Compare commits

..

156 Commits

Author SHA1 Message Date
anton-l
16a32c9dab Release: v0.8.0 2022-11-23 19:12:31 +01:00
Patrick von Platen
2625fb59dc [Versatile Diffusion] Add versatile diffusion model (#1283)
* up

* convert dual unet

* revert dual attn

* adapt for vd-official

* test the full pipeline

* mixed inference

* mixed inference for text2img

* add image prompting

* fix clip norm

* split text2img and img2img

* fix format

* refactor text2img

* mega pipeline

* add optimus

* refactor image var

* wip text_unet

* text unet end to end

* update tests

* reshape

* fix image to text

* add some first docs

* dual guided pipeline

* fix token ratio

* propose change

* dual transformer as a native module

* DualTransformer(nn.Module)

* DualTransformer(nn.Module)

* correct unconditional image

* save-load with mega pipeline

* remove image to text

* up

* uP

* fix

* up

* final fix

* remove_unused_weights

* test updates

* save progress

* uP

* fix dual prompts

* some fixes

* finish

* style

* finish renaming

* up

* fix

* fix

* fix

* finish

Co-authored-by: anton-l <anton@huggingface.co>
2022-11-23 19:03:45 +01:00
Suraj Patil
0eb507f2af StableDiffusionImageVariationPipeline (#1365)
* add StableDiffusionImageVariationPipeline

* add ini init

* use CLIPVisionModelWithProjection

* fix _encode_image

* add copied from

* fix copies

* add doc

* handle tensor in _encode_image

* add tests

* correct model_id

* remove copied from in enable_sequential_cpu_offload

* fix tests

* make slow tests pass

* update slow tests

* use temp model for now

* fix test_stable_diffusion_img_variation_intermediate_state

* fix test_stable_diffusion_img_variation_intermediate_state

* check for torch.Tensor

* quality

* fix name

* fix slow tests

* install transformers from source

* fix install

* fix install

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* input_image -> image

* remove deprication warnings

* fix test_stable_diffusion_img_variation_multiple_images

* make flake happy

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-23 14:36:39 +01:00
Suraj Patil
9e234d8048 handle fp16 in UNet2DModel (#1216)
* make sure fp16 runs well

* add fp16 test for superes

* Update src/diffusers/models/unet_2d.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* gen on cuda

* always run fast inferecne test on cpu

* run on cpu

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-23 11:13:34 +01:00
Penn
8fd3a74322 Fix using non-square images with UNet2DModel and DDIM/DDPM pipelines (#1289)
* fix non square images with UNet2DModel and DDIM/DDPM pipelines

* fix unet_2d `sample_size` docstring

* update pipeline tests for unet uncond

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-23 11:11:39 +01:00
regisss
44e56de9aa Replace logger.warn by logger.warning (#1366) 2022-11-22 20:44:34 +01:00
Suraj Patil
2d6d4edbbd use memory_efficient_attention by default (#1354)
* use memory_efficient_attention by default

* Update src/diffusers/models/attention.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-22 13:37:17 +01:00
Suraj Patil
8b84f85192 [examples] fix mixed_precision arg (#1359)
* use accelerator to check mixed_precision

* default `mixed_precision` to `None`

* pass mixed_precision to accelerate launch
2022-11-22 13:35:23 +01:00
Manuel Brack
e50c25d808 Add Safe Stable Diffusion Pipeline (#1244)
* Add pipeline_stable_diffusion_safe.py to pipelines

* Fix repository consistency

Ran make fix-copies after adding new pipline

* Add Paper/Equation reference for parameters to doc string

* Ensure code style and quality

* Perform code refactoring

* Fix copies inherited from merge with huggingface/main

* Add docs

* Fix code style

* Fix errors in documentation

* Fix refactoring error

* remove debugging print statement

* added Safe Latent Diffusion tests

* Fix style

* Fix style

* Add pre-defined safety configurations

* Fix line-break

* fix some tests

* finish

* Change safety checker

* Add missing safety_checker.py file

* Remove unused imports

Co-authored-by: PatrickSchrML <patrick_schramowski@hotmail.de>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-22 11:51:30 +01:00
Patrick von Platen
182eb959e5 [Community Pipelines] K-Diffusion Pipeline (#1360)
* up

* add readme

* up

* uP
2022-11-21 18:45:50 +01:00
Birch-san
ad93593345 perf: prefer batched matmuls for attention (#1203)
perf: prefer batched matmuls for attention. added fast-path to Decoder when num_heads=1
2022-11-21 15:01:11 +01:00
Stuti R
78a6eed2d7 Add bit diffusion [WIP] (#971)
* Create bit_diffusion.py

Bit diffusion based on the paper, arXiv:2208.04202, Chen2022AnalogBG

* adding bit diffusion to new branch

ran tests

* tests

* tests

* tests

* tests

* removed test folders + added to README

* Update README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-21 11:50:32 +01:00
shunxing1234
94b27fb8da change the sample model (#1352)
* Update alt_diffusion.mdx

* Update alt_diffusion.mdx
2022-11-21 11:28:25 +01:00
Patrick von Platen
ab1f01e634 make style 2022-11-20 19:37:28 +01:00
Patrick von Platen
2b31740d54 Merge branch 'main' of https://github.com/huggingface/diffusers 2022-11-20 19:37:14 +01:00
Victor Schmidt
3bec90ff2c Handle batches and Tensors in pipeline_stable_diffusion_inpaint.py:prepare_mask_and_masked_image (#1003)
* Handle batches and Tensors in `prepare_mask_and_masked_image`

* `blackfy`
upgrade `black`

* handle mask as `np.array`

* add docstring

* revert `black` changes with smaller line length

* missing ValueError in docstring

* raise `TypeError` for image as tensor but not mask

* typo in mask shape selection

* check for batch dim

* fix: wrong indentation

* add tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-20 19:33:09 +01:00
Ki
eb2425b88c Update README.md: Minor change to Imagic code snippet, missing dir error (#1347)
Minor change to Imagic Readme

Missing dir causes an error when running the example code.
2022-11-20 18:59:56 +01:00
Ki
44efcbda0a Update README.md: IMAGIC example code snippet misspelling (#1346)
Update README.md

Minor spelling mistake.
2022-11-20 18:56:57 +01:00
Juan Acevedo
7bbbfbfd18 Jax infer support negative prompt (#1337)
* support negative prompts in sd jax pipeline

* pass batched neg_prompt

* only encode when negative prompt is None

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
2022-11-19 20:51:52 +01:00
Clayton Sims
30220905c4 Legacy Inpainting Pipeline for Onnx Models (#1237)
* Add legacy inpainting pipeline compatibility for onnx

* remove commented out line

* Add onnx legacy inpainting test

* Fix slow decorators

* pep8 styling

* isort styling

* dummy object

* ordering consistency

* style

* docstring styles

* Refactor common prompt encoding pattern

* Update tests to permanent repository home

* support all available schedulers until ONNX IO binding is available

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* updated styling from PR suggested feedback

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-11-18 16:33:12 +01:00
Anton Lozhkov
7240318179 Fix the order of casts for onnx inpainting (#1338) 2022-11-18 16:30:07 +01:00
NotNANtoN
aa2ce41b99 Fix img2img speed with LMS-Discrete Scheduler (#896)
Casting `self.sigmas` into a different dtype (the one of original_samples) is not advisable. In my img2img pipeline this leads to a long running time in the  `integrate.quad` call later on- by long I mean more than 10x slower.

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-18 16:01:57 +01:00
Anton Lozhkov
81fa2d688d Avoid nested fix-copies (#1332)
* Avoid nested `# Copied from` statements during `make fix-copies`

* style
2022-11-18 15:33:57 +01:00
Patrick von Platen
195e437ac5 Correct path to schedlure (#1322)
* [Examples] Correct path

* uP
2022-11-18 12:32:49 +01:00
Patrick von Platen
fcfdd95f0b Fix/Enable all schedulers for in-painting (#1331)
* inpaint fix k lms

* onnox as well

* up
2022-11-18 12:32:17 +01:00
Simon Kirsten
5dcef138bf [Flax] Fix loading scheduler from subfolder (#1319)
[FLAX] Fix loading scheduler from subfolder
2022-11-18 11:31:07 +01:00
Nathan Lambert
0cfbb51b0c add docs for multi-modal examples (#1227)
* add docs for multi-modal

* many changes

* fix docs build

* fix links

* Update docs/source/using-diffusers/other-modalities.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-17 10:25:49 -08:00
Patrick von Platen
b9b7039f0e img2text Typo (#1329)
* make fix copies again

* Fix typo
2022-11-17 16:48:15 +01:00
Patrick von Platen
63b34191b9 Fix typo 2022-11-17 16:47:19 +01:00
Patrick von Platen
b21a463aa9 rg Merge branch 'main' of https://github.com/huggingface/diffusers 2022-11-17 16:46:33 +01:00
Anton Lozhkov
e05ca84f41 [ONNX] Support Euler schedulers (#1328) 2022-11-17 16:37:35 +01:00
Patrick von Platen
3b48620f5e Merge branch 'main' of https://github.com/huggingface/diffusers 2022-11-17 16:14:53 +01:00
Patrick von Platen
632dacea2f [Custom pipeline] Easier loading of local pipelines (#1327)
* [Custom pipeline] Easier loading of local pipelines

* upgrade black
2022-11-17 16:00:26 +01:00
Patrick von Platen
3fb28c44a3 xMerge branch 'main' of https://github.com/huggingface/diffusers 2022-11-17 15:50:36 +01:00
Patrick von Platen
2dd12e38af make fix copies again 2022-11-17 15:50:33 +01:00
Prathik Rao
3346ec3acd integrate ort (#1110)
* integrate ort

* use return_dict=False

* revert unet return value change

* revert unet return value change

* add note to readme

* adjust readme

* add contact

* `make style`

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-17 15:48:41 +01:00
Anton Lozhkov
61719bf26c Fix gpu_id (#1326) 2022-11-17 15:41:33 +01:00
Patrick von Platen
b3911f89a3 make fix copies 2022-11-17 15:06:23 +01:00
Patrick von Platen
245e9cc7ff fix make style 2022-11-17 15:03:31 +01:00
Pedro Cuenca
1138d63b51 Temporary local test for PIL_INTERPOLATION (#1317)
* Temporary local test for PIL_INTERPOLATION

* Fix examples too.
2022-11-16 18:42:21 +01:00
Dhruv Karan
afdd7bb635 [Community Pipeline] CLIPSeg + StableDiffusionInpainting (#1250)
* text inpainting

* refactor
2022-11-16 18:18:51 +01:00
Kamal Raj
aa5c4c2609 doc string args shape fix (#1243)
* doc string args shape fix

* fix styling
2022-11-16 18:03:44 +01:00
Will Berman
f1fcfdeec5 vq diffusion classifier free sampling (#1294)
* vq diffusion classifier free sampling

* correct

* uP

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-16 17:51:43 +01:00
dblunk88
09d0546ad0 cpu offloading: mutli GPU support (#1143)
mutli GPU support
2022-11-16 17:40:16 +01:00
Patrick von Platen
65d136e067 Add improved handling of pil (#1309)
* Better error message for transformers dummy

* [PIL] Better deprecation functionality

* up
2022-11-16 15:58:22 +01:00
Suraj Patil
46893adacd [AltDiffusion] add tests (#1311)
* being tests

