image,
strength=1.0,
num_inference_steps=9,
guidance_scale=0.0,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("zimage_inpaint.png")
```
## ZImagePipeline
[[autodoc]] ZImagePipeline
@@ -99,9 +64,3 @@ image.save("zimage_inpaint.png")
[[autodoc]] ZImageImg2ImgPipeline
- all
- __call__
## ZImageInpaintPipeline
[[autodoc]] ZImageInpaintPipeline
- all
- __call__

View File

@@ -66,7 +66,7 @@ from diffusers import DiffusionPipeline, PipelineQuantizationConfig, TorchAoConf
from torchao.quantization import Int4WeightOnlyConfig
pipeline_quant_config = PipelineQuantizationConfig(
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128))}
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128)))}
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",

View File

@@ -696,7 +696,6 @@ else:
"ZImageControlNetInpaintPipeline",
"ZImageControlNetPipeline",
"ZImageImg2ImgPipeline",
"ZImageInpaintPipeline",
"ZImageOmniPipeline",
"ZImagePipeline",
]
@@ -1429,7 +1428,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -31,132 +31,10 @@ class AutoModel(ConfigMixin):
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)`, "
f"`{self.__class__.__name__}.from_config(config)`, or "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
def from_config(
cls, pretrained_model_name_or_path_or_dict: Optional[Union[str, os.PathLike, dict]] = None, **kwargs
):
r"""
Instantiate a model from a config dictionary or a pretrained model configuration file with random weights (no
pretrained weights are loaded).
Parameters:
pretrained_model_name_or_path_or_dict (`str`, `os.PathLike`, or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model
configuration hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing a model configuration
file.
- A config dictionary.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model configuration, overriding the cached version if
it exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model configuration files or not.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether to trust remote code.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
Returns:
A model object instantiated from the config with random weights.
Example:
```py
from diffusers import AutoModel
model = AutoModel.from_config("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
```
"""
subfolder = kwargs.pop("subfolder", None)
trust_remote_code = kwargs.pop("trust_remote_code", False)
hub_kwargs_names = [
"cache_dir",
"force_download",
"local_files_only",
"proxies",
"revision",
"token",
]
hub_kwargs = {name: kwargs.pop(name, None) for name in hub_kwargs_names}
if pretrained_model_name_or_path_or_dict is None:
raise ValueError(
"Please provide a `pretrained_model_name_or_path_or_dict` as the first positional argument."
)
if isinstance(pretrained_model_name_or_path_or_dict, (str, os.PathLike)):
pretrained_model_name_or_path = pretrained_model_name_or_path_or_dict
cls.config_name = "config.json"
config = cls.load_config(pretrained_model_name_or_path, subfolder=subfolder, **hub_kwargs)
else:
config = pretrained_model_name_or_path_or_dict
pretrained_model_name_or_path = config.get("_name_or_path")
library = None
orig_class_name = None
if "_class_name" in config:
orig_class_name = config["_class_name"]
library = "diffusers"
elif "model_type" in config:
orig_class_name = "AutoModel"
library = "transformers"
else:
raise ValueError(
f"Couldn't find a model class associated with the config: {config}. Make sure the config "
"contains a `_class_name` or `model_type` key."
)
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config["auto_map"][cls.__name__]
module_file, class_name = class_ref.split(".")
module_file = module_file + ".py"
model_cls = get_class_from_dynamic_module(
pretrained_model_name_or_path,
subfolder=subfolder,
module_file=module_file,
class_name=class_name,
**hub_kwargs,
)
else:
from ..pipelines.pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, get_class_obj_and_candidates
model_cls, _ = get_class_obj_and_candidates(
library_name=library,
class_name=orig_class_name,
importable_classes=ALL_IMPORTABLE_CLASSES,
pipelines=None,
is_pipeline_module=False,
)
if model_cls is None:
raise ValueError(f"AutoModel can't find a model linked to {orig_class_name}.")
return model_cls.from_config(config, **kwargs)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path: Optional[Union[str, os.PathLike]] = None, **kwargs):

View File

@@ -125,9 +125,9 @@ class BriaFiboAttnProcessor:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
hidden_states = attn.to_out[0](hidden_states.contiguous())
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states.contiguous())
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:

View File

@@ -130,9 +130,9 @@ class FluxAttnProcessor:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
hidden_states = attn.to_out[0](hidden_states.contiguous())
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states.contiguous())
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:

View File

@@ -561,11 +561,11 @@ class QwenDoubleStreamAttnProcessor2_0:
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
# Apply output projections
img_attn_output = attn.to_out[0](img_attn_output.contiguous())
img_attn_output = attn.to_out[0](img_attn_output)
if len(attn.to_out) > 1:
img_attn_output = attn.to_out[1](img_attn_output) # dropout
txt_attn_output = attn.to_add_out(txt_attn_output.contiguous())
txt_attn_output = attn.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output

View File

@@ -302,7 +302,7 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("prompt_2"),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("joint_attention_kwargs"),

View File

@@ -80,7 +80,7 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(10, 20, 30), required=False),
]
@@ -99,7 +99,7 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod
@@ -193,7 +193,7 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
]
@property
@@ -210,7 +210,7 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}")
@torch.no_grad()
@@ -270,7 +270,7 @@ class Flux2KleinTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
]
@@ -290,7 +290,7 @@ class Flux2KleinTextEncoderStep(ModularPipelineBlocks):
