Compare commits

...

70 Commits

Author SHA1 Message Date
YiYi Xu
6a509ba862 Merge branch 'main' into modular-diffusers 2025-04-30 17:56:25 -10:00
YiYi Xu
96795afc72 Merge branch 'main' into modular-diffusers 2025-04-07 18:05:00 -10:00
yiyixuxu
12650e1393 up 2025-02-04 02:08:28 +01:00
yiyixuxu
addaad013c more more more refactor 2025-02-03 20:36:05 +01:00
yiyixuxu
485f8d1758 more refactor 2025-02-01 21:30:05 +01:00
yiyixuxu
cff0fd6260 more refactor 2025-02-01 11:36:13 +01:00
yiyixuxu
8ddb20bfb8 up 2025-02-01 05:45:00 +01:00
yiyixuxu
e5089d702b update 2025-01-31 21:55:45 +01:00
yiyixuxu
2c3e4eafa8 fix 2025-01-29 17:58:40 +01:00
yiyixuxu
c7020df2cf add model_info 2025-01-27 11:33:27 +01:00
yiyixuxu
4bed3e306e up up 2025-01-26 13:04:33 +01:00
yiyixuxu
00a3bc9d6c fix 2025-01-23 18:16:00 +01:00
YiYi Xu
ccb35acd81 Merge branch 'main' into modular-diffusers 2025-01-23 07:07:11 -10:00
yiyixuxu
00cae4e857 docstring doc doc doc 2025-01-23 11:07:13 +01:00
yiyixuxu
b3fb4188f5 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-01-22 17:24:06 +01:00
YiYi Xu
71df1581f7 Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_modular.py
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-01-22 06:19:22 -10:00
yiyixuxu
d046cf7d35 block state + fix for num_images_per_prompt > 1 for denoise/controlnet union etc 2025-01-22 09:48:57 +01:00
yiyixuxu
68a5185c86 refactor more, ipadapter node, lora node 2025-01-20 03:36:01 +01:00
yiyixuxu
6e2fe26bfd fix more for lora 2025-01-18 08:04:12 +01:00
yiyixuxu
77b5fa59c5 make it work with lora has both text_encoder & unet 2025-01-18 04:12:07 +01:00
yiyixuxu
a226920b52 get_block_state make it less verbose 2025-01-17 01:37:18 +01:00
yiyixuxu
7007f72409 InputParam, OutputParam, get_auto_doc 2025-01-16 11:44:24 +01:00
yiyixuxu
a6804de4a2 add controlnet union to auto & fix for pag 2025-01-12 16:24:01 +01:00
yiyixuxu
7f897a9fc4 fix 2025-01-12 04:50:45 +01:00
yiyixuxu
0966663d2a adjust print 2025-01-11 19:15:54 +01:00
yiyixuxu
fb78f4f12d Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-01-11 09:05:56 +01:00
yiyixuxu
2220af6940 refactor 2025-01-11 09:05:47 +01:00
hlky
7a34832d52 [modular] Stable Diffusion XL ControlNet Union (#10509)
StableDiffusionXLControlNetUnionDenoiseStep
2025-01-09 10:29:45 -10:00
yiyixuxu
e973de64f9 fix contro;net inpaint preprocess 2025-01-08 21:47:20 +01:00
yiyixuxu
db94ca882d add controlnet inpaint + more refactor 2025-01-07 20:49:58 +01:00
yiyixuxu
6985906a2e controlnet input & remove the MultiPipelineBlocks class 2025-01-07 01:56:33 +01:00
yiyixuxu
54f410db6c add inpaint 2025-01-06 09:19:59 +01:00
yiyixuxu
c12a05b9c1 update to to not assume pipeline has hf_device_map 2025-01-03 20:57:44 +01:00
yiyixuxu
2e0f5c86cc start to add inpaint 2025-01-03 18:20:39 +01:00
yiyixuxu
1d63306295 make it work with lora 2025-01-03 06:07:25 +01:00
yiyixuxu
6c93626f6f remove run_blocks, just use __call__ 2025-01-02 00:59:12 +01:00
yiyixuxu
72c5bf07c8 add a from_block class method to modular pipeline 2025-01-02 00:49:34 +01:00
yiyixuxu
ed59f90f15 modular pipeline builder -> ModularPipeline 2025-01-01 22:15:48 +01:00
yiyixuxu
a09ca7f27e refactors: block __init__ no longer accept args. remove update_states from pipeline blocks, add update_states to modularpipeline, remove multi-block support for modular pipeline, remove offload support on modular pipeline 2025-01-01 21:43:20 +01:00
yiyixuxu
8c02572e16 add memory_reserve_margin arg to auto offload 2024-12-31 20:08:53 +01:00
yiyixuxu
27dde51de8 add output arg to run_blocks 2024-12-31 18:06:44 +01:00
yiyixuxu
10d4a775f1 style 2024-12-31 09:55:50 +01:00
yiyixuxu
72d9a81d99 components manager 2024-12-31 09:54:46 +01:00
yiyixuxu
4fa85c7963 add model_manager and global offloading method 2024-12-31 02:57:42 +01:00
YiYi Xu
806e8e66fb Merge branch 'main' into modular-diffusers 2024-12-29 00:44:43 -10:00
yiyixuxu
0b90051db8 add vae encoder node 2024-12-19 17:57:12 +01:00
yiyixuxu
b305c779b2 add offload support! 2024-12-14 21:37:21 +01:00
yiyixuxu
2b3cd2d39c update 2024-12-14 03:02:31 +01:00
yiyixuxu
bc3d1c9ee6 add model_cpu_offload_seq + _exlude_from_cpu_offload 2024-12-14 00:24:15 +01:00
yiyixuxu
e50d614636 only add model as expected_component when the model need to run for the block, currently it's added even when only config is needed 2024-12-11 03:39:39 +01:00
hlky
a8df0f1ffb Modular APG (#10173) 2024-12-10 08:22:42 -10:00
yiyixuxu
ace53e2d2f update/refactor 2024-12-10 03:41:28 +01:00
yiyixuxu
ffc2992fc2 add autostep (not complete) 2024-11-16 22:42:06 +01:00
yiyixuxu
c70a285c2c style 2024-10-30 10:33:25 +01:00
yiyixuxu
8b811feece refactor, from_pretrained, from_pipe, remove_blocks, replace_blocks 2024-10-30 10:13:03 +01:00
yiyixuxu
37e8dc7a59 remove img2img blocksgit status consolidate text2img and img2img 2024-10-28 00:37:48 +01:00
yiyixuxu
024a9f5de3 fix so that run_blocks can work with inputs in the state 2024-10-27 18:52:56 +01:00
yiyixuxu
005195c23e add 2024-10-27 15:18:10 +01:00
yiyixuxu
6742f160df up 2024-10-27 14:59:31 +01:00
yiyixuxu
540d303250 refactor guider 2024-10-26 21:17:06 +02:00
yiyixuxu
f1b3036ca1 update pag guider - draft 2024-10-24 00:14:59 +02:00
yiyixuxu
46ec1743a2 refactor guider, remove prepareguidance step to be combinedd into denoisestep 2024-10-23 21:42:40 +02:00
yiyixuxu
70272b1108 combine controlnetstep into contronetdesnoisestep 2024-10-20 19:45:00 +02:00
yiyixuxu
2b6dcbfa1d fix controlnet 2024-10-20 19:23:37 +02:00
yiyixuxu
af9572d759 controlnet 2024-10-19 12:36:12 +02:00
yiyixuxu
ddea157979 add from_pipe + run_blocks 2024-10-17 20:02:36 +02:00
yiyixuxu
ad3f9a26c0 update img2img, result match 2024-10-17 05:47:15 +02:00
yiyixuxu
e8d0980f9f add img2img support - output does not match with non-modular pipeline completely yet (look into later) 2024-10-16 20:56:39 +02:00
yiyixuxu
52a7f1cb97 add dataflow info for each block in builder _repr_ 2024-10-16 09:04:32 +02:00
yiyixuxu
33f85fadf6 add 2024-10-14 19:16:23 +02:00
23 changed files with 7381 additions and 82 deletions