* fix model ids

* don't use safety checker in tests

* add im2img2 tests

* fix integration tests

* integration tests

* style

* add sentencepiece in test dep

* quality

* 4 decimalk points

* fix im2img test

* increase the tok slightly
2022-11-16 15:40:26 +01:00
Mishig
327ddc8770 Revert "Update pr docs actions" (#1307)
Revert "Update pr docs actions (#1194)"

This reverts commit 32b0736d8a.
2022-11-16 11:46:13 +01:00
Patrick von Platen
af9ee8736c Better error message for transformers dummy (#1306) 2022-11-16 10:28:19 +01:00
Patrick von Platen
8a73064576 Add AltDiffusion (#1299)
* add conversion script for vae

* up

* up

* some fixes

* add text model

* use the correct config

* add docs

* move model in it's own file

* move model in its own file

* pass attenion mask to text encoder

* pass attn mask to uncond inputs

* quality

* fix image2image

* add imag2image in init

* fix import

* fix one more import

* fix import, dummy objetcs

* fix copied from

* up

* finish

Co-authored-by: patil-suraj <surajp815@gmail.com>
2022-11-15 21:32:26 +01:00
Patrick von Platen
4625f04bc0 remove bogus files 2022-11-15 17:34:00 +00:00
Patrick von Platen
554b374d20 Merge branch 'main' of https://github.com/huggingface/diffusers into main 2022-11-15 17:17:47 +00:00
Patrick von Platen
a0520193e1 Add Scheduler.from_pretrained and better scheduler changing (#1286)
* add conversion script for vae

* uP

* uP

* more changes

* push

* up

* finish again

* up

* up

* up

* up

* finish

* up

* uP

* up

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* up

* up

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-11-15 18:15:13 +01:00
Glenn 'devalias' Grant
db1cb0b1a2 [dreambooth] link to bitsandbytes readme for installation (#1229)
* add 'conda install cudatoolkit' to dreambooth 'training on 16GB' example 

fixes https://github.com/huggingface/diffusers/issues/1207

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-11-15 12:53:54 +01:00
Dhruv Naik
610e2a6fd9 Fix incorrect link to Stable Diffusion notebook (#1291)
Update README.md
2022-11-15 10:19:35 +01:00
Nan Liu
07f9e56d51 add source link to composable diffusion model (#1293) 2022-11-15 10:19:06 +01:00
Joshua Lochner
57525bb418 Fix documentation typo for UNet2DModel and UNet2DConditionModel (#1275)
* Fix documentation typo

* Fix other typo
2022-11-14 22:54:09 +01:00
Nathan Lambert
7c5fef81e0 Add UNet 1d for RL model for planning + colab (#105)
* re-add RL model code

* match model forward api

* add register_to_config, pass training tests

* fix tests, update forward outputs

* remove unused code, some comments

* add to docs

* remove extra embedding code

* unify time embedding

* remove conv1d output sequential

* remove sequential from conv1dblock

* style and deleting duplicated code

* clean files

* remove unused variables

* clean variables

* add 1d resnet block structure for downsample

* rename as unet1d

* fix renaming

* rename files

* add get_block(...) api

* unify args for model1d like model2d

* minor cleaning

* fix docs

* improve 1d resnet blocks

* fix tests, remove permuts

* fix style

* add output activation

* rename flax blocks file

* Add Value Function and corresponding example script to Diffuser implementation (#884)

* valuefunction code

* start example scripts

* missing imports

* bug fixes and placeholder example script

* add value function scheduler

* load value function from hub and get best actions in example

* very close to working example

* larger batch size for planning

* more tests

* merge unet1d changes

* wandb for debugging, use newer models

* success!

* turns out we just need more diffusion steps

* run on modal

* merge and code cleanup

* use same api for rl model

* fix variance type

* wrong normalization function

* add tests

* style

* style and quality

* edits based on comments

* style and quality

* remove unused var

* hack unet1d into a value function

* add pipeline

* fix arg order

* add pipeline to core library

* community pipeline

* fix couple shape bugs

* style

* Apply suggestions from code review

Co-authored-by: Nathan Lambert <nathan@huggingface.co>

* update post merge of scripts

* add mdiblock / outblock architecture

* Pipeline cleanup (#947)

* valuefunction code

* start example scripts

* missing imports

* bug fixes and placeholder example script

* add value function scheduler

* load value function from hub and get best actions in example

* very close to working example

* larger batch size for planning

* more tests

* merge unet1d changes

* wandb for debugging, use newer models

* success!

* turns out we just need more diffusion steps

* run on modal

* merge and code cleanup

* use same api for rl model

* fix variance type

* wrong normalization function

* add tests

* style

* style and quality

* edits based on comments

* style and quality

* remove unused var

* hack unet1d into a value function

* add pipeline

* fix arg order

* add pipeline to core library

* community pipeline

* fix couple shape bugs

* style

* Apply suggestions from code review

* clean up comments

* convert older script to using pipeline and add readme

* rename scripts

* style, update tests

* delete unet rl model file

* remove imports in src

Co-authored-by: Nathan Lambert <nathan@huggingface.co>

* Update src/diffusers/models/unet_1d_blocks.py

* Update tests/test_models_unet.py

* RL Cleanup v2 (#965)

* valuefunction code

* start example scripts

* missing imports

* bug fixes and placeholder example script

* add value function scheduler

* load value function from hub and get best actions in example

* very close to working example

* larger batch size for planning

* more tests

* merge unet1d changes

* wandb for debugging, use newer models

* success!

* turns out we just need more diffusion steps

* run on modal

* merge and code cleanup

* use same api for rl model

* fix variance type

* wrong normalization function

* add tests

* style

* style and quality

* edits based on comments

* style and quality

* remove unused var

* hack unet1d into a value function

* add pipeline

* fix arg order

* add pipeline to core library

* community pipeline

* fix couple shape bugs

* style

* Apply suggestions from code review

* clean up comments

* convert older script to using pipeline and add readme

* rename scripts

* style, update tests

* delete unet rl model file

* remove imports in src

* add specific vf block and update tests

* style

* Update tests/test_models_unet.py

Co-authored-by: Nathan Lambert <nathan@huggingface.co>

* fix quality in tests

* fix quality style, split test file

* fix checks / tests

* make timesteps closer to main

* unify block API

* unify forward api

* delete lines in examples

* style

* examples style

* all tests pass

* make style

* make dance_diff test pass

* Refactoring RL PR (#1200)

* init file changes

* add import utils

* finish cleaning files, imports

* remove import flags

* clean examples

* fix imports, tests for merge

* update readmes

* hotfix for tests

* quality

* fix some tests

* change defaults

* more mps test fixes

* unet1d defaults

* do not default import experimental

* defaults for tests

* fix tests

* fix-copies

* fix

* changes per Patrik's comments (#1285)

* changes per Patrik's comments

* update conversion script

* fix renaming

* skip more mps tests

* last test fix

* Update examples/rl/README.md

Co-authored-by: Ben Glickenhaus <benglickenhaus@gmail.com>
2022-11-14 13:48:48 -08:00
Patrick von Platen
d5ab55e437 Merge branch 'main' of https://github.com/huggingface/diffusers into main 2022-11-14 21:10:47 +00:00
Suraj Patil
a8d0977769 [StableDiffusionInpaintPipeline] fix batch_size for mask and masked latents (#1279)
fix bs for mask and masked latents
2022-11-14 22:03:10 +01:00
Patrick von Platen
e4ffadc429 Merge branch 'main' of https://github.com/huggingface/diffusers into main 2022-11-14 21:01:39 +00:00
Patrick von Platen
ec7c8d32b0 add conversion script for vae 2022-11-14 19:43:17 +00:00
Partho
c9b3463703 Fix wrong link in text2img fine-tuning documentation (#1282)
fix link typo
2022-11-14 20:42:14 +01:00
Lime-Cakes
33d7e89c42 Edited attention.py for older xformers (#1270)
Older versions of xformers require query, key, value to be contiguous, this calls .contiguous() on q/k/v before passing to xformers.
2022-11-14 13:35:47 +01:00
Patrick von Platen
b3c5e086e5 Finalize stable diffusion refactor (#1269)
* finish

* cleaner

* more fixes

* refactor

* make fix copies

* refactor cycle diffusion

* finish

* finish2

* Apply suggestions from code review
2022-11-13 23:54:30 +01:00
Patrick von Platen
4c660d16d0 [Stable Diffusion] Fix padding / truncation (#1226)
* [Stable Diffusion] Fix padding / truncation

* finish
2022-11-13 20:19:55 +01:00
ruanrz
8171566163 [Docs] improve img2img example (#1193)
update img2img example
2022-11-11 12:28:20 +01:00
Pedro Cuenca
045157a46f Fix Flax usage comments (#1211)
* Fix Flax usage comments (they didn't work).

* Spell out dtype

* make style
2022-11-10 16:00:17 +01:00
apolinario
a09d47532d Add a reference to the name 'Sampler' (#1172)
* Add a reference to the name 'Sampler'

- Facilitate people that are familiar with the name samplers to understand that we call that schedulers
- Better SEO if people are googling for samplers to find our library as well

* Update README.md with a reference to 'Sampler'
2022-11-10 14:37:42 +01:00
Anton Lozhkov
2e980ac9a0 [Tests] Adjust TPU test values (#1233)
* [Tests] Adjust TPU test values

* slow tests

* remaining refs
2022-11-10 00:44:42 +01:00
Anton Lozhkov
0feb21a18c [Tests] Fix mps+generator fast tests (#1230)
* [Tests] Fix mps+generator fast tests

* mps for Euler

* retry

* warmup issue again?

* fix reproducible initial noise

* Revert "fix reproducible initial noise"

This reverts commit f300d05cb9.

* fix reproducible initial noise

* fix device
2022-11-10 00:09:22 +01:00
Patrick von Platen
187de44352 Fix device on save/load tests 2022-11-09 22:18:14 +00:00
Anton Lozhkov
7d0c272939 Match the generator device to the pipeline for DDPM and DDIM (#1222)
* Match the generator device to the pipeline for DDPM and DDIM

* style

* fix

* update values

* fix fast tests

* trigger slow tests

* deprecate

* last value fixes

* mps fixes
2022-11-09 23:00:23 +01:00
Patrick von Platen
3d98dc763a Factor out encode text with Copied from (#1224)
* up

* more fixes

* fix

* finalize

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

* upload models

* up
2022-11-09 22:18:57 +01:00
exo-pla-net
13f388eeb2 Improve documentation for the LPW pipeline (#1182) 2022-11-09 21:39:27 +01:00
Pedro Cuenca
af279434d0 Flax tests: don't hardcode number of devices (#1175)
Flax tests: don't hardcode number of devices.