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod
@@ -405,7 +405,7 @@ class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
]
@@ -431,7 +431,7 @@ class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod

View File

@@ -56,52 +56,7 @@ logger = logging.get_logger(__name__)
# ====================
# 1. TEXT ENCODER
# ====================
# auto_docstring
class QwenImageAutoTextEncoderStep(AutoPipelineBlocks):
"""
Text encoder step that encodes the text prompt into a text embedding. This is an auto pipeline block.
Components:
text_encoder (`Qwen2_5_VLForConditionalGeneration`): The text encoder to use tokenizer (`Qwen2Tokenizer`):
The tokenizer to use guider (`ClassifierFreeGuidance`)
Inputs:
prompt (`str`, *optional*):
The prompt or prompts to guide image generation.
negative_prompt (`str`, *optional*):
The prompt or prompts not to guide the image generation.
max_sequence_length (`int`, *optional*, defaults to 1024):
Maximum sequence length for prompt encoding.
Outputs:
prompt_embeds (`Tensor`):
The prompt embeddings.
prompt_embeds_mask (`Tensor`):
The encoder attention mask.
negative_prompt_embeds (`Tensor`):
The negative prompt embeddings.
negative_prompt_embeds_mask (`Tensor`):
The negative prompt embeddings mask.
"""
model_name = "qwenimage"
block_classes = [QwenImageTextEncoderStep()]
block_names = ["text_encoder"]
block_trigger_inputs = ["prompt"]
@property
def description(self) -> str:
return "Text encoder step that encodes the text prompt into a text embedding. This is an auto pipeline block."
" - `QwenImageTextEncoderStep` (text_encoder) is used when `prompt` is provided."
" - if `prompt` is not provided, step will be skipped."
# ====================
# 2. VAE ENCODER
# 1. VAE ENCODER
# ====================
@@ -249,7 +204,7 @@ class QwenImageOptionalControlNetVaeEncoderStep(AutoPipelineBlocks):
# ====================
# 3. DENOISE (input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise)
# 2. DENOISE (input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise)
# ====================
@@ -1011,7 +966,7 @@ class QwenImageAutoCoreDenoiseStep(ConditionalPipelineBlocks):
# ====================
# 4. DECODE
# 3. DECODE
# ====================
@@ -1096,11 +1051,11 @@ class QwenImageAutoDecodeStep(AutoPipelineBlocks):
# ====================
# 5. AUTO BLOCKS & PRESETS
# 4. AUTO BLOCKS & PRESETS
# ====================
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageAutoTextEncoderStep()),
("text_encoder", QwenImageTextEncoderStep()),
("vae_encoder", QwenImageAutoVaeEncoderStep()),
("controlnet_vae_encoder", QwenImageOptionalControlNetVaeEncoderStep()),
("denoise", QwenImageAutoCoreDenoiseStep()),

View File

@@ -244,7 +244,7 @@ class StableDiffusionXLTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("prompt_2"),
InputParam("negative_prompt"),
InputParam("negative_prompt_2"),

View File

@@ -179,7 +179,7 @@ class WanTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("negative_prompt"),
InputParam("max_sequence_length", default=512),
]

View File

@@ -149,7 +149,7 @@ class ZImageTextEncoderStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt", required=True),
InputParam("negative_prompt"),
InputParam("max_sequence_length", default=512),
]

View File

@@ -410,12 +410,11 @@ else:
"Kandinsky5I2IPipeline",
]
_import_structure["z_image"] = [
"ZImageControlNetInpaintPipeline",
"ZImageControlNetPipeline",
"ZImageImg2ImgPipeline",
"ZImageInpaintPipeline",
"ZImageOmniPipeline",
"ZImagePipeline",
"ZImageControlNetPipeline",
"ZImageControlNetInpaintPipeline",
"ZImageOmniPipeline",
]
_import_structure["skyreels_v2"] = [
"SkyReelsV2DiffusionForcingPipeline",
@@ -871,7 +870,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -127,7 +127,6 @@ from .z_image import (
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)
@@ -236,7 +235,6 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
("qwenimage", QwenImageInpaintPipeline),
("qwenimage-edit", QwenImageEditInpaintPipeline),
("z-image", ZImageInpaintPipeline),
]
)

View File

@@ -26,7 +26,6 @@ else:
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
_import_structure["pipeline_z_image_inpaint"] = ["ZImageInpaintPipeline"]
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
@@ -43,7 +42,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
from .pipeline_z_image_inpaint import ZImageInpaintPipeline
from .pipeline_z_image_omni import ZImageOmniPipeline
else:
import sys

View File

@@ -1,932 +0,0 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import AutoTokenizer, PreTrainedModel
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import ZImageTransformer2DModel
from ...pipelines.pipeline_utils import DiffusionPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from .pipeline_output import ZImagePipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import ZImageInpaintPipeline
>>> from diffusers.utils import load_image
>>> pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> init_image = load_image(url).resize((1024, 1024))
>>> # Create a mask (white = inpaint, black = preserve)
>>> import numpy as np
>>> from PIL import Image
>>> mask = np.zeros((1024, 1024), dtype=np.uint8)
>>> mask[256:768, 256:768] = 255 # Inpaint center region
>>> mask_image = Image.fromarray(mask)
>>> prompt = "A beautiful lake with mountains in the background"
>>> image = pipe(
... prompt,
... image=init_image,
... mask_image=mask_image,
... strength=1.0,
... num_inference_steps=9,
... guidance_scale=0.0,
... generator=torch.Generator("cuda").manual_seed(42),
... ).images[0]
>>> image.save("zimage_inpaint.png")
```
"""
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class ZImageInpaintPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
r"""
The ZImage pipeline for inpainting.
Args:
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`PreTrainedModel`]):
A text encoder model to encode text prompts.
tokenizer ([`AutoTokenizer`]):
A tokenizer to tokenize text prompts.
transformer ([`ZImageTransformer2DModel`]):
A ZImage transformer model to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds", "mask", "masked_image_latents"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: PreTrainedModel,