View File

@@ -239,6 +239,7 @@ else:
"KarrasVePipeline",
"LDMPipeline",
"LDMSuperResolutionPipeline",
"ModularPipeline",
"PNDMPipeline",
"RePaintPipeline",
"ScoreSdeVePipeline",
@@ -493,10 +494,12 @@ else:
"StableDiffusionXLImg2ImgPipeline",
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLInstructPix2PixPipeline",
"StableDiffusionXLModularPipeline",
"StableDiffusionXLPAGImg2ImgPipeline",
"StableDiffusionXLPAGInpaintPipeline",
"StableDiffusionXLPAGPipeline",
"StableDiffusionXLPipeline",
"StableDiffusionXLAutoPipeline",
"StableUnCLIPImg2ImgPipeline",
"StableUnCLIPPipeline",
"StableVideoDiffusionPipeline",
@@ -834,6 +837,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
ModularPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
@@ -1066,10 +1070,12 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLInstructPix2PixPipeline,
StableDiffusionXLModularPipeline,
StableDiffusionXLPAGImg2ImgPipeline,
StableDiffusionXLPAGInpaintPipeline,
StableDiffusionXLPAGPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLAutoPipeline,
StableUnCLIPImg2ImgPipeline,
StableUnCLIPPipeline,
StableVideoDiffusionPipeline,