This makes it possible to test on CPU/GPU. However, expected slices are
only checked when there are 8 devices.
2022-11-09 20:04:43 +01:00
Jesse Casey
4969f46511 apply repeat_interleave fix for mps to stable diffusion image2image pipeline (#1135)
copy from other pipeline
2022-11-09 20:01:31 +01:00
Patrick von Platen
6c0335c7f9 DDIM docs (#1219) 2022-11-09 16:02:11 +01:00
Patrick von Platen
0248541dea [Conversion] Improve conversion script (#1218)
up
2022-11-09 15:46:08 +01:00
Duong A. Nguyen
5a59f9b717 Add LDM Super Resolution pipeline (#1116)
* Add ldm super resolution pipeline

* style

* fix copies

* style

* fix doc

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* add doc

* address comments

* address comments

* fix doc

* minor

* add tests

* add tests

* load text encoder from subfolder

* fix test

* fix test

* style

* style

* handle mps latents

* unfix typo

* unfix typo

* Update tests/pipelines/latent_diffusion/test_latent_diffusion_superresolution.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix set_timesteps mps

* fix set_timesteps mps

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* style

* test 64x64 instead of 256x256

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-09 13:42:16 +01:00
Patrick von Platen
b93fe08545 [Loading] Make sure loading edge cases work (#1192)
* [Loading] Make edge cases work

* up

* finish

* up
2022-11-09 12:28:56 +01:00
Duong A. Nguyen
3f7edc5f72 Fix layer names convert LDM script (#1206)
fix script convert LDM
2022-11-09 12:08:30 +01:00
Suraj Patil
cd77a03651 [CLIPGuidedStableDiffusion] support DDIM scheduler (#1190)
add ddim in clip guided
2022-11-09 11:46:12 +01:00
camenduru
663f0c1963 [Flax] fix extra copy pasta 🍝 (#1187) 2022-11-09 11:34:15 +01:00
Patrick von Platen
6cf72a9b1e Fix slow tests (#1210)
* fix tests

* Fix more

* more
2022-11-09 11:22:12 +01:00
Anton Lozhkov
24895a1f49 Fix cpu offloading (#1177)
* Fix cpu offloading

* get offloaded devices locally for SD pipelines
2022-11-09 10:28:10 +01:00
Nathan Lambert
598ff76bbf add licenses to pipelines (#1201)
add licenses
2022-11-09 10:06:49 +01:00
Patrick von Platen
249d9bc0e7 [Scheduler] Move predict epsilon to init (#1155)
* [Scheduler] Move predict epsilon to init

* up

* uP

* uP

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* up

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-08 18:08:08 +01:00
Suraj Patil
5786b0e2f7 handle dtype xformers attention (#1196)
handle dtype xformers
2022-11-08 17:15:23 +01:00
Mishig
32b0736d8a Update pr docs actions (#1194) 2022-11-08 16:38:09 +01:00
Pedro Cuenca
614c182f94 Restore compatibility with deprecated StableDiffusionOnnxPipeline (#1191)
* Restore compatibility with old ONNX pipeline.

I think it broke in #552.

* Add missing attribute `vae_encoder`
2022-11-08 15:08:35 +01:00
Anton Lozhkov
11f7d6f3cc [ONNX] Improve ONNXPipeline scheduler compatibility, fix safety_checker (#1173)
* [ONNX] Improve ONNX scheduler compatibility, fix safety_checker

* typo
2022-11-08 14:39:11 +01:00
Yuta Hayashibe
555203e1fa Warning for invalid options without "--with_prior_preservation" (#1065)
* Make errors for invalid options without "--with_prior_preservation"

* Make --instance_prompt required

* Removed needless check because --instance_data_dir is marked with required

* Updated messages

* Use logger.warning instead of raise errors

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-08 14:31:13 +01:00
Pedro Cuenca
813744e5f3 MPS schedulers: don't use float64 (#1169)
* Schedulers: don't use float64 on mps

* Test set_timesteps() on device (float schedulers).

* SD pipeline: use device in set_timesteps.

* SD in-painting pipeline: use device in set_timesteps.

* Tests: fix mps crashes.

* Skip test_load_pipeline_from_git on mps.

Not compatible with float16.

* Use device.type instead of str in Euler schedulers.
2022-11-08 13:11:33 +01:00
Suraj Patil
5a8b356922 [DDIMScheduler] fix noise device in ddim step (#1189)
* fix noise device in ddim sched

* fix typo

* self.device -> device

* remove duplicated if

* use str device

* don't use str for device
2022-11-08 13:11:12 +01:00
Pedro Cuenca
20a05d6a50 Fix small typo (#1178)
Unless it's intentional, lol
2022-11-08 12:30:51 +01:00
Patrick von Platen
c3dcb6749b Update config.yml 2022-11-08 11:31:15 +01:00
Pedro Cuenca
fa6e5209a8 Link to Dreambooth blog post instead of W&B report (#1180)
Link to Dreambooth blog post instead of W&B report.
2022-11-07 21:59:36 +01:00
Duong A. Nguyen
ac4c695d97 [Flax examples] Load text encoder from subfolder (#1147)
load text encoder from subfolder
2022-11-07 21:26:59 +01:00
JuanCarlosPi
01733238a6 [Community Pipeline] Add multilingual stable diffusion to community pipelines (#1142)
* Add multilingual_stable_diffusion.py file

* Add multilingual stable diffusion to examples README file

* Update examples/community/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-07 21:11:59 +01:00
Alex McKinney
bcdb3d594c Community pipeline img2img inpainting (#1114)
* adds image to image inpainting with `PIL.Image.Image` inputs
the base implementation claims to support `torch.Tensor` but seems it
would also fail in this case.

* `make style` and `make quality`

* updates community examples readme

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-07 21:06:52 +01:00
Patrick von Platen
72eae64d67 Fix dtype safety checker inpaint legacy (#1137)
* [Stable Diffusion Inpaint Legacy] Fiix some things

* uP
2022-11-07 20:57:45 +01:00
Patrick von Platen
de7536281a fix image docs 2022-11-07 17:25:13 +01:00
Patrick von Platen
b500df1155 [Docs] Add loading script (#1174)
* add loading script

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* correct

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* uP

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-07 17:15:41 +01:00
Pedro Cuenca
0dd8c6b4db Fix community pipeline links (#1162)
* Change title to match the sidebar in _toctree.

* Fix custom pipe link, add link to contribute.

* Fix community pipeline links.
2022-11-07 14:32:51 +01:00
Duong A. Nguyen
cd502b25cf Fix typo latens -> latents (#1171)
fix typo
2022-11-07 13:34:45 +01:00
Pedro Cuenca
e86a280c45 Remove warning about half precision on MPS (#1163)
Remove warning about half precision on MPS.
2022-11-07 12:27:17 +01:00
Cheng Lu
b4a1ed8544 Add multistep DPM-Solver discrete scheduler (#1132)
* add dpmsolver discrete pytorch scheduler

* fix some typos in dpm-solver pytorch

* add dpm-solver pytorch in stable-diffusion pipeline

* add jax/flax version dpm-solver

* change code style

* change code style

* add docs

* add `add_noise` method for dpmsolver

* add pytorch unit test for dpmsolver

* add dummy object for pytorch dpmsolver

* Update src/diffusers/schedulers/scheduling_dpmsolver_discrete.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/test_config.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/test_config.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* resolve the code comments

* rename the file

* change class name

* fix code style

* add auto docs for dpmsolver multistep

* add more explanations for the stabilizing trick (for steps < 15)

* delete the dummy file

* change the API name of predict_epsilon, algorithm_type and solver_type

* add compatible lists

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-11-06 22:49:55 +01:00
Pedro Cuenca
08a6dc8a58 Flax: Flip sin to cos in time embeddings (#1149)
Flip sin to cos in t embeddings.

This was assumed in the previous implementation, but now the default is
the opposite.

Fixes #1145.
2022-11-05 22:17:41 +01:00
Chen Wu (吴尘)
9d8943b7e7 Add CycleDiffusion pipeline using Stable Diffusion (#888)
* Add CycleDiffusion pipeline for Stable Diffusion

* Add the option of passing noise to DDIMScheduler

Add the option of providing the noise itself to DDIMScheduler, instead of the random seed generator.

* Update README.md

* Update README.md

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update scheduling_ddim.py

* Update import format

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update scheduling_ddim.py

* Update src/diffusers/schedulers/scheduling_ddim.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_ddim.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_ddim.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_ddim.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_ddim.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update scheduling_ddim.py

* Update scheduling_ddim.py

* Update scheduling_ddim.py

* add two tests

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Update README.md

* Rename pipeline name as suggested in the latest reviewer comment

* Update test_pipelines.py

* Update test_pipelines.py

* Update test_pipelines.py

* Update pipeline_stable_diffusion_cycle_diffusion.py

* Remove the generator

This generator does not control all randomness during sampling, which can be misleading.

* Update optimal hyperparameters

* Update src/diffusers/pipelines/stable_diffusion/README.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/README.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/README.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

* uP

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_cycle_diffusion.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* up

* up

* Replace assert with ValueError

* finish docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-11-04 20:51:06 +01:00
Pi Esposito
1172c9634b add enable sequential cpu offloading to other stable diffusion pipelines (#1085)
* add enable sequential cpu offloading to other stable diffusion pipelines

* trigger ci

* fix styling

* interpolate before converting to device to avoid breking when cpu_offload is enabled with fp16

Co-authored-by: Pedro Gengo  <pedro.gabriel.lourenco@hotmail.com>

* style again I need to stop forgething this thing

* fix inpainting bug that could cause device misalignment

Co-authored-by: Pedro Gengo  <pedro.gabriel.lourenco@hotmail.com>

* Apply suggestions from code review

Co-authored-by: Pedro Gengo  <pedro.gabriel.lourenco@hotmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-04 19:25:28 +01:00
Anton Lozhkov
2fcae69f2a Bump to 0.8.0.dev0 (#1131)
* Bump to 0.8.0.dev0

* deprecate int timesteps

* style
2022-11-04 19:06:24 +01:00
SkyTNT
a480229463 [Community Pipeline] lpw_stable_diffusion: add xformers_memory_efficient_attention and sequential_cpu_offload (#1130)
lpw_stable_diffusion: xformers and cpu_offload
2022-11-04 18:38:37 +01:00
Chenguo Lin
5b20d3b3d7 fix the parameter naming in self.downsamplers (#1108)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-04 18:05:19 +01:00
Lewington-pitsos
2c108693cc Test precision increases (#1113)
* increase the precision of slice-based tests and make the default test case easier to single out

* increase precision of unit tests which already rely on float comparisons

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-04 17:54:01 +01:00
webbigdata-jp
af7b1c3bf2 fix 404 link in example/README.mb (#1136)
fix 404 link in README.mb
2022-11-04 16:45:58 +01:00
Patrick von Platen
1d0f3c211e Move accelerate to a soft-dependency (#1134)
* finish

* finish

* Update src/diffusers/modeling_utils.py

* Update src/diffusers/pipeline_utils.py

Co-authored-by: Anton Lozhkov <anton@huggingface.co>

* more fixes

* fix

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-04 14:58:52 +01:00
Duong A. Nguyen
c62b3a2e7e [Flax] Fix sample batch size DreamBooth (#1129)
fix sample batch size
2022-11-04 13:49:57 +01:00
Patrick von Platen
bde4880c9c make style 2022-11-03 17:57:51 +00:00
Patrick von Platen
a24862cdaf Correct VQDiffusion Pipeline import 2022-11-03 17:55:14 +00:00
Patrick von Platen
9eb389f298 Merge branch 'main' of https://github.com/huggingface/diffusers into main 2022-11-03 17:55:03 +00:00
Patrick von Platen
33108bfa6b Correct VQDiffusion Pipeline import 2022-11-03 17:54:48 +00:00
anton-l
1578679ff4 Release: v0.7.0 2022-11-03 18:47:20 +01:00
Pedro Cuenca
118c5be94a Docs: Do not require PyTorch nightlies (#1123)
Do not require PyTorch nightlies.
2022-11-03 18:17:23 +01:00
Suraj Patil
7b030a7d68 handle device for randn in euler step (#1124)
* handle device for randn in euler step

* convert device to str
2022-11-03 18:13:18 +01:00
Patrick von Platen
42bb459457 [Low cpu memory] Correct naming and improve default usage (#1122)
* correct naming

* finish

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-11-03 18:11:18 +01:00
Patrick von Platen
988c82227d fix copies 2022-11-03 17:32:39 +01:00
Suraj Patil
7482178162 default fast model loading 🔥 (#1115)
* make accelerate hard dep

* default fast init

* move params to cpu when device map is None

* handle device_map=None

* handle torch < 1.9

* remove device_map="auto"

* style

* add accelerate in torch extra

* remove accelerate from extras["test"]

* raise an error if torch is available but not accelerate

* update installation docs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* improve defautl loading speed even further, allow disabling fats loading

* address review comments

* adapt the tests

* fix test_stable_diffusion_fast_load

* fix test_read_init

* temp fix for dummy checks

* Trigger Build

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <anton@huggingface.co>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-03 17:25:57 +01:00
Will Berman
ef2ea33c3b VQ-diffusion (#658)
* Changes for VQ-diffusion VQVAE

Add specify dimension of embeddings to VQModel:
`VQModel` will by default set the dimension of embeddings to the number
of latent channels. The VQ-diffusion VQVAE has a smaller
embedding dimension, 128, than number of latent channels, 256.

Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
unet block helpers. VQ-diffusion's VQVAE uses those two block types.

* Changes for VQ-diffusion transformer

Modify attention.py so SpatialTransformer can be used for
VQ-diffusion's transformer.

SpatialTransformer:
- Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
- `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
- modified forward pass to take optional timestep embeddings

ImagePositionalEmbeddings:
- added to provide positional embeddings to discrete inputs for latent pixels

BasicTransformerBlock:
- norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
- modified forward pass to take optional timestep embeddings

CrossAttention:
- now may optionally take a bias parameter for its query, key, and value linear layers

FeedForward:
- Internal layers are now configurable

ApproximateGELU:
- Activation function in VQ-diffusion's feedforward layer

AdaLayerNorm:
- Norm layer modified to incorporate timestep embeddings

* Add VQ-diffusion scheduler

* Add VQ-diffusion pipeline

* Add VQ-diffusion convert script to diffusers

* Add VQ-diffusion dummy objects

* Add VQ-diffusion markdown docs

* Add VQ-diffusion tests

* some renaming

* some fixes

* more renaming

* correct

* fix typo

* correct weights

* finalize

* fix tests

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* finish

* finish

* up

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-11-03 16:10:28 +01:00
Pedro Cuenca
269109dbfb Continuation of #1035 (#1120)
* remove batch size from repeat

* repeat empty string if uncond_tokens is none

* fix inpaint pipes

* return back whitespace to pass code quality

* Apply suggestions from code review

* Fix typos.

Co-authored-by: Had <had-95@yandex.ru>
2022-11-03 15:49:20 +01:00
Revist
d38c804320 feat: add repaint (#974)
* feat: add repaint

* fix: fix quality check with `make fix-copies`

* fix: remove old unnecessary arg

* chore: change default to DDPM (looks better in experiments)

* ".to(device)" changed to "device="

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* make generator device-specific

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* make generator device-specific and change shape

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* fix: add preprocessing for image and mask

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* fix: update test

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update src/diffusers/pipelines/repaint/pipeline_repaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add docs and examples

* Fix toctree

Co-authored-by: fja <fja@zurich.ibm.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-03 15:42:46 +01:00
Anton Lozhkov
4a38166afe Allow saving None pipeline components (#1118)
* Allow saving `None` pipeline components

* support flax as well

* style
2022-11-03 15:41:33 +01:00
Anton Lozhkov
0edf9ca082 Fix hub-dependent tests for PRs (#1119)
* Remove the hub token

* replace repos

* style
2022-11-03 15:24:32 +01:00
Patrick von Platen
c39a511b5f [Loading] Ignore unneeded files (#1107)
* [Loading] Ignore unneeded files

* up
2022-11-02 19:20:42 +01:00
Denis
cbcd0512f0 Training to predict x0 in training example (#1031)
* changed training example to add option to train model that predicts x0 (instead of eps), changed DDPM pipeline accordingly

* Revert "changed training example to add option to train model that predicts x0 (instead of eps), changed DDPM pipeline accordingly"

This reverts commit c5efb52564.

* changed training example to add option to train model that predicts x0 (instead of eps), changed DDPM pipeline accordingly

* fixed code style

Co-authored-by: lukovnikov <lukovnikov@users.noreply.github.com>
2022-11-02 17:43:40 +01:00
Kashif Rasul
0b61cea347 [Flax] time embedding (#1081)
* initial get_sinusoidal_embeddings

* added asserts

* better var name

* fix docs
2022-11-02 16:54:30 +01:00
Yuta Hayashibe
33c487455e Fix padding in dreambooth (#1030) 2022-11-02 16:37:05 +01:00
Grigory Sizov
5cd29d623a Fix tests for equivalence of DDIM and DDPM pipelines (#1069)
* Fix equality test for ddim and ddpm

* add docs for use_clipped_model_output in DDIM

* fix inline comment

* reorder imports in test_pipelines.py

* Ignore use_clipped_model_output if scheduler doesn't take it
2022-11-02 14:50:32 +01:00
Omiita
1216a3b122 Fix a small typo of a variable name (#1063)
Fix a small typo

fix a typo in `models/attention.py`.
weight -> width
2022-11-02 14:46:52 +01:00
Anton Lozhkov
4e59bcc680 [CI] Framework and hardware-specific CI tests (#997)
* [WIP][CI] Framework and hardware-specific docker images for CI tests

* username

* fix cpu

* try out the image

* push latest

* update workspace

* no root isolation for actions

* add a flax image

* flax and onnx matrix

* fix runners

* add reports

* onnxruntime image

* retry tpu

* fix

* fix

* build onnxruntime

* naming

* onnxruntime-gpu image

* onnxruntime-gpu image, slow tests

* latest jax version

* trigger flax

* run flax tests in one thread

* fast flax tests on cpu

* fast flax tests on cpu

* trigger slow tests

* rebuild torch cuda

* force cuda provider

* fix onnxruntime tests

* trigger slow

* don't specify gpu for tpu

* optimize

* memory limit

* fix flax tests

* disable docker cache
2022-11-02 14:07:07 +01:00
Suraj Patil
b1ec61ee45 fix model card url in text inversion readme. (#1103)
Update README.md
2022-11-02 14:02:52 +01:00
Jonathan Rahn
0025626cd9 fix typo in examples dreambooth README.md (#1073)
Update README.md

fixed typo
2022-11-02 13:15:30 +01:00
Patrick von Platen
d53ffbbdf4 Rename latent (#1102)
* Rename latent

* uP
2022-11-02 11:59:00 +01:00
rafael
bdbcaa9852 lpw_stable_diffusion: Add is_cancelled_callback (#1053)
* [Community Pipelines] lpw_stable_diffusion: Add is_cancelled_callback

* [Community pipelines] lpw_stable_diffusion_onnx: Add is_cancelled_callback
2022-11-02 11:51:18 +01:00
Lewington-pitsos
8ee21915bf Integration tests precision improvement for inpainting (#1052)
* improve test precision

get tests passing with greater precision using lewington images

* make old numpy load function a wrapper around a more flexible numpy loading function

* adhere to black formatting

* add more black formatting

* adhere to isort

* loosen precision and replace path

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-02 11:47:26 +01:00
Suraj Patil
8608795711 [docs] add euler scheduler in docs, how to use differnet schedulers (#1089)
* add euler scheduler in docs

* add a section for how to use different scheds

* address patrck's comments
2022-11-02 11:32:46 +01:00
MatthieuTPHR
98c42134a5 Up to 2x speedup on GPUs using memory efficient attention (#532)
* 2x speedup using memory efficient attention

* remove einops dependency

* Swap K, M in op instantiation

* Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter

* make xformers a soft dependency

* remove one-liner functions

* change one letter variable to appropriate names

* Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method

* Add memory efficient attention toggle to img2img and inpaint pipelines

* Clearer management of xformers' availability

* update optimizations markdown to add info about memory efficient attention

* add benchmarks for TITAN RTX

* More detailed explanation of how the mem eff benchmark were ran

* Removing autocast from optimization markdown

* import_utils: import torch only if is available

Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-11-02 10:29:06 +01:00
MarkRich
a793b1fe7e Add imagic to community pipelines (#958)
* initial commit to add imagic to stable diffusion community pipelines

* remove some testing changes

* comments from PR review for imagic stable diffusion

* remove changes from pipeline_stable_diffusion as part of imagic pipeline

* clean up example code and add line back in to pipeline_stable_diffusion for imagic pipeline

* remove unused functions

* small code quality changes for imagic pipeline

* clean up readme

* remove hardcoded logging values for imagic community example

* undo change for DDIMScheduler
2022-11-01 11:17:51 +01:00
Laurent Mazare
7fb4b882b9 Remove some unused parameter in CrossAttnUpBlock2D (#1034)
Remove some unused parameter

The `downsample_padding` parameter does not seem to be used in `CrossAttnUpBlock2D` (or by any up block for that matter) so removing it.
2022-10-31 19:15:15 +01:00
Patrick von Platen
888468dd90 Remove nn sequential (#1086)
* Remove nn sequential

* up
2022-10-31 19:01:42 +01:00
Patrick von Platen
17c2c0600b [Tests] Fix slow tests (#1087) 2022-10-31 18:59:58 +01:00
Patrick von Platen
010bc4ea19 incorrect model id 2022-10-31 16:35:59 +00:00
Patrick von Platen
c18941b01a [Better scheduler docs] Improve usage examples of schedulers (#890)
* [Better scheduler docs] Improve usage examples of schedulers

* finish

* fix warnings and add test

* finish

* more replacements

* adapt fast tests hf token

* correct more

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Integrate compatibility with euler

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-10-31 17:26:30 +01:00
hlky
a1ea8c01c3 k-diffusion-euler (#1019)
* k-diffusion-euler

* make style make quality

* make fix-copies

* fix tests for euler a

* Update src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update src/diffusers/schedulers/scheduling_euler_discrete.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update src/diffusers/schedulers/scheduling_euler_discrete.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* remove unused arg and method

* update doc

* quality

* make flake happy

* use logger instead of warn

* raise error instead of deprication

* don't require scipy

* pass generator in step

* fix tests

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/test_scheduler.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove unused generator

* pass generator as extra_step_kwargs

* update tests

* pass generator as kwarg

* pass generator as kwarg

* quality

* fix test for lms

* fix tests

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-10-31 16:20:38 +01:00
Pedro Cuenca
bf7b0bc25b Allow safety_checker to be None when using CPU offload (#1078)
Allow None safety_checker when using CPU offload.
2022-10-31 15:03:33 +01:00
Patrick von Platen
e4d264e4eb [GitBot] Automatically close issues after inactivitiy (#1079)
* [GitBot] Automatically close issues after inactivitiy

* improve

* Add unstale

* typo

Co-authored-by: anton-l <anton@huggingface.co>
2022-10-31 14:06:03 +01:00
Anton Lozhkov
1606eb994a Fix pipelines user_agent, ignore CI requests (#1058)
* Fix pipelines user_agent, ignore CI requests

* fix circular import

* N/A versions

* N/A versions
2022-10-31 13:38:43 +01:00
233 changed files with 27771 additions and 2168 deletions

View File

@@ -1,7 +1,4 @@
contact_links:
- name: Forum
url: https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63
about: General usage questions and community discussions
- name: Blank issue
url: https://github.com/huggingface/diffusers/issues/new
about: Please note that the Forum is in most places the right place for discussions
about: General usage questions and community discussions

