Compare commits

..

1 Commits

Author SHA1 Message Date
sayakpaul
10dfa9b722 up 2025-12-22 10:26:10 +05:30
5 changed files with 20 additions and 98 deletions

View File

@@ -27,7 +27,7 @@ from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -410,7 +410,7 @@ class HunyuanImageDecoder2D(nn.Module):
return h
class AutoencoderKLHunyuanImage(ModelMixin, ConfigMixin, FromOriginalModelMixin):
class AutoencoderKLHunyuanImage(ModelMixin, AutoencoderMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model for 2D images with spatial tiling support.
@@ -486,27 +486,6 @@ class AutoencoderKLHunyuanImage(ModelMixin, ConfigMixin, FromOriginalModelMixin)
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
self.tile_latent_min_size = self.tile_sample_min_size // self.config.spatial_compression_ratio
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor):
batch_size, num_channels, height, width = x.shape

View File

@@ -26,7 +26,7 @@ from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -584,7 +584,7 @@ class HunyuanImageRefinerDecoder3D(nn.Module):
return hidden_states
class AutoencoderKLHunyuanImageRefiner(ModelMixin, ConfigMixin):
class AutoencoderKLHunyuanImageRefiner(ModelMixin, AutoencoderMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used for
HunyuanImage-2.1 Refiner.
@@ -685,27 +685,6 @@ class AutoencoderKLHunyuanImageRefiner(ModelMixin, ConfigMixin):
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
_, _, _, height, width = x.shape

View File

@@ -26,7 +26,7 @@ from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -625,7 +625,7 @@ class HunyuanVideo15Decoder3D(nn.Module):
return hidden_states
class AutoencoderKLHunyuanVideo15(ModelMixin, ConfigMixin):
class AutoencoderKLHunyuanVideo15(ModelMixin, AutoencoderMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used for
HunyuanVideo-1.5.
@@ -723,27 +723,6 @@ class AutoencoderKLHunyuanVideo15(ModelMixin, ConfigMixin):
self.tile_latent_min_width = tile_latent_min_width or self.tile_latent_min_width
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
_, _, _, height, width = x.shape