745
src/diffusers/guider.py Normal file
View File

@@ -0,0 +1,745 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from .models.attention_processor import (
Attention,
AttentionProcessor,
PAGCFGIdentitySelfAttnProcessor2_0,
PAGIdentitySelfAttnProcessor2_0,
)
from .utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class CFGGuider:
"""
This class is used to guide the pipeline with CFG (Classifier-Free Guidance).
"""
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0 and not self._disable_guidance
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def guidance_scale(self):
return self._guidance_scale
@property
def batch_size(self):
return self._batch_size
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
# a flag to disable CFG, e.g. we disable it for LCM and use a guidance scale embedding instead
disable_guidance = guider_kwargs.get("disable_guidance", False)
guidance_scale = guider_kwargs.get("guidance_scale", None)
if guidance_scale is None:
raise ValueError("guidance_scale is not provided in guider_kwargs")
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is not provided in guider_kwargs")
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
self._disable_guidance = disable_guidance
def reset_guider(self, pipeline):
pass
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 2:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size :]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Classifier-Free Guidance (CFG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 2
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor]]): The negative conditional input. It can be a
single tensor or a list of tensors. It must have the same length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_classifier_free_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_classifier_free_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_classifier_free_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_classifier_free_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_classifier_free_guidance:
return cond_input
else:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
raise ValueError(f"Unsupported input type: {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_classifier_free_guidance:
return model_output
noise_pred_uncond, noise_pred_text = model_output.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred
class PAGGuider:
"""
This class is used to guide the pipeline with CFG (Classifier-Free Guidance).
"""
def __init__(
self,
pag_applied_layers: Union[str, List[str]],
pag_attn_processors: Tuple[AttentionProcessor, AttentionProcessor] = (
PAGCFGIdentitySelfAttnProcessor2_0(),
PAGIdentitySelfAttnProcessor2_0(),
),
):
r"""
Set the the self-attention layers to apply PAG. Raise ValueError if the input is invalid.
Args:
pag_applied_layers (`str` or `List[str]`):
One or more strings identifying the layer names, or a simple regex for matching multiple layers, where
PAG is to be applied. A few ways of expected usage are as follows:
- Single layers specified as - "blocks.{layer_index}"
- Multiple layers as a list - ["blocks.{layers_index_1}", "blocks.{layer_index_2}", ...]
- Multiple layers as a block name - "mid"
- Multiple layers as regex - "blocks.({layer_index_1}|{layer_index_2})"
pag_attn_processors:
(`Tuple[AttentionProcessor, AttentionProcessor]`, defaults to `(PAGCFGIdentitySelfAttnProcessor2_0(),
PAGIdentitySelfAttnProcessor2_0())`): A tuple of two attention processors. The first attention
processor is for PAG with Classifier-free guidance enabled (conditional and unconditional). The second
attention processor is for PAG with CFG disabled (unconditional only).
"""
if not isinstance(pag_applied_layers, list):
pag_applied_layers = [pag_applied_layers]
if pag_attn_processors is not None:
if not isinstance(pag_attn_processors, tuple) or len(pag_attn_processors) != 2:
raise ValueError("Expected a tuple of two attention processors")
for i in range(len(pag_applied_layers)):
if not isinstance(pag_applied_layers[i], str):
raise ValueError(
f"Expected either a string or a list of string but got type {type(pag_applied_layers[i])}"
)
self.pag_applied_layers = pag_applied_layers
self._pag_attn_processors = pag_attn_processors
def _set_pag_attn_processor(self, model, pag_applied_layers, do_classifier_free_guidance):
r"""
Set the attention processor for the PAG layers.
"""
pag_attn_processors = self._pag_attn_processors
pag_attn_proc = pag_attn_processors[0] if do_classifier_free_guidance else pag_attn_processors[1]
def is_self_attn(module: nn.Module) -> bool:
r"""
Check if the module is self-attention module based on its name.
"""
return isinstance(module, Attention) and not module.is_cross_attention
def is_fake_integral_match(layer_id, name):
layer_id = layer_id.split(".")[-1]
name = name.split(".")[-1]
return layer_id.isnumeric() and name.isnumeric() and layer_id == name
for layer_id in pag_applied_layers:
# for each PAG layer input, we find corresponding self-attention layers in the unet model
target_modules = []
for name, module in model.named_modules():
# Identify the following simple cases:
# (1) Self Attention layer existing
# (2) Whether the module name matches pag layer id even partially
# (3) Make sure it's not a fake integral match if the layer_id ends with a number
# For example, blocks.1, blocks.10 should be differentiable if layer_id="blocks.1"
if (
is_self_attn(module)
and re.search(layer_id, name) is not None
and not is_fake_integral_match(layer_id, name)
):
logger.debug(f"Applying PAG to layer: {name}")
target_modules.append(module)
if len(target_modules) == 0:
raise ValueError(f"Cannot find PAG layer to set attention processor for: {layer_id}")
for module in target_modules:
module.processor = pag_attn_proc
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and not self._disable_guidance
@property
def do_perturbed_attention_guidance(self):
return self._pag_scale > 0 and not self._disable_guidance
@property
def do_pag_adaptive_scaling(self):
return self._pag_adaptive_scale > 0 and self._pag_scale > 0 and not self._disable_guidance
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def batch_size(self):
return self._batch_size
@property
def pag_scale(self):
return self._pag_scale
@property
def pag_adaptive_scale(self):
return self._pag_adaptive_scale
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
pag_scale = guider_kwargs.get("pag_scale", 3.0)
pag_adaptive_scale = guider_kwargs.get("pag_adaptive_scale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is a required argument for PAGGuider")
guidance_scale = guider_kwargs.get("guidance_scale", None)
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
disable_guidance = guider_kwargs.get("disable_guidance", False)
if guidance_scale is None:
raise ValueError("guidance_scale is a required argument for PAGGuider")
self._pag_scale = pag_scale
self._pag_adaptive_scale = pag_adaptive_scale
self._guidance_scale = guidance_scale
self._disable_guidance = disable_guidance
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
if not hasattr(pipeline, "original_attn_proc") or pipeline.original_attn_proc is None:
pipeline.original_attn_proc = pipeline.unet.attn_processors
self._set_pag_attn_processor(
model=pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer,
pag_applied_layers=self.pag_applied_layers,
do_classifier_free_guidance=self.do_classifier_free_guidance,
)
def reset_guider(self, pipeline):
if (
self.do_perturbed_attention_guidance
and hasattr(pipeline, "original_attn_proc")
and pipeline.original_attn_proc is not None
):
pipeline.unet.set_attn_processor(pipeline.original_attn_proc)
pipeline.original_attn_proc = None
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Perturbed Attention Guidance (PAG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 3
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 3:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size : self.batch_size * 2]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]):
The negative conditional input. It can be a single tensor or a list of tensors. It must have the same
length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_perturbed_attention_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_perturbed_attention_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_perturbed_attention_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_perturbed_attention_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
cond = torch.cat([cond] * 2, dim=0)
if self.do_classifier_free_guidance:
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
else:
prepared_input.append(cond)
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_perturbed_attention_guidance:
return cond_input
cond_input = torch.cat([cond_input] * 2, dim=0)
if self.do_classifier_free_guidance:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
return cond_input
else:
raise ValueError(f"Unsupported input type: {type(negative_cond_input)} and {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_perturbed_attention_guidance:
return model_output
if self.do_pag_adaptive_scaling:
pag_scale = max(self._pag_scale - self._pag_adaptive_scale * (1000 - timestep), 0)
else:
pag_scale = self._pag_scale
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text, noise_pred_perturb = model_output.chunk(3)
noise_pred = (
noise_pred_uncond
+ self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+ pag_scale * (noise_pred_text - noise_pred_perturb)
)
else:
noise_pred_text, noise_pred_perturb = model_output.chunk(2)
noise_pred = noise_pred_text + pag_scale * (noise_pred_text - noise_pred_perturb)
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred
class MomentumBuffer:
def __init__(self, momentum: float):
self.momentum = momentum
self.running_average = 0
def update(self, update_value: torch.Tensor):
new_average = self.momentum * self.running_average
self.running_average = update_value + new_average
class APGGuider:
"""
This class is used to guide the pipeline with APG (Adaptive Projected Guidance).
"""
def normalized_guidance(
self,
pred_cond: torch.Tensor,
pred_uncond: torch.Tensor,
guidance_scale: float,
momentum_buffer: MomentumBuffer = None,
norm_threshold: float = 0.0,
eta: float = 1.0,
):
"""
Based on the findings of [Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion
Models](https://arxiv.org/pdf/2410.02416)
"""
diff = pred_cond - pred_uncond
if momentum_buffer is not None:
momentum_buffer.update(diff)
diff = momentum_buffer.running_average
if norm_threshold > 0:
ones = torch.ones_like(diff)
diff_norm = diff.norm(p=2, dim=[-1, -2, -3], keepdim=True)
scale_factor = torch.minimum(ones, norm_threshold / diff_norm)
diff = diff * scale_factor
v0, v1 = diff.double(), pred_cond.double()
v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3])
v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3], keepdim=True) * v1
v0_orthogonal = v0 - v0_parallel
diff_parallel, diff_orthogonal = v0_parallel.to(diff.dtype), v0_orthogonal.to(diff.dtype)
normalized_update = diff_orthogonal + eta * diff_parallel
pred_guided = pred_cond + (guidance_scale - 1) * normalized_update
return pred_guided
@property
def adaptive_projected_guidance_momentum(self):
return self._adaptive_projected_guidance_momentum
@property
def adaptive_projected_guidance_rescale_factor(self):
return self._adaptive_projected_guidance_rescale_factor
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0 and not self._disable_guidance
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def guidance_scale(self):
return self._guidance_scale
@property
def batch_size(self):
return self._batch_size
def set_guider(self, pipeline, guider_kwargs: Dict[str, Any]):
disable_guidance = guider_kwargs.get("disable_guidance", False)
guidance_scale = guider_kwargs.get("guidance_scale", None)
if guidance_scale is None:
raise ValueError("guidance_scale is not provided in guider_kwargs")
adaptive_projected_guidance_momentum = guider_kwargs.get("adaptive_projected_guidance_momentum", None)
adaptive_projected_guidance_rescale_factor = guider_kwargs.get(
"adaptive_projected_guidance_rescale_factor", 15.0
)
guidance_rescale = guider_kwargs.get("guidance_rescale", 0.0)
batch_size = guider_kwargs.get("batch_size", None)
if batch_size is None:
raise ValueError("batch_size is not provided in guider_kwargs")
self._adaptive_projected_guidance_momentum = adaptive_projected_guidance_momentum
self._adaptive_projected_guidance_rescale_factor = adaptive_projected_guidance_rescale_factor
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._batch_size = batch_size
self._disable_guidance = disable_guidance
if adaptive_projected_guidance_momentum is not None:
self.momentum_buffer = MomentumBuffer(adaptive_projected_guidance_momentum)
else:
self.momentum_buffer = None
self.scheduler = pipeline.scheduler
def reset_guider(self, pipeline):
pass
def maybe_update_guider(self, pipeline, timestep):
pass
def maybe_update_input(self, pipeline, cond_input):
pass
def _maybe_split_prepared_input(self, cond):
"""
Process and potentially split the conditional input for Classifier-Free Guidance (CFG).
This method handles inputs that may already have CFG applied (i.e. when `cond` is output of `prepare_input`).
It determines whether to split the input based on its batch size relative to the expected batch size.
Args:
cond (torch.Tensor): The conditional input tensor to process.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The negative conditional input (uncond_input)
- The positive conditional input (cond_input)
"""
if cond.shape[0] == self.batch_size * 2:
neg_cond = cond[0 : self.batch_size]
cond = cond[self.batch_size :]
return neg_cond, cond
elif cond.shape[0] == self.batch_size:
return cond, cond
else:
raise ValueError(f"Unsupported input shape: {cond.shape}")
def _is_prepared_input(self, cond):
"""
Check if the input is already prepared for Classifier-Free Guidance (CFG).
Args:
cond (torch.Tensor): The conditional input tensor to check.
Returns:
bool: True if the input is already prepared, False otherwise.
"""
cond_tensor = cond[0] if isinstance(cond, (list, tuple)) else cond
return cond_tensor.shape[0] == self.batch_size * 2
def prepare_input(
self,
cond_input: Union[torch.Tensor, List[torch.Tensor]],
negative_cond_input: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
) -> Union[torch.Tensor, List[torch.Tensor]]:
"""
Prepare the input for CFG.
Args:
cond_input (Union[torch.Tensor, List[torch.Tensor]]):
The conditional input. It can be a single tensor or a
list of tensors. It must have the same length as `negative_cond_input`.
negative_cond_input (Union[torch.Tensor, List[torch.Tensor]]): The negative conditional input. It can be a
single tensor or a list of tensors. It must have the same length as `cond_input`.
Returns:
Union[torch.Tensor, List[torch.Tensor]]: The prepared input.
"""
# we check if cond_input already has CFG applied, and split if it is the case.
if self._is_prepared_input(cond_input) and self.do_classifier_free_guidance:
return cond_input
if self._is_prepared_input(cond_input) and not self.do_classifier_free_guidance:
if isinstance(cond_input, list):
negative_cond_input, cond_input = zip(*[self._maybe_split_prepared_input(cond) for cond in cond_input])
else:
negative_cond_input, cond_input = self._maybe_split_prepared_input(cond_input)
if not self._is_prepared_input(cond_input) and self.do_classifier_free_guidance and negative_cond_input is None:
raise ValueError(
"`negative_cond_input` is required when cond_input does not already contains negative conditional input"
)
if isinstance(cond_input, (list, tuple)):
if not self.do_classifier_free_guidance:
return cond_input
if len(negative_cond_input) != len(cond_input):
raise ValueError("The length of negative_cond_input and cond_input must be the same.")
prepared_input = []
for neg_cond, cond in zip(negative_cond_input, cond_input):
if neg_cond.shape[0] != cond.shape[0]:
raise ValueError("The batch size of negative_cond_input and cond_input must be the same.")
prepared_input.append(torch.cat([neg_cond, cond], dim=0))
return prepared_input
elif isinstance(cond_input, torch.Tensor):
if not self.do_classifier_free_guidance:
return cond_input
else:
return torch.cat([negative_cond_input, cond_input], dim=0)
else:
raise ValueError(f"Unsupported input type: {type(cond_input)}")
def apply_guidance(
self,
model_output: torch.Tensor,
timestep: int = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not self.do_classifier_free_guidance:
return model_output
if latents is None:
raise ValueError("APG requires `latents` to convert model output to denoised prediction (x0).")
sigma = self.scheduler.sigmas[self.scheduler.step_index]
noise_pred = latents - sigma * model_output
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = self.normalized_guidance(
noise_pred_text,
noise_pred_uncond,
self.guidance_scale,
self.momentum_buffer,
self.adaptive_projected_guidance_rescale_factor,
)
noise_pred = (latents - noise_pred) / sigma
if self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
return noise_pred