View File

@@ -0,0 +1,50 @@
name: Build Docker images (nightly)
on:
workflow_dispatch:
schedule:
- cron: "0 0 * * *" # every day at midnight
concurrency:
group: docker-image-builds
cancel-in-progress: false
env:
REGISTRY: diffusers
jobs:
build-docker-images:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
strategy:
fail-fast: false
matrix:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu
- diffusers-onnxruntime-cuda
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ env.REGISTRY }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push
uses: docker/build-push-action@v3
with:
no-cache: true
context: ./docker/${{ matrix.image-name }}
push: true
tags: ${{ env.REGISTRY }}/${{ matrix.image-name }}:latest

View File

@@ -10,19 +10,46 @@ concurrency:
cancel-in-progress: true
env:
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
MPS_TORCH_VERSION: 1.13.0
jobs:
run_tests_cpu:
name: CPU tests on Ubuntu
runs-on: [ self-hosted, docker-gpu ]
run_fast_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Fast PyTorch CPU tests on Ubuntu
framework: pytorch
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
framework: flax
runner: docker-cpu
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: docker-cpu
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: python:3.7
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -31,32 +58,51 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cpu
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
run: |
python utils/print_env.py
- name: Run all fast tests on CPU
- name: Run fast PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=tests_torch_cpu tests/
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast ONNXRuntime CPU tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_cpu_failures_short.txt
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_torch_cpu_test_reports
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_tests_apple_m1:
name: MPS tests on Apple M1
run_fast_tests_apple_m1:
name: Fast PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
steps:
@@ -82,16 +128,17 @@ jobs:
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install --pre torch==${MPS_TORCH_VERSION} --extra-index-url https://download.pytorch.org/whl/test/cpu
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run all fast tests on MPS
- name: Run fast PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps tests/
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -6,6 +6,7 @@ on:
- main
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
@@ -13,12 +14,38 @@ env:
RUN_SLOW: yes
jobs:
run_tests_single_gpu:
name: Diffusers tests
runs-on: [ self-hosted, docker-gpu, single-gpu ]
run_slow_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Slow PyTorch CUDA tests on Ubuntu
framework: pytorch
runner: docker-gpu
image: diffusers/diffusers-pytorch-cuda
report: torch_cuda
- name: Slow Flax TPU tests on Ubuntu
framework: flax
runner: docker-tpu
image: diffusers/diffusers-flax-tpu
report: flax_tpu
- name: Slow ONNXRuntime CUDA tests on Ubuntu
framework: onnxruntime
runner: docker-gpu
image: diffusers/diffusers-onnxruntime-cuda
report: onnx_cuda
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: nvcr.io/nvidia/pytorch:22.07-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ ${{ matrix.config.runner == 'docker-tpu' && '--privileged' || '--gpus 0'}}
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
@@ -27,44 +54,69 @@ jobs:
fetch-depth: 2
- name: NVIDIA-SMI
if : ${{ matrix.config.runner == 'docker-gpu' }}
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip uninstall -y torch torchvision torchtext
python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu117
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
run: |
python utils/print_env.py
- name: Run all (incl. slow) tests on GPU
- name: Run slow PyTorch CUDA tests
if: ${{ matrix.config.framework == 'pytorch' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=tests_torch_gpu tests/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run slow Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run slow ONNXRuntime CUDA tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_gpu_failures_short.txt
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_test_reports
name: ${{ matrix.config.report }}_test_reports
path: reports
run_examples_single_gpu:
name: Examples tests
runs-on: [ self-hosted, docker-gpu, single-gpu ]
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
runs-on: docker-gpu
container:
image: nvcr.io/nvidia/pytorch:22.07-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
steps:
- name: Checkout diffusers
@@ -78,11 +130,9 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip uninstall -y torch torchvision torchtext
python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu117
python -m pip install -e .[quality,test,training]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
run: |
@@ -92,11 +142,11 @@ jobs:
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_gpu examples/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/examples_torch_gpu_failures_short.txt
run: cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}

4
.gitignore vendored
View File

@@ -163,4 +163,6 @@ tags
*.lock
# DS_Store (MacOS)
.DS_Store
.DS_Store
# RL pipelines may produce mp4 outputs
*.mp4