tokenizer: AutoTokenizer,
transformer: ZImageTransformer2DModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor * 2,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
)
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
prompt_embeds=prompt_embeds,
max_sequence_length=max_sequence_length,
)
if do_classifier_free_guidance:
if negative_prompt is None:
negative_prompt = ["" for _ in prompt]
else:
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
assert len(prompt) == len(negative_prompt)
negative_prompt_embeds = self._encode_prompt(
prompt=negative_prompt,
device=device,
prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
)
else:
negative_prompt_embeds = []
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline._encode_prompt
def _encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
max_sequence_length: int = 512,
) -> List[torch.FloatTensor]:
device = device or self._execution_device
if prompt_embeds is not None:
return prompt_embeds
if isinstance(prompt, str):
prompt = [prompt]
for i, prompt_item in enumerate(prompt):
messages = [
{"role": "user", "content": prompt_item},
]
prompt_item = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
prompt[i] = prompt_item
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device)
prompt_masks = text_inputs.attention_mask.to(device).bool()
prompt_embeds = self.text_encoder(
input_ids=text_input_ids,
attention_mask=prompt_masks,
output_hidden_states=True,
).hidden_states[-2]
embeddings_list = []
for i in range(len(prompt_embeds)):
embeddings_list.append(prompt_embeds[i][prompt_masks[i]])
return embeddings_list
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
device,
generator,
):
"""Prepare mask and masked image latents for inpainting.
Args:
mask: Binary mask tensor where 1 = inpaint region, 0 = preserve region.
masked_image: Original image with masked regions zeroed out.
batch_size: Number of images to generate.
height: Output image height.
width: Output image width.
dtype: Data type for the tensors.
device: Device to place tensors on.
generator: Random generator for reproducibility.
Returns:
Tuple of (mask, masked_image_latents) prepared for the denoising loop.
"""
# Calculate latent dimensions
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
# Resize mask to latent dimensions
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width), mode="nearest")
mask = mask.to(device=device, dtype=dtype)
# Encode masked image to latents
masked_image = masked_image.to(device=device, dtype=dtype)
if isinstance(generator, list):
masked_image_latents = [
retrieve_latents(self.vae.encode(masked_image[i : i + 1]), generator=generator[i])
for i in range(masked_image.shape[0])
]
masked_image_latents = torch.cat(masked_image_latents, dim=0)
else:
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
# Apply VAE scaling
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# Expand for batch size
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
return mask, masked_image_latents
def prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
"""Prepare latents for inpainting, returning noise and image_latents for blending.
Returns:
Tuple of (latents, noise, image_latents) where:
- latents: Noised image latents for denoising
- noise: The noise tensor used for blending
- image_latents: Clean image latents for blending
"""
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
# Generate noise for blending even if latents are provided
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# Encode image for blending
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
image_latents = torch.cat([image_latents] * (batch_size // image_latents.shape[0]), dim=0)
return latents.to(device=device, dtype=dtype), noise, image_latents
# Encode the input image
image = image.to(device=device, dtype=dtype)
if image.shape[1] != num_channels_latents:
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
# Apply scaling (inverse of decoding: decode does latents/scaling_factor + shift_factor)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
image_latents = image
# Handle batch size expansion
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
# Generate noise for both initial noising and later blending
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# Add noise using flow matching scale_noise
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
return latents, noise, image_latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
def check_inputs(
self,
prompt,
image,
mask_image,
strength,
height,
width,
output_type,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should be in [0.0, 1.0] but is {strength}")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if image is None:
raise ValueError("`image` input cannot be undefined for inpainting.")
if mask_image is None:
raise ValueError("`mask_image` input cannot be undefined for inpainting.")
if output_type not in ["latent", "pil", "np", "pt"]:
raise ValueError(f"`output_type` must be one of 'latent', 'pil', 'np', or 'pt', but got {output_type}")
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: Optional[torch.FloatTensor] = None,
strength: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 5.0,
cfg_normalization: bool = False,
cfg_truncation: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for inpainting.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
list of tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing a mask image for inpainting. White pixels (value 1) in the
mask will be inpainted, black pixels (value 0) will be preserved from the original image.
masked_image_latents (`torch.FloatTensor`, *optional*):
Pre-encoded masked image latents. If provided, the masked image encoding step will be skipped.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image` in the masked region.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image. If not provided, uses the input image height.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image. If not provided, uses the input image width.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
cfg_normalization (`bool`, *optional*, defaults to False):