View File

@@ -84,6 +84,7 @@ if is_torch_available():
"IPAdapterMixin",
"FluxIPAdapterMixin",
"SD3IPAdapterMixin",
"ModularIPAdapterMixin",
]
_import_structure["peft"] = ["PeftAdapterMixin"]
@@ -102,6 +103,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
FluxIPAdapterMixin,
IPAdapterMixin,
SD3IPAdapterMixin,
ModularIPAdapterMixin,
)
from .lora_pipeline import (
AmusedLoraLoaderMixin,

View File

@@ -356,6 +356,265 @@ class IPAdapterMixin:
)
self.unet.set_attn_processor(attn_procs)
class ModularIPAdapterMixin:
"""Mixin for handling IP Adapters."""
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
subfolder: Union[str, List[str]],
weight_name: Union[str, List[str]],
**kwargs,
):
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
subfolder (`str` or `List[str]`):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
weight_name (`str` or `List[str]`):
The name of the weight file to load. If a list is passed, it should have the same length as
`subfolder`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# handle the list inputs for multiple IP Adapters
if not isinstance(weight_name, list):
weight_name = [weight_name]
if not isinstance(pretrained_model_name_or_path_or_dict, list):
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
if len(pretrained_model_name_or_path_or_dict) == 1:
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
if not isinstance(subfolder, list):
subfolder = [subfolder]
if len(subfolder) == 1:
subfolder = subfolder * len(weight_name)
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
if len(weight_name) != len(subfolder):
raise ValueError("`weight_name` and `subfolder` must have the same length.")
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
pretrained_model_name_or_path_or_dict, weight_name, subfolder
):
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if "image_proj" not in keys and "ip_adapter" not in keys:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
state_dicts.append(state_dict)
# create feature extractor if it has not been registered to the pipeline yet
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
default_clip_size = 224
clip_image_size = (
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
)
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
unet_name = getattr(self, "unet_name", "unet")
unet = getattr(self, unet_name)
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
extra_loras = unet._load_ip_adapter_loras(state_dicts)
if extra_loras != {}:
if not USE_PEFT_BACKEND:
logger.warning("PEFT backend is required to load these weights.")
else:
# apply the IP Adapter Face ID LoRA weights
peft_config = getattr(unet, "peft_config", {})
for k, lora in extra_loras.items():
if f"faceid_{k}" not in peft_config:
self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])
def set_ip_adapter_scale(self, scale):
"""
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Example:
```py
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
# To use style block only
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style+layout blocks
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style and layout from 2 reference images
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
pipeline.set_ip_adapter_scale(scales)
```
"""
unet_name = getattr(self, "unet_name", "unet")
unet = getattr(self, unet_name)
if not isinstance(scale, list):
scale = [scale]
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(
attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
):
if len(scale_configs) != len(attn_processor.scale):
raise ValueError(
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter."
)
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale)
for i, scale_config in enumerate(scale_configs):
if isinstance(scale_config, dict):
for k, s in scale_config.items():
if attn_name.startswith(k):
attn_processor.scale[i] = s
else:
attn_processor.scale[i] = scale_config
def unload_ip_adapter(self):
"""
Unloads the IP Adapter weights
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# remove hidden encoder
if self.unet is None:
return
self.unet.encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = None
# Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj`
if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None:
self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj
self.unet.text_encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = "text_proj"
# restore original Unet attention processors layers
attn_procs = {}
for name, value in self.unet.attn_processors.items():
attn_processor_class = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
)
attn_procs[name] = (
attn_processor_class
if isinstance(
value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
)
else value.__class__()
)
self.unet.set_attn_processor(attn_procs)
class FluxIPAdapterMixin:
"""Mixin for handling Flux IP Adapters."""