View File

@@ -27,10 +27,12 @@ More precisely, 🤗 Diffusers offers:
## Installation
### For PyTorch
**With `pip`**
```bash
pip install --upgrade diffusers
pip install --upgrade diffusers[torch]
```
**With `conda`**
@@ -39,6 +41,14 @@ pip install --upgrade diffusers
conda install -c conda-forge diffusers
```
### For Flax
**With `pip`**
```bash
pip install --upgrade diffusers[flax]
```
**Apple Silicon (M1/M2) support**
Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps).
@@ -142,19 +152,7 @@ it before the pipeline and pass it to `from_pretrained`.
```python
from diffusers import LMSDiscreteScheduler
lms = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear"
)
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="fp16",
torch_dtype=torch.float16,
scheduler=lms,
)
pipe = pipe.to("cuda")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
@@ -340,14 +338,15 @@ Textual Inversion is a technique for capturing novel concepts from a small numbe
- Textual Inversion. Capture novel concepts from a small set of sample images, and associate them with new "words" in the embedding space of the text encoder. Please, refer to [our training examples](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) or [documentation](https://huggingface.co/docs/diffusers/training/text_inversion) to try for yourself.
- Dreambooth. Another technique to capture new concepts in Stable Diffusion. This method fine-tunes the UNet (and, optionally, also the text encoder) of the pipeline to achieve impressive results. Please, refer to [our training examples](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) and [training report](https://wandb.ai/psuraj/dreambooth/reports/Dreambooth-Training-Analysis--VmlldzoyNzk0NDc3) for additional details and training recommendations.
- Dreambooth. Another technique to capture new concepts in Stable Diffusion. This method fine-tunes the UNet (and, optionally, also the text encoder) of the pipeline to achieve impressive results. Please, refer to [our training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) and [training report](https://huggingface.co/blog/dreambooth) for additional details and training recommendations.
- Full Stable Diffusion fine-tuning. If you have a more sizable dataset with a specific look or style, you can fine-tune Stable Diffusion so that it outputs images following those examples. This was the approach taken to create [a Pokémon Stable Diffusion model](https://huggingface.co/justinpinkney/pokemon-stable-diffusion) (by Justing Pinkney / Lambda Labs), [a Japanese specific version of Stable Diffusion](https://huggingface.co/spaces/rinna/japanese-stable-diffusion) (by [Rinna Co.](https://github.com/rinnakk/japanese-stable-diffusion/) and others. You can start at [our text-to-image fine-tuning example](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) and go from there.
## Stable Diffusion Community Pipelines
The release of Stable Diffusion as an open source model has fostered a lot of interesting ideas and experimentation. Our [Community Examples folder](https://github.com/huggingface/diffusers/tree/main/examples/community) contains many ideas worth exploring, like interpolating to create animated videos, using CLIP Guidance for additional prompt fidelity, term weighting, and much more! Take a look and [contribute your own](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipelines).
The release of Stable Diffusion as an open source model has fostered a lot of interesting ideas and experimentation.
Our [Community Examples folder](https://github.com/huggingface/diffusers/tree/main/examples/community) contains many ideas worth exploring, like interpolating to create animated videos, using CLIP Guidance for additional prompt fidelity, term weighting, and much more! [Take a look](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview) and [contribute your own](https://huggingface.co/docs/diffusers/using-diffusers/contribute_pipeline).
## Other Examples
@@ -358,7 +357,7 @@ There are many ways to try running Diffusers! Here we outline code-focused tools
If you want to run the code yourself 💻, you can try out:
- [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256)
```python
# !pip install diffusers transformers
# !pip install diffusers["torch"] transformers
from diffusers import DiffusionPipeline
device = "cuda"
@@ -377,7 +376,7 @@ image.save("squirrel.png")
```
- [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256)
```python
# !pip install diffusers
# !pip install diffusers["torch"]
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
model_id = "google/ddpm-celebahq-256"
@@ -396,10 +395,14 @@ image.save("ddpm_generated_image.png")
- [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256)
- [Unconditional Diffusion with continuous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024)
**Other Notebooks**:
**Other Image Notebooks**:
* [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
* [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
**Diffusers for Other Modalities**:
* [Molecule conformation generation](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
* [Model-based reinforcement learning](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg),
### Web Demos
If you just want to play around with some web demos, you can try out the following 🚀 Spaces:
| Model | Hugging Face Spaces |
@@ -422,7 +425,7 @@ If you just want to play around with some web demos, you can try out the followi
<p>
**Schedulers**: Algorithm class for both **inference** and **training**.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training.
The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training. Also known as **Samplers**.
*Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902)
<p align="center">

View File

@@ -0,0 +1,42 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --upgrade --no-cache-dir \
clu \
"jax[cpu]>=0.2.16,!=0.3.2" \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -0,0 +1,44 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
"jax[tpu]>=0.2.16,!=0.3.2" \
-f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \
python3 -m pip install --upgrade --no-cache-dir \
clu \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -0,0 +1,42 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
onnxruntime \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -0,0 +1,42 @@
FROM nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
"onnxruntime-gpu>=1.13.1" \
--extra-index-url https://download.pytorch.org/whl/cu117 && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -0,0 +1,41 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -0,0 +1,41 @@
FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cu117 && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
modelcards \
numpy \
scipy \
tensorboard \
transformers
CMD ["/bin/bash"]

View File

@@ -10,6 +10,8 @@
- sections:
- local: using-diffusers/loading
title: "Loading Pipelines, Models, and Schedulers"
- local: using-diffusers/schedulers
title: "Using different Schedulers"
- local: using-diffusers/configuration
title: "Configuring Pipelines, Models, and Schedulers"
- local: using-diffusers/custom_pipeline_overview
@@ -29,6 +31,14 @@
- local: using-diffusers/contribute_pipeline
title: "How to contribute a Pipeline"
title: "Pipelines for Inference"
- sections:
- local: using-diffusers/rl
title: "Reinforcement Learning"
- local: using-diffusers/audio
title: "Audio"
- local: using-diffusers/other-modalities
title: "Other Modalities"
title: "Taking Diffusers Beyond Images"
title: "Using Diffusers"
- sections:
- local: optimization/fp16
@@ -78,6 +88,10 @@
- sections:
- local: api/pipelines/overview
title: "Overview"
- local: api/pipelines/alt_diffusion
title: "AltDiffusion"
- local: api/pipelines/cycle_diffusion
title: "Cycle Diffusion"
- local: api/pipelines/ddim
title: "DDIM"
- local: api/pipelines/ddpm
@@ -92,9 +106,21 @@
title: "Score SDE VE"
- local: api/pipelines/stable_diffusion
title: "Stable Diffusion"
- local: api/pipelines/stable_diffusion_safe
title: "Safe Stable Diffusion"
- local: api/pipelines/stochastic_karras_ve
title: "Stochastic Karras VE"
- local: api/pipelines/dance_diffusion
title: "Dance Diffusion"
- local: api/pipelines/versatile_diffusion
title: "Versatile Diffusion"
- local: api/pipelines/vq_diffusion
title: "VQ Diffusion"
- local: api/pipelines/repaint
title: "RePaint"
title: "Pipelines"
- sections:
- local: api/experimental/rl
title: "RL Planning"
title: "Experimental Features"
title: "API"

View File

@@ -15,9 +15,9 @@ specific language governing permissions and limitations under the License.
In Diffusers, schedulers of type [`schedulers.scheduling_utils.SchedulerMixin`], and models of type [`ModelMixin`] inherit from [`ConfigMixin`] which conveniently takes care of storing all parameters that are
passed to the respective `__init__` methods in a JSON-configuration file.
TODO(PVP) - add example and better info here
## ConfigMixin
[[autodoc]] ConfigMixin
- load_config
- from_config
- save_config

View File

@@ -0,0 +1,15 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# TODO
Coming soon!

View File

@@ -22,12 +22,15 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
## UNet1DModel
[[autodoc]] UNet1DModel
## UNet2DModel
[[autodoc]] UNet2DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
## UNet1DModel
[[autodoc]] UNet1DModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
@@ -49,6 +52,12 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
## AutoencoderKL
[[autodoc]] AutoencoderKL
## Transformer2DModel
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.attention.Transformer2DModelOutput
## FlaxModelMixin
[[autodoc]] FlaxModelMixin

View File

@@ -0,0 +1,83 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu
The abstract of the paper is the following:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
*Overview*:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_alt_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py) | *Text-to-Image Generation* | - | -
| [pipeline_alt_diffusion_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py) | *Image-to-Image Text-Guided Generation* | - |-
## Tips
- AltDiffusion is conceptually exaclty the same as [Stable Diffusion](./api/pipelines/stable_diffusion).
- *Run AltDiffusion*
AltDiffusion can be tested very easily with the [`AltDiffusionPipeline`], [`AltDiffusionImg2ImgPipeline`] and the `"BAAI/AltDiffusion-m9"` checkpoint exactly in the same way it is shown in the [Conditional Image Generation Guide](./using-diffusers/conditional_image_generation) and the [Image-to-Image Generation Guide](./using-diffusers/img2img).
- *How to load and use different schedulers.*
The alt diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the alt diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import AltDiffusionPipeline, EulerDiscreteScheduler
>>> pipeline = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9")
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("BAAI/AltDiffusion-m9", subfolder="scheduler")
>>> pipeline = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", scheduler=euler_scheduler)
```
- *How to conver all use cases with multiple or single pipeline*
If you want to use all possible use cases in a single `DiffusionPipeline` we recommend using the `components` functionality to instantiate all components in the most memory-efficient way:
```python
>>> from diffusers import (
... AltDiffusionPipeline,
... AltDiffusionImg2ImgPipeline,
... )
>>> text2img = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9")
>>> img2img = AltDiffusionImg2ImgPipeline(**text2img.components)
>>> # now you can use text2img(...) and img2img(...) just like the call methods of each respective pipeline
```
## AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
## AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
## AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -0,0 +1,99 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
## Overview
Cycle Diffusion is a Text-Guided Image-to-Image Generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract of the paper is the following:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
*Tips*:
- The Cycle Diffusion pipeline is fully compatible with any [Stable Diffusion](./stable_diffusion) checkpoints
- Currently Cycle Diffusion only works with the [`DDIMScheduler`].
*Example*:
In the following we should how to best use the [`CycleDiffusionPipeline`]
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import CycleDiffusionPipeline, DDIMScheduler
# load the pipeline
# make sure you're logged in with `huggingface-cli login`
model_id_or_path = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id_or_path, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler).to("cuda")
# let's download an initial image
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/An%20astronaut%20riding%20a%20horse.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
init_image.save("horse.png")
# let's specify a prompt
source_prompt = "An astronaut riding a horse"
prompt = "An astronaut riding an elephant"
# call the pipeline
image = pipe(
prompt=prompt,
source_prompt=source_prompt,
init_image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.8,
guidance_scale=2,
source_guidance_scale=1,
).images[0]
image.save("horse_to_elephant.png")
# let's try another example
# See more samples at the original repo: https://github.com/ChenWu98/cycle-diffusion
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
init_image.save("black.png")
source_prompt = "A black colored car"
prompt = "A blue colored car"
# call the pipeline
torch.manual_seed(0)
image = pipe(
prompt=prompt,
source_prompt=source_prompt,
init_image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
).images[0]
image.save("black_to_blue.png")
```
## CycleDiffusionPipeline
[[autodoc]] CycleDiffusionPipeline
- __call__

View File

@@ -20,7 +20,8 @@ The abstract of the paper is the following:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
The original codebase of this paper can be found [here](https://github.com/ermongroup/ddim).
The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
## Available Pipelines:

View File

@@ -33,10 +33,15 @@ The original codebase can be found [here](https://github.com/CompVis/latent-diff
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_latent_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) | *Text-to-Image Generation* | - |
| [pipeline_latent_diffusion_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py) | *Super Resolution* | - |
## Examples:
## LDMTextToImagePipeline
[[autodoc]] pipelines.latent_diffusion.pipeline_latent_diffusion.LDMTextToImagePipeline
[[autodoc]] LDMTextToImagePipeline
- __call__
## LDMSuperResolutionPipeline
[[autodoc]] LDMSuperResolutionPipeline
- __call__

View File

@@ -28,7 +28,7 @@ or created independently from each other.
To that end, we strive to offer all open-sourced, state-of-the-art diffusion system under a unified API.
More specifically, we strive to provide pipelines that
- 1. can load the officially published weights and yield 1-to-1 the same outputs as the original implementation according to the corresponding paper (*e.g.* [LatentDiffusionPipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/latent_diffusion), uses the officially released weights of [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)),
- 1. can load the officially published weights and yield 1-to-1 the same outputs as the original implementation according to the corresponding paper (*e.g.* [LDMTextToImagePipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/latent_diffusion), uses the officially released weights of [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)),
- 2. have a simple user interface to run the model in inference (see the [Pipelines API](#pipelines-api) section),
- 3. are easy to understand with code that is self-explanatory and can be read along-side the official paper (see [Pipelines summary](#pipelines-summary)),
- 4. can easily be contributed by the community (see the [Contribution](#contribution) section).
@@ -41,19 +41,30 @@ If you are looking for *official* training examples, please have a look at [exam
The following table summarizes all officially supported pipelines, their corresponding paper, and if
available a colab notebook to directly try them out.
| Pipeline | Paper | Tasks | Colab
|---|---|:---:|:---:|