Whether to apply configuration normalization.
cfg_truncation (`float`, *optional*, defaults to 1.0):
The truncation value for configuration.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, *optional*, defaults to 512):
Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated images.
"""
# 1. Check inputs
self.check_inputs(
prompt=prompt,
image=image,
mask_image=mask_image,
strength=strength,
height=height,
width=width,
output_type=output_type,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
# 2. Preprocess image and mask
init_image = self.image_processor.preprocess(image)
init_image = init_image.to(dtype=torch.float32)
# Get dimensions from the preprocessed image if not specified
if height is None:
height = init_image.shape[-2]
if width is None:
width = init_image.shape[-1]
vae_scale = self.vae_scale_factor * 2
if height % vae_scale != 0:
raise ValueError(
f"Height must be divisible by {vae_scale} (got {height}). "
f"Please adjust the height to a multiple of {vae_scale}."
)
if width % vae_scale != 0:
raise ValueError(
f"Width must be divisible by {vae_scale} (got {width}). "
f"Please adjust the width to a multiple of {vae_scale}."
)
# Preprocess mask
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
device = self._execution_device
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
self._cfg_normalization = cfg_normalization
self._cfg_truncation = cfg_truncation
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = len(prompt_embeds)
# If prompt_embeds is provided and prompt is None, skip encoding
if prompt_embeds is not None and prompt is None:
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
raise ValueError(
"When `prompt_embeds` is provided without `prompt`, "
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
)
else:
(
prompt_embeds,
negative_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
device=device,
max_sequence_length=max_sequence_length,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.in_channels
# Repeat prompt_embeds for num_images_per_prompt
if num_images_per_prompt > 1:
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
if self.do_classifier_free_guidance and negative_prompt_embeds:
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
actual_batch_size = batch_size * num_images_per_prompt
# Calculate latent dimensions for image_seq_len
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
image_seq_len = (latent_height // 2) * (latent_width // 2)
# 5. Prepare timesteps
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
self.scheduler.sigma_min = 0.0
scheduler_kwargs = {"mu": mu}
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
**scheduler_kwargs,
)
# 6. Adjust timesteps based on strength
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline "
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(actual_batch_size)
# 7. Prepare latents from image (returns noise and image_latents for blending)
latents, noise, image_latents = self.prepare_latents(
init_image,
latent_timestep,
actual_batch_size,
num_channels_latents,
height,
width,
prompt_embeds[0].dtype,
device,
generator,
latents,
)
# 8. Prepare mask and masked image latents
# Create masked image: preserve only unmasked regions (mask=0)
if masked_image_latents is None:
masked_image = init_image * (mask < 0.5)
else:
masked_image = None # Will use provided masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask,
masked_image if masked_image is not None else init_image,
actual_batch_size,
height,
width,
prompt_embeds[0].dtype,
device,
generator,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 9. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
timestep = (1000 - timestep) / 1000
# Normalized time for time-aware config (0 at start, 1 at end)
t_norm = timestep[0].item()
# Handle cfg truncation
current_guidance_scale = self.guidance_scale
if (
self.do_classifier_free_guidance
and self._cfg_truncation is not None
and float(self._cfg_truncation) <= 1
):
if t_norm > self._cfg_truncation:
current_guidance_scale = 0.0
# Run CFG only if configured AND scale is non-zero
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
if apply_cfg:
latents_typed = latents.to(self.transformer.dtype)
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
timestep_model_input = timestep.repeat(2)
else:
latent_model_input = latents.to(self.transformer.dtype)
prompt_embeds_model_input = prompt_embeds
timestep_model_input = timestep
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
model_out_list = self.transformer(
latent_model_input_list,
timestep_model_input,
prompt_embeds_model_input,
)[0]
if apply_cfg:
# Perform CFG
pos_out = model_out_list[:actual_batch_size]
neg_out = model_out_list[actual_batch_size:]
noise_pred = []
for j in range(actual_batch_size):
pos = pos_out[j].float()
neg = neg_out[j].float()
pred = pos + current_guidance_scale * (pos - neg)
# Renormalization
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
ori_pos_norm = torch.linalg.vector_norm(pos)
new_pos_norm = torch.linalg.vector_norm(pred)
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
if new_pos_norm > max_new_norm:
pred = pred * (max_new_norm / new_pos_norm)
noise_pred.append(pred)
noise_pred = torch.stack(noise_pred, dim=0)
else:
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
noise_pred = noise_pred.squeeze(2)
noise_pred = -noise_pred
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
assert latents.dtype == torch.float32
# Inpainting blend: combine denoised latents with original image latents
init_latents_proper = image_latents
# Re-scale original latents to current noise level for proper blending
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.scale_noise(
init_latents_proper, torch.tensor([noise_timestep]), noise
)
# Blend: mask=1 for inpaint region (use denoised), mask=0 for preserve region (use original)
latents = (1 - mask) * init_latents_proper + mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
mask = callback_outputs.pop("mask", mask)
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = latents.to(self.vae.dtype)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ZImagePipelineOutput(images=image)