View File

@@ -441,7 +441,7 @@ def _func_optionally_disable_offloading(_pipeline):
is_model_cpu_offload = False
is_sequential_cpu_offload = False
if _pipeline is not None and _pipeline.hf_device_map is None:
if _pipeline is not None and hasattr(_pipeline, "hf_device_map") and _pipeline.hf_device_map is None:
for _, component in _pipeline.components.items():
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
if not is_model_cpu_offload:
@@ -491,6 +491,7 @@ class LoraBaseMixin:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
return _func_optionally_disable_offloading(_pipeline=_pipeline)
@classmethod
@@ -713,8 +714,10 @@ class LoraBaseMixin:
# Decompose weights into weights for denoiser and text encoders.
_component_adapter_weights = {}
for component in self._lora_loadable_modules:
model = getattr(self, component)
model = getattr(self, component, None)
if model is None:
logger.warning(f"Model {component} not found in pipeline.")
continue
for adapter_name, weights in zip(adapter_names, adapter_weights):
if isinstance(weights, dict):
component_adapter_weights = weights.pop(component, None)

View File

@@ -636,7 +636,7 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
unet_config=self.unet.config if hasattr(self, "unet") else None,
**kwargs,
)
@@ -644,37 +644,40 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=self.unet,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix=self.text_encoder_name,
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix=f"{self.text_encoder_name}_2",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
if hasattr(self, "unet"):
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=self.unet,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
if hasattr(self, "text_encoder"):
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix=self.text_encoder_name,
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
if hasattr(self, "text_encoder_2"):
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix=f"{self.text_encoder_name}_2",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
@validate_hf_hub_args

View File

@@ -408,6 +408,7 @@ class UNet2DConditionLoadersMixin:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
return _func_optionally_disable_offloading(_pipeline=_pipeline)
def save_attn_procs(

View File

@@ -47,6 +47,7 @@ else:
"AutoPipelineForInpainting",
"AutoPipelineForText2Image",
]
_import_structure["modular_pipeline"] = ["ModularPipeline"]
_import_structure["consistency_models"] = ["ConsistencyModelPipeline"]
_import_structure["dance_diffusion"] = ["DanceDiffusionPipeline"]
_import_structure["ddim"] = ["DDIMPipeline"]
@@ -329,6 +330,8 @@ else:
"StableDiffusionXLInpaintPipeline",
"StableDiffusionXLInstructPix2PixPipeline",
"StableDiffusionXLPipeline",
"StableDiffusionXLModularPipeline",
"StableDiffusionXLAutoPipeline",
]
)
_import_structure["stable_diffusion_diffedit"] = ["StableDiffusionDiffEditPipeline"]
@@ -478,6 +481,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .deprecated import KarrasVePipeline, LDMPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline
from .dit import DiTPipeline
from .latent_diffusion import LDMSuperResolutionPipeline
from .modular_pipeline import ModularPipeline
from .pipeline_utils import (
AudioPipelineOutput,
DiffusionPipeline,
@@ -702,7 +706,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLInstructPix2PixPipeline,
StableDiffusionXLModularPipeline,
StableDiffusionXLPipeline,
StableDiffusionXLAutoPipeline,
)
from .stable_video_diffusion import StableVideoDiffusionPipeline
from .t2i_adapter import (

View File

@@ -246,14 +246,15 @@ def _get_connected_pipeline(pipeline_cls):
return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
def get_model(pipeline_class_name):
for task_mapping in SUPPORTED_TASKS_MAPPINGS:
for model_name, pipeline in task_mapping.items():
if pipeline.__name__ == pipeline_class_name:
return model_name
def _get_model(pipeline_class_name):
for task_mapping in SUPPORTED_TASKS_MAPPINGS:
for model_name, pipeline in task_mapping.items():
if pipeline.__name__ == pipeline_class_name:
return model_name
model_name = get_model(pipeline_class_name)
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
model_name = _get_model(pipeline_class_name)
if model_name is not None:
task_class = mapping.get(model_name, None)