| [ddpm](./ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [latent_diffusion](./latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion_uncond](./latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [pndm](./pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stochastic_karras_ve](./stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation | -
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.

View File

@@ -0,0 +1,77 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RePaint
## Overview
[RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2201.09865) (PNDM) by Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool.
The abstract of the paper is the following:
Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks.
RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions.
The original codebase can be found [here](https://github.com/andreas128/RePaint).
## Available Pipelines:
| Pipeline | Tasks | Colab
|-------------------------------------------------------------------------------------------------------------------------------|--------------------|:---:|
| [pipeline_repaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/repaint/pipeline_repaint.py) | *Image Inpainting* | - |
## Usage example
```python
from io import BytesIO
import torch
import PIL
import requests
from diffusers import RePaintPipeline, RePaintScheduler
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
# Load the original image and the mask as PIL images
original_image = download_image(img_url).resize((256, 256))
mask_image = download_image(mask_url).resize((256, 256))
# Load the RePaint scheduler and pipeline based on a pretrained DDPM model
scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256")
pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler)
pipe = pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipe(
original_image=original_image,
mask_image=mask_image,
num_inference_steps=250,
eta=0.0,
jump_length=10,
jump_n_sample=10,
generator=generator,
)
inpainted_image = output.images[0]
```
## RePaintPipeline
[[autodoc]] pipelines.repaint.pipeline_repaint.RePaintPipeline
- __call__

View File

@@ -31,6 +31,25 @@ For more details about how Stable Diffusion works and how it differs from the ba
## Tips
### How to load and use different schedulers.
The stable diffusion pipeline uses [`PNDMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
>>> pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
>>> pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=euler_scheduler)
```
### How to conver all use cases with multiple or single pipeline
If you want to use all possible use cases in a single `DiffusionPipeline` you can either:
- Make use of the [Stable Diffusion Mega Pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community#stable-diffusion-mega) or
- Make use of the `components` functionality to instantiate all components in the most memory-efficient way:
@@ -42,11 +61,11 @@ If you want to use all possible use cases in a single `DiffusionPipeline` you ca
... StableDiffusionInpaintPipeline,
... )
>>> img2text = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
>>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)
>>> text2img = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
>>> # now you can use img2text(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
>>> # now you can use text2img(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
```
## StableDiffusionPipelineOutput
@@ -69,3 +88,10 @@ If you want to use all possible use cases in a single `DiffusionPipeline` you ca
- __call__
- enable_attention_slicing
- disable_attention_slicing
## StableDiffusionImageVariationPipeline
[[autodoc]] StableDiffusionImageVariationPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -0,0 +1,90 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Safe Stable Diffusion
Safe Stable Diffusion was proposed in [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://arxiv.org/abs/2211.05105) and mitigates the well known issue that models like Stable Diffusion that are trained on unfiltered, web-crawled datasets tend to suffer from inappropriate degeneration. For instance Stable Diffusion may unexpectedly generate nudity, violence, images depicting self-harm, or otherwise offensive content.
Safe Stable Diffusion is an extension to the Stable Diffusion that drastically reduces content like this.
The abstract of the paper is the following:
*Text-conditioned image generation models have recently achieved astonishing results in image quality and text alignment and are consequently employed in a fast-growing number of applications. Since they are highly data-driven, relying on billion-sized datasets randomly scraped from the internet, they also suffer, as we demonstrate, from degenerated and biased human behavior. In turn, they may even reinforce such biases. To help combat these undesired side effects, we present safe latent diffusion (SLD). Specifically, to measure the inappropriate degeneration due to unfiltered and imbalanced training sets, we establish a novel image generation test bed-inappropriate image prompts (I2P)-containing dedicated, real-world image-to-text prompts covering concepts such as nudity and violence. As our exhaustive empirical evaluation demonstrates, the introduced SLD removes and suppresses inappropriate image parts during the diffusion process, with no additional training required and no adverse effect on overall image quality or text alignment.*
*Overview*:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_stable_diffusion_safe.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb) | -
## Tips
- Safe Stable Diffusion may also be used with weights of [Stable Diffusion](./api/pipelines/stable_diffusion).
### Run Safe Stable Diffusion
Safe Stable Diffusion can be tested very easily with the [`StableDiffusionPipelineSafe`], and the `"AIML-TUDA/stable-diffusion-safe"` checkpoint exactly in the same way it is shown in the [Conditional Image Generation Guide](./using-diffusers/conditional_image_generation).
### Interacting with the Safety Concept
To check and edit the currently used safety concept, use the `safety_concept` property of [`StableDiffusionPipelineSafe`]
```python
>>> from diffusers import StableDiffusionPipelineSafe
>>> pipeline = StableDiffusionPipelineSafe.from_pretrained("AIML-TUDA/stable-diffusion-safe")
>>> pipeline.safety_concept
```
For each image generation the active concept is also contained in [`StableDiffusionSafePipelineOutput`].
### Using pre-defined safety configurations
You may use the 4 configurations defined in the [Safe Latent Diffusion paper](https://arxiv.org/abs/2211.05105) as follows:
```python
>>> from diffusers import StableDiffusionPipelineSafe
>>> from diffusers.pipelines.stable_diffusion_safe import SafetyConfig
>>> pipeline = StableDiffusionPipelineSafe.from_pretrained("AIML-TUDA/stable-diffusion-safe")
>>> prompt = "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c. leyendecker"
>>> out = pipeline(prompt=prompt, **SafetyConfig.MAX)
```
The following configurations are available: `SafetyConfig.WEAK`, `SafetyConfig.MEDIUM`, `SafetyConfig.STRONg`, and `SafetyConfig.MAX`.
### How to load and use different schedulers.
The safe stable diffusion pipeline uses [`PNDMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import StableDiffusionPipelineSafe, EulerDiscreteScheduler
>>> pipeline = StableDiffusionPipelineSafe.from_pretrained("AIML-TUDA/stable-diffusion-safe")
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("AIML-TUDA/stable-diffusion-safe", subfolder="scheduler")
>>> pipeline = StableDiffusionPipelineSafe.from_pretrained(
... "AIML-TUDA/stable-diffusion-safe", scheduler=euler_scheduler
... )
```
## StableDiffusionSafePipelineOutput
[[autodoc]] pipelines.stable_diffusion_safe.StableDiffusionSafePipelineOutput
## StableDiffusionPipelineSafe
[[autodoc]] StableDiffusionPipelineSafe
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -0,0 +1,73 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# VersatileDiffusion
VersatileDiffusion was proposed in [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) by Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi .
The abstract of the paper is the following:
*The recent advances in diffusion models have set an impressive milestone in many generation tasks. Trending works such as DALL-E2, Imagen, and Stable Diffusion have attracted great interest in academia and industry. Despite the rapid landscape changes, recent new approaches focus on extensions and performance rather than capacity, thus requiring separate models for separate tasks. In this work, we expand the existing single-flow diffusion pipeline into a multi-flow network, dubbed Versatile Diffusion (VD), that handles text-to-image, image-to-text, image-variation, and text-variation in one unified model. Moreover, we generalize VD to a unified multi-flow multimodal diffusion framework with grouped layers, swappable streams, and other propositions that can process modalities beyond images and text. Through our experiments, we demonstrate that VD and its underlying framework have the following merits: a) VD handles all subtasks with competitive quality; b) VD initiates novel extensions and applications such as disentanglement of style and semantic, image-text dual-guided generation, etc.; c) Through these experiments and applications, VD provides more semantic insights of the generated outputs.*
## Tips
- VersatileDiffusion is conceptually very similar as [Stable Diffusion](./api/pipelines/stable_diffusion), but instead of providing just a image data stream conditioned on text, VersatileDiffusion provides both a image and text data stream and can be conditioned on both text and image.
### *Run VersatileDiffusion*
You can both load the memory intensive "all-in-one" [`VersatileDiffusionPipeline`] that can run all tasks
with the same class as shown in [`VersatileDiffusionPipeline.text_to_image`], [`VersatileDiffusionPipeline.image_variation`], and [`VersatileDiffusionPipeline.dual_guided`]
**or**
You can run the individual pipelines which are much more memory efficient:
- *Text-to-Image*: [`VersatileDiffusionTextToImagePipeline.__call__`]
- *Image Variation*: [`VersatileDiffusionImageVariationPipeline.__call__`]
- *Dual Text and Image Guided Generation*: [`VersatileDiffusionDualGuidedPipeline.__call__`]
### *How to load and use different schedulers.*
The versatile diffusion pipelines uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the alt diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import VersatileDiffusionPipeline, EulerDiscreteScheduler
>>> pipeline = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion")
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("shi-labs/versatile-diffusion", subfolder="scheduler")
>>> pipeline = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", scheduler=euler_scheduler)
```
## VersatileDiffusionPipeline
[[autodoc]] VersatileDiffusionPipeline
## VersatileDiffusionTextToImagePipeline
[[autodoc]] VersatileDiffusionTextToImagePipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
## VersatileDiffusionImageVariationPipeline
[[autodoc]] VersatileDiffusionImageVariationPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
## VersatileDiffusionDualGuidedPipeline
[[autodoc]] VersatileDiffusionDualGuidedPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -0,0 +1,34 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# VQDiffusion
## Overview
[Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) by Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo
The abstract of the paper is the following:
We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.
The original codebase can be found [here](https://github.com/microsoft/VQ-Diffusion).
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_vq_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/vq_diffusion/pipeline_vq_diffusion.py) | *Text-to-Image Generation* | - |
## VQDiffusionPipeline
[[autodoc]] pipelines.vq_diffusion.pipeline_vq_diffusion.VQDiffusionPipeline
- __call__

View File

@@ -16,7 +16,7 @@ Diffusers contains multiple pre-built schedule functions for the diffusion proce
## What is a scheduler?
The schedule functions, denoted *Schedulers* in the library take in the output of a trained model, a sample which the diffusion process is iterating on, and a timestep to return a denoised sample.
The schedule functions, denoted *Schedulers* in the library take in the output of a trained model, a sample which the diffusion process is iterating on, and a timestep to return a denoised sample. That's why schedulers may also be called *Samplers* in other diffusion models implementations.
- Schedulers define the methodology for iteratively adding noise to an image or for updating a sample based on model outputs.
- adding noise in different manners represent the algorithmic processes to train a diffusion model by adding noise to images.
@@ -70,6 +70,12 @@ Original paper can be found [here](https://arxiv.org/abs/2010.02502).
[[autodoc]] DDPMScheduler
#### Multistep DPM-Solver
Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
[[autodoc]] DPMSolverMultistepScheduler
#### Variance exploding, stochastic sampling from Karras et. al
Original paper can be found [here](https://arxiv.org/abs/2006.11239).
@@ -112,3 +118,34 @@ Score SDE-VP is under construction.
</Tip>
[[autodoc]] schedulers.scheduling_sde_vp.ScoreSdeVpScheduler
#### Euler scheduler
Euler scheduler (Algorithm 2) from the paper [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) by Karras et al. (2022). Based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51) implementation by Katherine Crowson.
Fast scheduler which often times generates good outputs with 20-30 steps.
[[autodoc]] EulerDiscreteScheduler
#### Euler Ancestral scheduler
Ancestral sampling with Euler method steps. Based on the original (k-diffusion)[https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72] implementation by Katherine Crowson.
Fast scheduler which often times generates good outputs with 20-30 steps.
[[autodoc]] EulerAncestralDiscreteScheduler
#### VQDiffusionScheduler
Original paper can be found [here](https://arxiv.org/abs/2111.14822)
[[autodoc]] VQDiffusionScheduler
#### RePaint scheduler
DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks.
Intended for use with [`RePaintPipeline`].
Based on the paper [RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2201.09865)
and the original implementation by Andreas Lugmayr et al.: https://github.com/andreas128/RePaint
[[autodoc]] RePaintScheduler

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

View File

@@ -34,9 +34,13 @@ available a colab notebook to directly try them out.
| Pipeline | Paper | Tasks | Colab
|---|---|:---:|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
@@ -44,6 +48,11 @@ available a colab notebook to directly try them out.
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.

View File

@@ -12,9 +12,12 @@ specific language governing permissions and limitations under the License.
# Installation
Install Diffusers for with PyTorch. Support for other libraries will come in the future
Install 🤗 Diffusers for whichever deep learning library youre working with.
🤗 Diffusers is tested on Python 3.7+, and PyTorch 1.7.0+.
🤗 Diffusers is tested on Python 3.7+, PyTorch 1.7.0+ and flax. Follow the installation instructions below for the deep learning library you are using:
- [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
- [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Install with pip
@@ -36,12 +39,30 @@ source .env/bin/activate
Now you're ready to install 🤗 Diffusers with the following command:
**For PyTorch**
```bash
pip install diffusers
pip install diffusers["torch"]
```
**For Flax**
```bash
pip install diffusers["flax"]
```
## Install from source
Before intsalling `diffusers` from source, make sure you have `torch` and `accelerate` installed.
For `torch` installation refer to the `torch` [docs](https://pytorch.org/get-started/locally/#start-locally).
To install `accelerate`
```bash
pip install accelerate
```
Install 🤗 Diffusers from source with the following command:
```bash
@@ -67,7 +88,18 @@ Clone the repository and install 🤗 Diffusers with the following commands:
```bash
git clone https://github.com/huggingface/diffusers.git
cd diffusers
pip install -e .
```
**For PyTorch**
```
pip install -e ".[torch]"
```
**For Flax**
```
pip install -e ".[flax]"
```
These commands will link the folder you cloned the repository to and your Python library paths.