View File

@@ -79,8 +79,7 @@ MMQ_QUANT_TYPES = STANDARD_QUANT_TYPES | KQUANT_TYPES
def _fused_mul_mat_gguf(x: torch.Tensor, qweight: torch.Tensor, qweight_type: int) -> torch.Tensor:
# there is no need to call any kernel for fp16/bf16
if qweight_type in UNQUANTIZED_TYPES:
weight = dequantize_gguf_tensor(qweight)
return x @ weight.T
return x @ qweight.T
# TODO(Isotr0py): GGUF's MMQ and MMVQ implementation are designed for
# contiguous batching and inefficient with diffusers' batching,

View File

@@ -545,9 +545,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -867,9 +867,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -245,26 +245,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -272,15 +259,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -308,12 +287,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -750,7 +724,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -764,7 +738,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
@@ -848,7 +822,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -858,10 +832,8 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -888,10 +860,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -922,7 +891,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -932,7 +901,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
@@ -1045,7 +1014,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -1055,10 +1024,8 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -1139,9 +1106,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
return x_t
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.
@@ -1251,10 +1216,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
sample = sample.to(torch.float32)
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape,
generator=generator,
device=model_output.device,
dtype=torch.float32,
model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise.to(device=model_output.device, dtype=torch.float32)

View File

@@ -141,10 +141,6 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to 1.0):
The flow shift factor. Valid only when `use_flow_sigmas=True`.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
@@ -167,15 +163,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"] = "dpmsolver++",
solver_type: Literal["midpoint", "heun"] = "midpoint",
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
@@ -184,32 +180,19 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[Literal["learned", "learned_range"]] = None,
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
variance_type: Optional[str] = None,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -217,15 +200,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -244,12 +219,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -280,11 +250,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"""
return self._step_index
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
):
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -416,7 +382,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
def _sigma_to_t(self, sigma, log_sigmas):
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -453,7 +419,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
def _sigma_to_alpha_sigma_t(self, sigma):
"""
Convert sigma values to alpha_t and sigma_t values.
@@ -475,7 +441,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -601,7 +567,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -615,7 +581,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
@@ -700,7 +666,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -710,10 +676,8 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -740,10 +704,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -775,7 +736,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -785,7 +746,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
@@ -899,7 +860,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: Optional[torch.Tensor] = None,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -909,10 +870,8 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`, *optional*):
sample (`torch.Tensor`):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -992,7 +951,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
)
return x_t
def _init_step_index(self, timestep: Union[int, torch.Tensor]):
def _init_step_index(self, timestep):
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -1016,7 +975,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator: Optional[torch.Generator] = None,
generator=None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
@@ -1068,10 +1027,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise
@@ -1118,21 +1074,6 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
"""
Add noise to the clean `original_samples` using the scheduler's equivalent function.
Args:
original_samples (`torch.Tensor`):
The original samples to add noise to.
noise (`torch.Tensor`):
The noise tensor.
timesteps (`torch.IntTensor`):
The timesteps at which to add noise.
Returns:
`torch.Tensor`:
The noisy samples.
"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -1162,5 +1103,5 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self) -> int:
def __len__(self):
return self.config.num_train_timesteps

View File

@@ -1120,9 +1120,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -662,9 +662,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1122,9 +1122,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1083,9 +1083,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -4112,21 +4112,6 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ZImageInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class ZImageOmniPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -1,5 +1,5 @@
import unittest
from unittest.mock import MagicMock, patch
from unittest.mock import patch
from transformers import CLIPTextModel, LongformerModel
@@ -30,69 +30,3 @@ class TestAutoModel(unittest.TestCase):
def test_load_from_model_index(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
assert isinstance(model, CLIPTextModel)
class TestAutoModelFromConfig(unittest.TestCase):
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
def test_from_config_with_dict_diffusers_class(self, mock_get_class):
config = {"_class_name": "UNet2DConditionModel", "sample_size": 64}
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config(config)
mock_get_class.assert_called_once_with(
library_name="diffusers",
class_name="UNet2DConditionModel",
importable_classes=unittest.mock.ANY,
pipelines=None,
is_pipeline_module=False,
)
mock_get_class.return_value[0].from_config.assert_called_once_with(config)
assert result is mock_model
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
@patch("diffusers.models.AutoModel.load_config", return_value={"_class_name": "UNet2DConditionModel"})
def test_from_config_with_string_path(self, mock_load_config, mock_get_class):
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet")
mock_load_config.assert_called_once()
assert result is mock_model
def test_from_config_raises_on_missing_class_info(self):
config = {"some_key": "some_value"}
with self.assertRaises(ValueError, msg="Couldn't find a model class"):
AutoModel.from_config(config)
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
def test_from_config_with_model_type_routes_to_transformers(self, mock_get_class):
config = {"model_type": "clip_text_model"}
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config(config)
mock_get_class.assert_called_once_with(
library_name="transformers",
class_name="AutoModel",
importable_classes=unittest.mock.ANY,
pipelines=None,
is_pipeline_module=False,
)
assert result is mock_model
def test_from_config_raises_on_none(self):
with self.assertRaises(ValueError, msg="Please provide a `pretrained_model_name_or_path_or_dict`"):
AutoModel.from_config(None)