View File

@@ -11,7 +11,8 @@ export RUN_ATTENTION_BACKEND_TESTS=yes
pytest tests/others/test_attention_backends.py
```
Tests were conducted on an H100 with PyTorch 2.9.1 (CUDA 12.9).
Tests were conducted on an H100 with PyTorch 2.8.0 (CUDA 12.9). Slices for the compilation tests in
"native" variants were obtained with a torch nightly version (2.10.0.dev20250924+cu128).
Tests for aiter backend were conducted and slices for the aiter backend tests collected on a MI355X
with torch 2025-09-25 nightly version (ad2f7315ca66b42497047bb7951f696b50f1e81b) and
@@ -23,8 +24,6 @@ import os
import pytest
import torch
from ..testing_utils import numpy_cosine_similarity_distance
pytestmark = pytest.mark.skipif(
os.getenv("RUN_ATTENTION_BACKEND_TESTS", "false") == "false", reason="Feature not mature enough."
@@ -37,28 +36,23 @@ from diffusers.utils import is_torch_version # noqa: E402
FORWARD_CASES = [
(
"flash_hub",
torch.tensor([0.0820, 0.0859, 0.0918, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2461, 0.2422, 0.2695], dtype=torch.bfloat16),
1e-4
torch.tensor([0.0820, 0.0859, 0.0918, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2461, 0.2422, 0.2695], dtype=torch.bfloat16)
),
(
"_flash_3_hub",
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0977, 0.0996, 0.1016, 0.1016, 0.2188, 0.2246, 0.2344, 0.2480, 0.2539, 0.2480, 0.2441, 0.2715], dtype=torch.bfloat16),
1e-4
),
(
"native",
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16),
1e-4
),
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16)
),
(
"_native_cudnn",
torch.tensor([0.0781, 0.0840, 0.0879, 0.0957, 0.0898, 0.0957, 0.0957, 0.0977, 0.2168, 0.2246, 0.2324, 0.2500, 0.2539, 0.2480, 0.2441, 0.2695], dtype=torch.bfloat16),
5e-4
),
(
"aiter",
torch.tensor([0.0781, 0.0820, 0.0879, 0.0957, 0.0898, 0.0938, 0.0957, 0.0957, 0.2285, 0.2363, 0.2461, 0.2637, 0.2695, 0.2617, 0.2617, 0.2891], dtype=torch.bfloat16),
1e-4
)
]
@@ -66,32 +60,27 @@ COMPILE_CASES = [
(
"flash_hub",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2324, 0.2422, 0.2539, 0.2734, 0.2832, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16),
True,
1e-4
True
),
(
"_flash_3_hub",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0625, 0.0605, 0.2344, 0.2461, 0.2578, 0.2734, 0.2852, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16),
True,
1e-4
),
(
"native",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0605, 0.0605, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2773, 0.3066], dtype=torch.bfloat16),
True,
1e-4
),
(
"_native_cudnn",
torch.tensor([0.0410, 0.0410, 0.0430, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2793, 0.3086], dtype=torch.bfloat16),
True,
5e-4,
),
(
"aiter",
torch.tensor([0.0391, 0.0391, 0.0430, 0.0488, 0.0469, 0.0566, 0.0586, 0.0566, 0.2402, 0.2539, 0.2637, 0.2812, 0.2930, 0.2910, 0.2891, 0.3164], dtype=torch.bfloat16),
True,
1e-4
)
]
# fmt: on
@@ -115,11 +104,11 @@ def _backend_is_probably_supported(pipe, name: str):
return False
def _check_if_slices_match(output, expected_slice, expected_diff=1e-4):
def _check_if_slices_match(output, expected_slice):
img = output.images.detach().cpu()
generated_slice = img.flatten()
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
assert numpy_cosine_similarity_distance(generated_slice, expected_slice) < expected_diff
assert torch.allclose(generated_slice, expected_slice, atol=1e-4)
@pytest.fixture(scope="session")
@@ -137,23 +126,23 @@ def pipe(device):
return pipe
@pytest.mark.parametrize("backend_name,expected_slice,expected_diff", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES])
def test_forward(pipe, backend_name, expected_slice, expected_diff):
@pytest.mark.parametrize("backend_name,expected_slice", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES])
def test_forward(pipe, backend_name, expected_slice):
out = _backend_is_probably_supported(pipe, backend_name)
if isinstance(out, bool):
pytest.xfail(f"Backend '{backend_name}' not supported in this environment.")
modified_pipe = out[0]
out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0))
_check_if_slices_match(out, expected_slice, expected_diff)
_check_if_slices_match(out, expected_slice)
@pytest.mark.parametrize(
"backend_name,expected_slice,error_on_recompile,expected_diff",
"backend_name,expected_slice,error_on_recompile",
COMPILE_CASES,
ids=[c[0] for c in COMPILE_CASES],
)
def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile, expected_diff):
def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile):
if "native" in backend_name and error_on_recompile and not is_torch_version(">=", "2.9.0"):
pytest.xfail(f"Test with {backend_name=} is compatible with a higher version of torch.")
@@ -171,4 +160,4 @@ def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recom
):
out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0))
_check_if_slices_match(out, expected_slice, expected_diff)
_check_if_slices_match(out, expected_slice)

View File

@@ -131,10 +131,6 @@ def torch_all_close(a, b, *args, **kwargs):
def numpy_cosine_similarity_distance(a, b):
if isinstance(a, torch.Tensor):
a = a.detach().cpu().float().numpy()
if isinstance(b, torch.Tensor):
b = b.detach().cpu().float().numpy()
similarity = np.dot(a, b) / (norm(a) * norm(b))
distance = 1.0 - similarity.mean()