View File

@@ -0,0 +1,609 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from itertools import combinations
from typing import List, Optional, Union, Dict, Any
import copy
import torch
import time
from dataclasses import dataclass
from ..utils import (
is_accelerate_available,
logging,
)
from ..models.modeling_utils import ModelMixin
if is_accelerate_available():
from accelerate.hooks import ModelHook, add_hook_to_module, remove_hook_from_module
from accelerate.state import PartialState
from accelerate.utils import send_to_device
from accelerate.utils.memory import clear_device_cache
from accelerate.utils.modeling import convert_file_size_to_int
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# YiYi Notes: copied from modeling_utils.py (decide later where to put this)
def get_memory_footprint(self, return_buffers=True):
r"""
Get the memory footprint of a model. This will return the memory footprint of the current model in bytes. Useful to
benchmark the memory footprint of the current model and design some tests. Solution inspired from the PyTorch
discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
Arguments:
return_buffers (`bool`, *optional*, defaults to `True`):
Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers are
tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch norm
layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
"""
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
if return_buffers:
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
mem = mem + mem_bufs
return mem
class CustomOffloadHook(ModelHook):
"""
A hook that offloads a model on the CPU until its forward pass is called. It ensures the model and its inputs are
on the given device. Optionally offloads other models to the CPU before the forward pass is called.
Args:
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
"""
def __init__(
self,
execution_device: Optional[Union[str, int, torch.device]] = None,
other_hooks: Optional[List["UserCustomOffloadHook"]] = None,
offload_strategy: Optional["AutoOffloadStrategy"] = None,
):
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
self.other_hooks = other_hooks
self.offload_strategy = offload_strategy
self.model_id = None
def set_strategy(self, offload_strategy: "AutoOffloadStrategy"):
self.offload_strategy = offload_strategy
def add_other_hook(self, hook: "UserCustomOffloadHook"):
"""
Add a hook to the list of hooks to consider for offloading.
"""
if self.other_hooks is None:
self.other_hooks = []
self.other_hooks.append(hook)
def init_hook(self, module):
return module.to("cpu")
def pre_forward(self, module, *args, **kwargs):
if module.device != self.execution_device:
if self.other_hooks is not None:
hooks_to_offload = [hook for hook in self.other_hooks if hook.model.device == self.execution_device]
# offload all other hooks
start_time = time.perf_counter()
if self.offload_strategy is not None:
hooks_to_offload = self.offload_strategy(
hooks=hooks_to_offload,
model_id=self.model_id,
model=module,
execution_device=self.execution_device,
)
end_time = time.perf_counter()
logger.info(
f" time taken to apply offload strategy for {self.model_id}: {(end_time - start_time):.2f} seconds"
)
for hook in hooks_to_offload:
logger.info(
f"moving {self.model_id} to {self.execution_device}, offloading {hook.model_id} to cpu"
)
hook.offload()
if hooks_to_offload:
clear_device_cache()
module.to(self.execution_device)
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
class UserCustomOffloadHook:
"""
A simple hook grouping a model and a `CustomOffloadHook`, which provides easy APIs for to call the init method of
the hook or remove it entirely.
"""
def __init__(self, model_id, model, hook):
self.model_id = model_id
self.model = model
self.hook = hook
def offload(self):
self.hook.init_hook(self.model)
def attach(self):
add_hook_to_module(self.model, self.hook)
self.hook.model_id = self.model_id
def remove(self):
remove_hook_from_module(self.model)
self.hook.model_id = None
def add_other_hook(self, hook: "UserCustomOffloadHook"):
self.hook.add_other_hook(hook)
def custom_offload_with_hook(
model_id: str,
model: torch.nn.Module,
execution_device: Union[str, int, torch.device] = None,
offload_strategy: Optional["AutoOffloadStrategy"] = None,
):
hook = CustomOffloadHook(execution_device=execution_device, offload_strategy=offload_strategy)
user_hook = UserCustomOffloadHook(model_id=model_id, model=model, hook=hook)
user_hook.attach()
return user_hook
class AutoOffloadStrategy:
"""
Offload strategy that should be used with `CustomOffloadHook` to automatically offload models to the CPU based on
the available memory on the device.
"""
def __init__(self, memory_reserve_margin="3GB"):
self.memory_reserve_margin = convert_file_size_to_int(memory_reserve_margin)
def __call__(self, hooks, model_id, model, execution_device):
if len(hooks) == 0:
return []
current_module_size = get_memory_footprint(model)
mem_on_device = torch.cuda.mem_get_info(execution_device.index)[0]
mem_on_device = mem_on_device - self.memory_reserve_margin
if current_module_size < mem_on_device:
return []
min_memory_offload = current_module_size - mem_on_device
logger.info(f" search for models to offload in order to free up {min_memory_offload / 1024**3:.2f} GB memory")
# exlucde models that's not currently loaded on the device
module_sizes = dict(
sorted(
{hook.model_id: get_memory_footprint(hook.model) for hook in hooks}.items(),
key=lambda x: x[1],
reverse=True,
)
)
def search_best_candidate(module_sizes, min_memory_offload):
"""
search the optimal combination of models to offload to cpu, given a dictionary of module sizes and a
minimum memory offload size. the combination of models should add up to the smallest modulesize that is
larger than `min_memory_offload`
"""
model_ids = list(module_sizes.keys())
best_candidate = None
best_size = float("inf")
for r in range(1, len(model_ids) + 1):
for candidate_model_ids in combinations(model_ids, r):
candidate_size = sum(
module_sizes[candidate_model_id] for candidate_model_id in candidate_model_ids
)
if candidate_size < min_memory_offload:
continue
else:
if best_candidate is None or candidate_size < best_size:
best_candidate = candidate_model_ids
best_size = candidate_size
return best_candidate
best_offload_model_ids = search_best_candidate(module_sizes, min_memory_offload)
if best_offload_model_ids is None:
# if no combination is found, meaning that we cannot meet the memory requirement, offload all models
logger.warning("no combination of models to offload to cpu is found, offloading all models")
hooks_to_offload = hooks
else:
hooks_to_offload = [hook for hook in hooks if hook.model_id in best_offload_model_ids]
return hooks_to_offload
class ComponentsManager:
def __init__(self):
self.components = OrderedDict()
self.added_time = OrderedDict() # Store when components were added
self.model_hooks = None
self._auto_offload_enabled = False
def add(self, name, component):
if name in self.components:
logger.warning(f"Overriding existing component '{name}' in ComponentsManager")
self.components[name] = component
self.added_time[name] = time.time()
if self._auto_offload_enabled:
self.enable_auto_cpu_offload(self._auto_offload_device)
def remove(self, name):
if name not in self.components:
logger.warning(f"Component '{name}' not found in ComponentsManager")
return
self.components.pop(name)
self.added_time.pop(name)
if self._auto_offload_enabled:
self.enable_auto_cpu_offload(self._auto_offload_device)
# YiYi TODO: looking into improving the search pattern
def get(self, names: Union[str, List[str]]):
"""
Get components by name with simple pattern matching.
Args:
names: Component name(s) or pattern(s)
Patterns:
- "unet" : exact match
- "!unet" : everything except exact match "unet"
- "base_*" : everything starting with "base_"
- "!base_*" : everything NOT starting with "base_"
- "*unet*" : anything containing "unet"
- "!*unet*" : anything NOT containing "unet"
- "refiner|vae|unet" : anything containing any of these terms
- "!refiner|vae|unet" : anything NOT containing any of these terms
Returns:
Single component if names is str and matches one component,
dict of components if names matches multiple components or is a list
"""
if isinstance(names, str):
# Check if this is a "not" pattern
is_not_pattern = names.startswith('!')
if is_not_pattern:
names = names[1:] # Remove the ! prefix
# Handle OR patterns (containing |)
if '|' in names:
terms = names.split('|')
matches = {
name: comp for name, comp in self.components.items()
if any((term in name) != is_not_pattern for term in terms) # Flip condition if not pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT containing any of {terms}: {list(matches.keys())}")
else:
logger.info(f"Getting components containing any of {terms}: {list(matches.keys())}")
# Exact match
elif names in self.components:
if is_not_pattern:
matches = {
name: comp for name, comp in self.components.items()
if name != names
}
logger.info(f"Getting all components except '{names}': {list(matches.keys())}")
else:
logger.info(f"Getting component: {names}")
return self.components[names]
# Prefix match (ends with *)
elif names.endswith('*'):
prefix = names[:-1]
matches = {
name: comp for name, comp in self.components.items()
if name.startswith(prefix) != is_not_pattern # Flip condition if not pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT starting with '{prefix}': {list(matches.keys())}")
else:
logger.info(f"Getting components starting with '{prefix}': {list(matches.keys())}")
# Contains match (starts with *)
elif names.startswith('*'):