View File

@@ -37,6 +37,7 @@ class TestFluxModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxModularPipeline
pipeline_blocks_class = FluxAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-modular"
default_repo_id = "hf-internal-testing/tiny-flux-pipe"
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
@@ -63,6 +64,7 @@ class TestFluxImg2ImgModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxModularPipeline
pipeline_blocks_class = FluxAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-modular"
default_repo_id = "hf-internal-testing/tiny-flux-pipe"
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
batch_params = frozenset(["prompt", "image"])
@@ -129,6 +131,7 @@ class TestFluxKontextModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxKontextModularPipeline
pipeline_blocks_class = FluxKontextAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-kontext-pipe"
default_repo_id = "hf-internal-testing/tiny-flux-kontext-pipe"
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
batch_params = frozenset(["prompt", "image"])

View File

@@ -32,6 +32,8 @@ class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2ModularPipeline
pipeline_blocks_class = Flux2AutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-modular"
default_repo_id = "black-forest-labs/FLUX.2-dev"
default_repo_id = "hf-internal-testing/tiny-flux2"
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
@@ -60,6 +62,7 @@ class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2ModularPipeline
pipeline_blocks_class = Flux2AutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-modular"
default_repo_id = "hf-internal-testing/tiny-flux2"
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
batch_params = frozenset(["prompt", "image"])

View File

@@ -32,6 +32,7 @@ class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
default_repo_id = None # TODO
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
@@ -59,6 +60,7 @@ class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
default_repo_id = None # TODO
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])

View File

@@ -32,7 +32,7 @@ class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
default_repo_id = "hf-internal-testing/tiny-flux2-klein"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
@@ -59,6 +59,7 @@ class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
default_repo_id = "hf-internal-testing/tiny-flux2-klein"
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])

View File

@@ -34,6 +34,7 @@ class TestQwenImageModularPipelineFast(ModularPipelineTesterMixin, ModularGuider
pipeline_class = QwenImageModularPipeline
pipeline_blocks_class = QwenImageAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-modular"
default_repo_id = "Qwen/Qwen-Image"
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image", "mask_image"])
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
@@ -60,6 +61,7 @@ class TestQwenImageEditModularPipelineFast(ModularPipelineTesterMixin, ModularGu
pipeline_class = QwenImageEditModularPipeline
pipeline_blocks_class = QwenImageEditAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-edit-modular"
default_repo_id = "Qwen/Qwen-Image-Edit"
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image", "mask_image"])
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
@@ -86,6 +88,7 @@ class TestQwenImageEditPlusModularPipelineFast(ModularPipelineTesterMixin, Modul
pipeline_class = QwenImageEditPlusModularPipeline
pipeline_blocks_class = QwenImageEditPlusAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-qwenimage-edit-plus-modular"
default_repo_id = "Qwen/Qwen-Image-Edit-2509"
# No `mask_image` yet.
params = frozenset(["prompt", "height", "width", "negative_prompt", "attention_kwargs", "image"])

View File

@@ -279,6 +279,8 @@ class TestSDXLModularPipelineFast(
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
default_repo_id = "hf-internal-testing/tiny-sdxl-pipe"
params = frozenset(
[
"prompt",
@@ -326,6 +328,7 @@ class TestSDXLImg2ImgModularPipelineFast(
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
default_repo_id = "hf-internal-testing/tiny-sdxl-pipe"
params = frozenset(
[
"prompt",
@@ -379,6 +382,7 @@ class SDXLInpaintingModularPipelineFastTests(
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-sdxl-modular"
default_repo_id = "hf-internal-testing/tiny-sdxl-pipe"
params = frozenset(
[
"prompt",

View File

@@ -37,6 +37,8 @@ class ModularPipelineTesterMixin:
optional_params = frozenset(["num_inference_steps", "num_images_per_prompt", "latents", "output_type"])
# this is modular specific: generator needs to be a intermediate input because it's mutable
intermediate_params = frozenset(["generator"])
# prompt is required for most pipeline, with exceptions like qwen-image layer
required_params = frozenset(["prompt"])
def get_generator(self, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
@@ -55,6 +57,12 @@ class ModularPipelineTesterMixin:
"You need to set the attribute `pretrained_model_name_or_path` in the child test class. See existing pipeline tests for reference."
)
@property
def default_repo_id(self) -> str:
raise NotImplementedError(
"You need to set the attribute `default_repo_id` in the child test class. See existing pipeline tests for reference."
)
@property
def pipeline_blocks_class(self) -> Union[Callable, ModularPipelineBlocks]:
raise NotImplementedError(
@@ -121,6 +129,7 @@ class ModularPipelineTesterMixin:
pipe = self.get_pipeline()
input_parameters = pipe.blocks.input_names
optional_parameters = pipe.default_call_parameters
required_parameters = pipe.blocks.required_inputs
def _check_for_parameters(parameters, expected_parameters, param_type):
remaining_parameters = {param for param in parameters if param not in expected_parameters}
@@ -130,6 +139,98 @@ class ModularPipelineTesterMixin:
_check_for_parameters(self.params, input_parameters, "input")
_check_for_parameters(self.optional_params, optional_parameters, "optional")
_check_for_parameters(self.required_params, required_parameters, "required")
def test_loading_from_default_repo(self):
if self.default_repo_id is None:
return
try:
pipe = ModularPipeline.from_pretrained(self.default_repo_id)
assert pipe.blocks.__class__ == self.pipeline_blocks_class
except Exception as e:
assert False, f"Failed to load pipeline from default repo: {e}"
def test_modular_inference(self):
# run the pipeline to get the base output for comparison
pipe = self.get_pipeline()
pipe.to(torch_device, torch.float32)
inputs = self.get_dummy_inputs()
standard_output = pipe(**inputs, output="images")
# create text, denoise, decoder (and optional vae encoder) nodes
blocks = self.pipeline_blocks_class()
assert "text_encoder" in blocks.sub_blocks, "`text_encoder` block is not present in the pipeline"
assert "denoise" in blocks.sub_blocks, "`denoise` block is not present in the pipeline"
assert "decode" in blocks.sub_blocks, "`decode` block is not present in the pipeline"
# manually set the components in the sub_pipe
# a hack to workaround the fact the default pipeline properties are often incorrect for testing cases,
# #e.g. vae_scale_factor is ususally not 8 because vae is configured to be smaller for testing
def manually_set_all_components(pipe: ModularPipeline, sub_pipe: ModularPipeline):
for n, comp in pipe.components.items():
setattr(sub_pipe, n, comp)
# Initialize all nodes
text_node = blocks.sub_blocks["text_encoder"].init_pipeline(self.pretrained_model_name_or_path)
text_node.load_components(torch_dtype=torch.float32)
text_node.to(torch_device)
manually_set_all_components(pipe, text_node)
denoise_node = blocks.sub_blocks["denoise"].init_pipeline(self.pretrained_model_name_or_path)
denoise_node.load_components(torch_dtype=torch.float32)
denoise_node.to(torch_device)
manually_set_all_components(pipe, denoise_node)
decoder_node = blocks.sub_blocks["decode"].init_pipeline(self.pretrained_model_name_or_path)
decoder_node.load_components(torch_dtype=torch.float32)
decoder_node.to(torch_device)
manually_set_all_components(pipe, decoder_node)
if "vae_encoder" in blocks.sub_blocks:
vae_encoder_node = blocks.sub_blocks["vae_encoder"].init_pipeline(self.pretrained_model_name_or_path)
vae_encoder_node.load_components(torch_dtype=torch.float32)
vae_encoder_node.to(torch_device)
manually_set_all_components(pipe, vae_encoder_node)
else:
vae_encoder_node = None
def filter_inputs(available: dict, expected_keys) -> dict:
return {k: v for k, v in available.items() if k in expected_keys}
# prepare inputs for each node
inputs = self.get_dummy_inputs()
# 1. Text encoder: takes from inputs
text_inputs = filter_inputs(inputs, text_node.blocks.input_names)
text_output = text_node(**text_inputs)
text_output_dict = text_output.get_by_kwargs("denoiser_input_fields")
# 2. VAE encoder (optional): takes from inputs + text_output
if vae_encoder_node is not None:
vae_available = {**inputs, **text_output_dict}
vae_encoder_inputs = filter_inputs(vae_available, vae_encoder_node.blocks.input_names)
vae_encoder_output = vae_encoder_node(**vae_encoder_inputs)
vae_output_dict = vae_encoder_output.values
else:
vae_output_dict = {}
# 3. Denoise: takes from inputs + text_output + vae_output
denoise_available = {**inputs, **text_output_dict, **vae_output_dict}
denoise_inputs = filter_inputs(denoise_available, denoise_node.blocks.input_names)
denoise_output = denoise_node(**denoise_inputs)
latents = denoise_output.latents
# 4. Decoder: takes from inputs + denoise_output
decode_available = {**inputs, "latents": latents}
decode_inputs = filter_inputs(decode_available, decoder_node.blocks.input_names)
modular_output = decoder_node(**decode_inputs).images
assert modular_output.shape == standard_output.shape, (
f"Modular output should have same shape as standard output {standard_output.shape}, but got {modular_output.shape}"
)
def test_inference_batch_consistent(self, batch_sizes=[2], batch_generator=True):
pipe = self.get_pipeline().to(torch_device)