search = names[1:-1] if names.endswith('*') else names[1:]
matches = {
name: comp for name, comp in self.components.items()
if (search in name) != is_not_pattern # Flip condition if not pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT containing '{search}': {list(matches.keys())}")
else:
logger.info(f"Getting components containing '{search}': {list(matches.keys())}")
else:
raise ValueError(f"Component '{names}' not found in ComponentsManager")
if not matches:
raise ValueError(f"No components found matching pattern '{names}'")
return matches if len(matches) > 1 else next(iter(matches.values()))
elif isinstance(names, list):
results = {}
for name in names:
result = self.get(name)
if isinstance(result, dict):
results.update(result)
else:
results[name] = result
logger.info(f"Getting multiple components: {list(results.keys())}")
return results
else:
raise ValueError(f"Invalid type for names: {type(names)}")
def enable_auto_cpu_offload(self, device: Union[str, int, torch.device]="cuda", memory_reserve_margin="3GB"):
for name, component in self.components.items():
if isinstance(component, torch.nn.Module) and hasattr(component, "_hf_hook"):
remove_hook_from_module(component, recurse=True)
self.disable_auto_cpu_offload()
offload_strategy = AutoOffloadStrategy(memory_reserve_margin=memory_reserve_margin)
device = torch.device(device)
if device.index is None:
device = torch.device(f"{device.type}:{0}")
all_hooks = []
for name, component in self.components.items():
if isinstance(component, torch.nn.Module):
hook = custom_offload_with_hook(name, component, device, offload_strategy=offload_strategy)
all_hooks.append(hook)
for hook in all_hooks:
other_hooks = [h for h in all_hooks if h is not hook]
for other_hook in other_hooks:
if other_hook.hook.execution_device == hook.hook.execution_device:
hook.add_other_hook(other_hook)
self.model_hooks = all_hooks
self._auto_offload_enabled = True
self._auto_offload_device = device
def disable_auto_cpu_offload(self):
if self.model_hooks is None:
self._auto_offload_enabled = False
return
for hook in self.model_hooks:
hook.offload()
hook.remove()
if self.model_hooks:
clear_device_cache()
self.model_hooks = None
self._auto_offload_enabled = False
def get_model_info(self, name: str, fields: Optional[Union[str, List[str]]] = None) -> Optional[Dict[str, Any]]:
"""Get comprehensive information about a component.
Args:
name: Name of the component to get info for
fields: Optional field(s) to return. Can be a string for single field or list of fields.
If None, returns all fields.
Returns:
Dictionary containing requested component metadata.
If fields is specified, returns only those fields.
If a single field is requested as string, returns just that field's value.
"""
if name not in self.components:
raise ValueError(f"Component '{name}' not found in ComponentsManager")
component = self.components[name]
# Build complete info dict first
info = {
"model_id": name,
"added_time": self.added_time[name],
}
# Additional info for torch.nn.Module components
if isinstance(component, torch.nn.Module):
info.update({
"class_name": component.__class__.__name__,
"size_gb": get_memory_footprint(component) / (1024**3),
"adapters": None, # Default to None
})
# Get adapters if applicable
if hasattr(component, "peft_config"):
info["adapters"] = list(component.peft_config.keys())
# Check for IP-Adapter scales
if hasattr(component, "_load_ip_adapter_weights") and hasattr(component, "attn_processors"):
processors = copy.deepcopy(component.attn_processors)
# First check if any processor is an IP-Adapter
processor_types = [v.__class__.__name__ for v in processors.values()]
if any("IPAdapter" in ptype for ptype in processor_types):
# Then get scales only from IP-Adapter processors
scales = {
k: v.scale
for k, v in processors.items()
if hasattr(v, "scale") and "IPAdapter" in v.__class__.__name__
}
if scales:
info["ip_adapter"] = summarize_dict_by_value_and_parts(scales)
# If fields specified, filter info
if fields is not None:
if isinstance(fields, str):
# Single field requested, return just that value
return {fields: info.get(fields)}
else:
# List of fields requested, return dict with just those fields
return {k: v for k, v in info.items() if k in fields}
return info
def __repr__(self):
col_widths = {
"id": max(15, max(len(id) for id in self.components.keys())),
"class": max(25, max(len(component.__class__.__name__) for component in self.components.values())),
"device": 10,
"dtype": 15,
"size": 10,
}
# Create the header lines
sep_line = "=" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
dash_line = "-" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
output = "Components:\n" + sep_line
# Separate components into models and others
models = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
others = {k: v for k, v in self.components.items() if not isinstance(v, torch.nn.Module)}
# Models section
if models:
output += "Models:\n" + dash_line
# Column headers
output += f"{'Model ID':<{col_widths['id']}} | {'Class':<{col_widths['class']}} | "
output += f"{'Device':<{col_widths['device']}} | {'Dtype':<{col_widths['dtype']}} | Size (GB)\n"
output += dash_line
# Model entries
for name, component in models.items():
info = self.get_model_info(name)
device = str(getattr(component, "device", "N/A"))
dtype = str(component.dtype) if hasattr(component, "dtype") else "N/A"
output += f"{name:<{col_widths['id']}} | {info['class_name']:<{col_widths['class']}} | "
output += f"{device:<{col_widths['device']}} | {dtype:<{col_widths['dtype']}} | {info['size_gb']:.2f}\n"
output += dash_line
# Other components section
if others:
if models: # Add extra newline if we had models section
output += "\n"
output += "Other Components:\n" + dash_line
# Column headers for other components
output += f"{'Component ID':<{col_widths['id']}} | {'Class':<{col_widths['class']}}\n"
output += dash_line
# Other component entries
for name, component in others.items():
output += f"{name:<{col_widths['id']}} | {component.__class__.__name__:<{col_widths['class']}}\n"
output += dash_line
# Add additional component info
output += "\nAdditional Component Info:\n" + "=" * 50 + "\n"
for name in self.components:
info = self.get_model_info(name)
if info is not None and (info.get("adapters") is not None or info.get("ip_adapter")):
output += f"\n{name}:\n"
if info.get("adapters") is not None:
output += f" Adapters: {info['adapters']}\n"
if info.get("ip_adapter"):
output += f" IP-Adapter: Enabled\n"
output += f" Added Time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(info['added_time']))}\n"
return output
def add_from_pretrained(self, pretrained_model_name_or_path, prefix: Optional[str] = None, **kwargs):
"""
Load components from a pretrained model and add them to the manager.
Args:
pretrained_model_name_or_path (str): The path or identifier of the pretrained model
prefix (str, optional): Prefix to add to all component names loaded from this model.
If provided, components will be named as "{prefix}_{component_name}"
**kwargs: Additional arguments to pass to DiffusionPipeline.from_pretrained()
"""
from ..pipelines.pipeline_utils import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, **kwargs)
for name, component in pipe.components.items():
if component is None:
continue
# Add prefix if specified
component_name = f"{prefix}_{name}" if prefix else name
if component_name not in self.components:
self.add(component_name, component)
else:
logger.warning(
f"Component '{component_name}' already exists in ComponentsManager and will not be added. To add it, either:\n"
f"1. remove the existing component with remove('{component_name}')\n"
f"2. Use a different prefix: add_from_pretrained(..., prefix='{prefix}_2')"
)
def summarize_dict_by_value_and_parts(d: Dict[str, Any]) -> Dict[str, Any]:
"""Summarizes a dictionary by finding common prefixes that share the same value.
For a dictionary with dot-separated keys like:
{
'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor': [0.6],
'down_blocks.1.attentions.1.transformer_blocks.1.attn2.processor': [0.6],
'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor': [0.3],
}
Returns a dictionary where keys are the shortest common prefixes and values are their shared values:
{
'down_blocks': [0.6],
'up_blocks': [0.3]
}
"""
# First group by values - convert lists to tuples to make them hashable
value_to_keys = {}
for key, value in d.items():
value_tuple = tuple(value) if isinstance(value, list) else value
if value_tuple not in value_to_keys:
value_to_keys[value_tuple] = []
value_to_keys[value_tuple].append(key)
def find_common_prefix(keys: List[str]) -> str:
"""Find the shortest common prefix among a list of dot-separated keys."""
if not keys:
return ""
if len(keys) == 1:
return keys[0]
# Split all keys into parts
key_parts = [k.split('.') for k in keys]
# Find how many initial parts are common
common_length = 0
for parts in zip(*key_parts):
if len(set(parts)) == 1: # All parts at this position are the same
common_length += 1
else:
break
if common_length == 0:
return ""
# Return the common prefix
return '.'.join(key_parts[0][:common_length])
# Create summary by finding common prefixes for each value group
summary = {}
for value_tuple, keys in value_to_keys.items():
prefix = find_common_prefix(keys)
if prefix: # Only add if we found a common prefix
# Convert tuple back to list if it was originally a list
value = list(value_tuple) if isinstance(d[keys[0]], list) else value_tuple
summary[prefix] = value
else:
summary[""] = value # Use empty string if no common prefix
return summary