View File

@@ -1,396 +0,0 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import unittest
import numpy as np
import torch
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
ZImageInpaintPipeline,
ZImageTransformer2DModel,
)
from diffusers.utils.testing_utils import floats_tensor
from ...testing_utils import torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin, to_np
# Z-Image requires torch.use_deterministic_algorithms(False) due to complex64 RoPE operations
# Cannot use enable_full_determinism() which sets it to True
# Note: Z-Image does not support FP16 inference due to complex64 RoPE embeddings
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if hasattr(torch.backends, "cuda"):
torch.backends.cuda.matmul.allow_tf32 = False
class ZImageInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ZImageInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset(["image", "mask_image"])
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"strength",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
def setUp(self):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
def tearDown(self):
super().tearDown()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
def get_dummy_components(self):
torch.manual_seed(0)
transformer = ZImageTransformer2DModel(
all_patch_size=(2,),
all_f_patch_size=(1,),
in_channels=16,
dim=32,
n_layers=2,
n_refiner_layers=1,
n_heads=2,
n_kv_heads=2,
norm_eps=1e-5,
qk_norm=True,
cap_feat_dim=16,
rope_theta=256.0,
t_scale=1000.0,
axes_dims=[8, 4, 4],
axes_lens=[256, 32, 32],
)
# `x_pad_token` and `cap_pad_token` are initialized with `torch.empty` which contains
# uninitialized memory. Set them to known values for deterministic test behavior.
with torch.no_grad():
transformer.x_pad_token.copy_(torch.ones_like(transformer.x_pad_token.data))
transformer.cap_pad_token.copy_(torch.ones_like(transformer.cap_pad_token.data))
torch.manual_seed(0)
vae = AutoencoderKL(
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
block_out_channels=[32, 64],
layers_per_block=1,
latent_channels=16,
norm_num_groups=32,
sample_size=32,
scaling_factor=0.3611,
shift_factor=0.1159,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
config = Qwen3Config(
hidden_size=16,
intermediate_size=16,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
vocab_size=151936,
max_position_embeddings=512,
)
text_encoder = Qwen3Model(config)
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
import random
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
# Create mask: 1 = inpaint region, 0 = preserve region
mask_image = torch.zeros((1, 1, 32, 32), device=device)
mask_image[:, :, 8:24, 8:24] = 1.0 # Inpaint center region
inputs = {
"prompt": "dance monkey",
"negative_prompt": "bad quality",
"image": image,
"mask_image": mask_image,
"strength": 1.0,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.0,
"cfg_normalization": False,
"cfg_truncation": 1.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "np",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
generated_image = image[0]
self.assertEqual(generated_image.shape, (32, 32, 3))
def test_inference_batch_single_identical(self):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
def test_num_images_per_prompt(self):
import inspect
sig = inspect.signature(self.pipeline_class.__call__)
if "num_images_per_prompt" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
del pipe
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.7):
import random
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
# Generate a larger image for the input
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
# Generate a larger mask for the input
mask = torch.zeros((1, 1, 128, 128), device="cpu")
mask[:, :, 32:96, 32:96] = 1.0
inputs["mask_image"] = mask
output_without_tiling = pipe(**inputs)[0]
# With tiling (standard AutoencoderKL doesn't accept parameters)
pipe.vae.enable_tiling()
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
inputs["mask_image"] = mask
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-3):
# Z-Image RoPE embeddings (complex64) have slightly higher numerical tolerance
# Inpainting mask blending adds additional numerical variance
super().test_pipeline_with_accelerator_device_map(expected_max_difference=expected_max_difference)
def test_group_offloading_inference(self):
# Block-level offloading conflicts with RoPE cache. Pipeline-level offloading (tested separately) works fine.
self.skipTest("Using test_pipeline_level_group_offloading_inference instead")
def test_save_load_float16(self, expected_max_diff=1e-2):
# Z-Image does not support FP16 due to complex64 RoPE embeddings
self.skipTest("Z-Image does not support FP16 inference")
def test_float16_inference(self, expected_max_diff=5e-2):
# Z-Image does not support FP16 due to complex64 RoPE embeddings
self.skipTest("Z-Image does not support FP16 inference")
def test_strength_parameter(self):
"""Test that strength parameter affects the output correctly."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# Test with different strength values
inputs_low_strength = self.get_dummy_inputs(device)
inputs_low_strength["strength"] = 0.2
inputs_high_strength = self.get_dummy_inputs(device)
inputs_high_strength["strength"] = 0.8
# Both should complete without errors
output_low = pipe(**inputs_low_strength).images[0]
output_high = pipe(**inputs_high_strength).images[0]
# Outputs should be different (different amount of transformation)
self.assertFalse(np.allclose(output_low, output_high, atol=1e-3))
def test_invalid_strength(self):
"""Test that invalid strength values raise appropriate errors."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
inputs = self.get_dummy_inputs(device)
# Test strength < 0
inputs["strength"] = -0.1
with self.assertRaises(ValueError):
pipe(**inputs)
# Test strength > 1
inputs["strength"] = 1.5
with self.assertRaises(ValueError):
pipe(**inputs)
def test_mask_inpainting(self):
"""Test that the mask properly controls which regions are inpainted."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# Generate with full mask (inpaint everything)
inputs_full = self.get_dummy_inputs(device)
inputs_full["mask_image"] = torch.ones((1, 1, 32, 32), device=device)
# Generate with no mask (preserve everything)
inputs_none = self.get_dummy_inputs(device)
inputs_none["mask_image"] = torch.zeros((1, 1, 32, 32), device=device)
# Both should complete without errors
output_full = pipe(**inputs_full).images[0]
output_none = pipe(**inputs_none).images[0]
# Outputs should be different (full inpaint vs preserve)
self.assertFalse(np.allclose(output_full, output_none, atol=1e-3))