View File

@@ -912,12 +912,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -931,6 +925,11 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

View File

@@ -867,12 +867,6 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -886,6 +880,11 @@ class StableDiffusionXLControlNetUnionImg2ImgPipeline(
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

View File

@@ -609,12 +609,6 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -628,6 +622,11 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

File diff suppressed because it is too large Load Diff

View File

@@ -917,12 +917,6 @@ class StableDiffusionXLControlNetPAGImg2ImgPipeline(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -936,6 +930,11 @@ class StableDiffusionXLControlNetPAGImg2ImgPipeline(
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

View File

@@ -707,12 +707,6 @@ class StableDiffusionXLPAGImg2ImgPipeline(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -726,6 +720,11 @@ class StableDiffusionXLPAGImg2ImgPipeline(
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

View File

@@ -412,7 +412,7 @@ def _get_pipeline_class(
revision=revision,
)
if class_obj.__name__ != "DiffusionPipeline":
if class_obj.__name__ != "DiffusionPipeline" and class_obj.__name__ != "ModularPipeline":
return class_obj
diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])

View File

@@ -427,7 +427,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
module_is_sequentially_offloaded(module) for _, module in self.components.items()
)
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = hasattr(self, "hf_device_map") and self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
@@ -444,6 +444,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
"You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
)
# Display a warning in this case (the operation succeeds but the benefits are lost)
pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
if pipeline_is_offloaded and device_type in ["cuda", "xpu"]:
@@ -1119,9 +1120,11 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
automatically detect the available accelerator and use.
"""
self._maybe_raise_error_if_group_offload_active(raise_error=True)
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = hasattr(self, "hf_device_map") and self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
@@ -1245,7 +1248,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
self.remove_all_hooks()
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = hasattr(self, "hf_device_map") and self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."

View File

@@ -29,6 +29,18 @@ else:
_import_structure["pipeline_stable_diffusion_xl_img2img"] = ["StableDiffusionXLImg2ImgPipeline"]
_import_structure["pipeline_stable_diffusion_xl_inpaint"] = ["StableDiffusionXLInpaintPipeline"]
_import_structure["pipeline_stable_diffusion_xl_instruct_pix2pix"] = ["StableDiffusionXLInstructPix2PixPipeline"]
_import_structure["pipeline_stable_diffusion_xl_modular"] = [
"StableDiffusionXLControlNetDenoiseStep",
"StableDiffusionXLDecodeLatentsStep",
"StableDiffusionXLDenoiseStep",
"StableDiffusionXLInputStep",
"StableDiffusionXLModularPipeline",
"StableDiffusionXLPrepareAdditionalConditioningStep",
"StableDiffusionXLPrepareLatentsStep",
"StableDiffusionXLSetTimestepsStep",
"StableDiffusionXLTextEncoderStep",
"StableDiffusionXLAutoPipeline",
]
if is_transformers_available() and is_flax_available():
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
@@ -48,6 +60,18 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_stable_diffusion_xl_img2img import StableDiffusionXLImg2ImgPipeline
from .pipeline_stable_diffusion_xl_inpaint import StableDiffusionXLInpaintPipeline
from .pipeline_stable_diffusion_xl_instruct_pix2pix import StableDiffusionXLInstructPix2PixPipeline
from .pipeline_stable_diffusion_xl_modular import (
StableDiffusionXLControlNetDenoiseStep,
StableDiffusionXLDecodeLatentsStep,
StableDiffusionXLDenoiseStep,
StableDiffusionXLInputStep,
StableDiffusionXLModularPipeline,
StableDiffusionXLPrepareAdditionalConditioningStep,
StableDiffusionXLPrepareLatentsStep,
StableDiffusionXLSetTimestepsStep,
StableDiffusionXLTextEncoderStep,
StableDiffusionXLAutoPipeline,
)
try:
if not (is_transformers_available() and is_flax_available()):

View File

@@ -695,12 +695,6 @@ class StableDiffusionXLImg2ImgPipeline(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
@@ -714,6 +708,11 @@ class StableDiffusionXLImg2ImgPipeline(
init_latents = image
else:
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()

View File

@@ -1388,6 +1388,21 @@ class LDMSuperResolutionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ModularPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PNDMPipeline(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -2432,6 +2432,21 @@ class StableDiffusionXLInstructPix2PixPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionXLModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionXLPAGImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]