View File

@@ -22,6 +22,7 @@ We present some techniques and ideas to optimize 🤗 Diffusers _inference_ for
| fp16 | 3.61s | x2.63 |
| channels last | 3.30s | x2.88 |
| traced UNet | 3.21s | x2.96 |
| memory efficient attention | 2.63s | x3.61 |
<em>
obtained on NVIDIA TITAN RTX by generating a single image of size 512x512 from
@@ -290,3 +291,41 @@ pipe.unet = TracedUNet()
with torch.inference_mode():
image = pipe([prompt] * 1, num_inference_steps=50).images[0]
```
## Memory Efficient Attention
Recent work on optimizing the bandwitdh in the attention block have generated huge speed ups and gains in GPU memory usage. The most recent being Flash Attention (from @tridao, [code](https://github.com/HazyResearch/flash-attention), [paper](https://arxiv.org/pdf/2205.14135.pdf)) .
Here are the speedups we obtain on a few Nvidia GPUs when running the inference at 512x512 with a batch size of 1 (one prompt):
| GPU | Base Attention FP16 | Memory Efficient Attention FP16 |
|------------------ |--------------------- |--------------------------------- |
| NVIDIA Tesla T4 | 3.5it/s | 5.5it/s |
| NVIDIA 3060 RTX | 4.6it/s | 7.8it/s |
| NVIDIA A10G | 8.88it/s | 15.6it/s |
| NVIDIA RTX A6000 | 11.7it/s | 21.09it/s |
| NVIDIA TITAN RTX | 12.51it/s | 18.22it/s |
| A100-SXM4-40GB | 18.6it/s | 29.it/s |
| A100-SXM-80GB | 18.7it/s | 29.5it/s |
To leverage it just make sure you have:
- PyTorch > 1.12
- Cuda available
- Installed the [xformers](https://github.com/facebookresearch/xformers) library
```python
from diffusers import StableDiffusionPipeline
import torch
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
revision="fp16",
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
with torch.inference_mode():
sample = pipe("a small cat")
# optional: You can disable it via
# pipe.disable_xformers_memory_efficient_attention()
```

View File

@@ -19,11 +19,8 @@ specific language governing permissions and limitations under the License.
- Mac computer with Apple silicon (M1/M2) hardware.
- macOS 12.6 or later (13.0 or later recommended).
- arm64 version of Python.
- PyTorch 1.13.0 RC (Release Candidate). You can install it with `pip` using:
- PyTorch 1.13. You can install it with `pip` or `conda` using the instructions in https://pytorch.org/get-started/locally/.
```
pip3 install --pre torch --extra-index-url https://download.pytorch.org/whl/test/cpu
```
## Inference Pipeline
@@ -63,4 +60,4 @@ pipeline.enable_attention_slicing()
## Known Issues
- As mentioned above, we are investigating a strange [first-time inference issue](https://github.com/huggingface/diffusers/issues/372).
- Generating multiple prompts in a batch [crashes or doesn't work reliably](https://github.com/huggingface/diffusers/issues/363). We believe this is related to the [`mps` backend in PyTorch](https://github.com/pytorch/pytorch/issues/84039). For now, we recommend to iterate instead of batching.
- Generating multiple prompts in a batch [crashes or doesn't work reliably](https://github.com/huggingface/diffusers/issues/363). We believe this is related to the [`mps` backend in PyTorch](https://github.com/pytorch/pytorch/issues/84039). This is being resolved, but for now we recommend to iterate instead of batching.

View File

@@ -41,7 +41,7 @@ In this guide though, you'll use [`DiffusionPipeline`] for text-to-image generat
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components.
@@ -49,13 +49,13 @@ Because the model consists of roughly 1.4 billion parameters, we strongly recomm
You can move the generator object to GPU, just like you would in PyTorch.
```python
>>> generator.to("cuda")
>>> pipeline.to("cuda")
```
Now you can use the `generator` on your text prompt:
Now you can use the `pipeline` on your text prompt:
```python
>>> image = generator("An image of a squirrel in Picasso style").images[0]
>>> image = pipeline("An image of a squirrel in Picasso style").images[0]
```
The output is by default wrapped into a [PIL Image object](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class).
@@ -82,7 +82,7 @@ just like we did before only that now you need to pass your `AUTH_TOKEN`:
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_auth_token=AUTH_TOKEN)
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_auth_token=AUTH_TOKEN)
```
If you do not pass your authentication token you will see that the diffusion system will not be correctly
@@ -102,7 +102,7 @@ token. Assuming that `"./stable-diffusion-v1-5"` is the local path to the cloned
you can also load the pipeline as follows:
```python
>>> generator = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
```
Running the pipeline is then identical to the code above as it's the same model architecture.
@@ -115,19 +115,20 @@ Running the pipeline is then identical to the code above as it's the same model
Diffusion systems can be used with multiple different [schedulers](./api/schedulers) each with their
pros and cons. By default, Stable Diffusion runs with [`PNDMScheduler`], but it's very simple to
use a different scheduler. *E.g.* if you would instead like to use the [`LMSDiscreteScheduler`] scheduler,
use a different scheduler. *E.g.* if you would instead like to use the [`EulerDiscreteScheduler`] scheduler,
you could use it as follows:
```python
>>> from diffusers import LMSDiscreteScheduler
>>> from diffusers import EulerDiscreteScheduler
>>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
>>> pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_auth_token=AUTH_TOKEN)
>>> generator = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", scheduler=scheduler, use_auth_token=AUTH_TOKEN
... )
>>> # change scheduler to Euler
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```
For more in-detail information on how to change between schedulers, please refer to the [Using Schedulers](./using-diffusers/schedulers) guide.
[Stability AI's](https://stability.ai/) Stable Diffusion model is an impressive image generation model
and can do much more than just generating images from text. We have dedicated a whole documentation page,
just for Stable Diffusion [here](./conceptual/stable_diffusion).

View File

@@ -23,7 +23,7 @@ The [Dreambooth training script](https://github.com/huggingface/diffusers/tree/m
<!-- TODO: replace with our blog when it's done -->
Dreambooth fine-tuning is very sensitive to hyperparameters and easy to overfit. We recommend you take a look at our [in-depth analysis](https://wandb.ai/psuraj/dreambooth/reports/Dreambooth-Training-Analysis--VmlldzoyNzk0NDc3) with recommended settings for different subjects, and go from there.
Dreambooth fine-tuning is very sensitive to hyperparameters and easy to overfit. We recommend you take a look at our [in-depth analysis](https://huggingface.co/blog/dreambooth) with recommended settings for different subjects, and go from there.
</Tip>
@@ -148,7 +148,7 @@ accelerate launch train_dreambooth.py \
### Fine-tune the text encoder in addition to the UNet
The script also allows to fine-tune the `text_encoder` along with the `unet`. It has been observed experimentally that this gives much better results, especially on faces. Please, refer to [our report](https://wandb.ai/psuraj/dreambooth/reports/Dreambooth-Training-Analysis--VmlldzoyNzk0NDc3) for more details.
The script also allows to fine-tune the `text_encoder` along with the `unet`. It has been observed experimentally that this gives much better results, especially on faces. Please, refer to [our blog](https://huggingface.co/blog/dreambooth) for more details.
To enable this option, pass the `--train_text_encoder` argument to the training script.

View File

@@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
# Stable Diffusion text-to-image fine-tuning
The [`train_text_to_image.py`](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) script shows how to fine-tune the stable diffusion model on your own dataset.
The [`train_text_to_image.py`](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) script shows how to fine-tune the stable diffusion model on your own dataset.
<Tip warning={true}>

View File

@@ -0,0 +1,16 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Using Diffusers for audio
The [`DanceDiffusionPipeline`] can be used to generate audio rapidly!
More coming soon!

View File

@@ -44,5 +44,3 @@ You can save the image by simply calling:
```python
>>> image.save("image_of_squirrel_painting.png")
```

View File

@@ -128,7 +128,7 @@ pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeli
pipe()
```
Another way to upload your custom_pipeline, besides sending a PR, is uploading the code that contains it to the Hugging Face Hub, [as exemplified here](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipelines#loading-custom-pipelines-from-the-hub).
Another way to upload your custom_pipeline, besides sending a PR, is uploading the code that contains it to the Hugging Face Hub, [as exemplified here](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview#loading-custom-pipelines-from-the-hub).
**Try it out now - it works!**

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Loading and Saving Custom Pipelines
# Loading and Adding Custom Pipelines
Diffusers allows you to conveniently load any custom pipeline from the Hugging Face Hub as well as any [official community pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community)
via the [`DiffusionPipeline`] class.

View File

@@ -33,7 +33,7 @@ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/st
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
init_image.thumbnail((768, 768))
prompt = "A fantasy landscape, trending on artstation"

View File

@@ -12,7 +12,374 @@ specific language governing permissions and limitations under the License.
# Loading
The core functionality for saving and loading systems in `Diffusers` is the HuggingFace Hub.
A core premise of the diffusers library is to make diffusion models **as accessible as possible**.
Accessibility is therefore achieved by providing an API to load complete diffusion pipelines as well as individual components with a single line of code.
In the following we explain in-detail how to easily load:
- *Complete Diffusion Pipelines* via the [`DiffusionPipeline.from_pretrained`]
- *Diffusion Models* via [`ModelMixin.from_pretrained`]
- *Schedulers* via [`SchedulerMixin.from_pretrained`]
## Loading pipelines
The [`DiffusionPipeline`] class is the easiest way to access any diffusion model that is [available on the Hub](https://huggingface.co/models?library=diffusers). Let's look at an example on how to download [CompVis' Latent Diffusion model](https://huggingface.co/CompVis/ldm-text2im-large-256).
```python
from diffusers import DiffusionPipeline
repo_id = "CompVis/ldm-text2im-large-256"
ldm = DiffusionPipeline.from_pretrained(repo_id)
```
Here [`DiffusionPipeline`] automatically detects the correct pipeline (*i.e.* [`LDMTextToImagePipeline`]), downloads and caches all required configuration and weight files (if not already done so), and finally returns a pipeline instance, called `ldm`.
The pipeline instance can then be called using [`LDMTextToImagePipeline.__call__`] (i.e., `ldm("image of a astronaut riding a horse")`) for text-to-image generation.
Instead of using the generic [`DiffusionPipeline`] class for loading, you can also load the appropriate pipeline class directly. The code snippet above yields the same instance as when doing:
```python
from diffusers import LDMTextToImagePipeline
repo_id = "CompVis/ldm-text2im-large-256"
ldm = LDMTextToImagePipeline.from_pretrained(repo_id)
```
Diffusion pipelines like `LDMTextToImagePipeline` often consist of multiple components. These components can be both parameterized models, such as `"unet"`, `"vqvae"` and "bert", tokenizers or schedulers. These components can interact in complex ways with each other when using the pipeline in inference, *e.g.* for [`LDMTextToImagePipeline`] or [`StableDiffusionPipeline`] the inference call is explained [here](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work).
The purpose of the [pipeline classes](./api/overview#diffusers-summary) is to wrap the complexity of these diffusion systems and give the user an easy-to-use API while staying flexible for customization, as will be shown later.
### Loading pipelines that require access request
Due to the capabilities of diffusion models to generate extremely realistic images, there is a certain danger that such models might be misused for unwanted applications, *e.g.* generating pornography or violent images.
In order to minimize the possibility of such unsolicited use cases, some of the most powerful diffusion models require users to acknowledge a license before being able to use the model. If the user does not agree to the license, the pipeline cannot be downloaded.
If you try to load [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) the same way as done previously:
```python
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
```
it will only work if you have both *click-accepted* the license on [the model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) and are logged into the Hugging Face Hub. Otherwise you will get an error message
such as the following:
```
OSError: runwayml/stable-diffusion-v1-5 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login`
```
Therefore, we need to make sure to *click-accept* the license. You can do this by simply visiting
the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) and clicking on "Agree and access repository":
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/imgs/access_request.png" width="400"/>
<br>
</p>
Second, you need to login with your access token:
```
huggingface-cli login
```
before trying to load the model. Or alternatively, you can pass [your access token](https://huggingface.co/docs/hub/security-tokens#user-access-tokens) directly via the flag `use_auth_token`. In this case you do **not** need
to run `huggingface-cli login` before:
```python
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_auth_token="<your-access-token>")
```
The final option to use pipelines that require access without having to rely on the Hugging Face Hub is to load the pipeline locally as explained in the next section.
### Loading pipelines locally
If you prefer to have complete control over the pipeline and its corresponding files or, as said before, if you want to use pipelines that require an access request without having to be connected to the Hugging Face Hub,
we recommend loading pipelines locally.
To load a diffusion pipeline locally, you first need to manually download the whole folder structure on your local disk and then pass a local path to the [`DiffusionPipeline.from_pretrained`]. Let's again look at an example for
[CompVis' Latent Diffusion model](https://huggingface.co/CompVis/ldm-text2im-large-256).
First, you should make use of [`git-lfs`](https://git-lfs.github.com/) to download the whole folder structure that has been uploaded to the [model repository](https://huggingface.co/CompVis/ldm-text2im-large-256/tree/main):
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
The command above will create a local folder called `./stable-diffusion-v1-5` on your disk.
Now, all you have to do is to simply pass the local folder path to `from_pretrained`:
```python
from diffusers import DiffusionPipeline
repo_id = "./stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
```
If `repo_id` is a local path, as it is the case here, [`DiffusionPipeline.from_pretrained`] will automatically detect it and therefore not try to download any files from the Hub.
While we usually recommend to load weights directly from the Hub to be certain to stay up to date with the newest changes, loading pipelines locally should be preferred if one
wants to stay anonymous, self-contained applications, etc...
### Loading customized pipelines
Advanced users that want to load customized versions of diffusion pipelines can do so by swapping any of the default components, *e.g.* the scheduler, with other scheduler classes.
A classical use case of this functionality is to swap the scheduler. [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) uses the [`PNDMScheduler`] by default which is generally not the most performant scheduler. Since the release
of stable diffusion, multiple improved schedulers have been published. To use those, the user has to manually load their preferred scheduler and pass it into [`DiffusionPipeline.from_pretrained`].
*E.g.* to use [`EulerDiscreteScheduler`] or [`DPMSolverMultistepScheduler`] to have a better quality vs. generation speed trade-off for inference, one could load them as follows:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
# or
# scheduler = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler)
```
Three things are worth paying attention to here.
- First, the scheduler is loaded with [`SchedulerMixin.from_pretrained`]
- Second, the scheduler is loaded with a function argument, called `subfolder="scheduler"` as the configuration of stable diffusion's scheduling is defined in a [subfolder of the official pipeline repository](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/scheduler)
- Third, the scheduler instance can simply be passed with the `scheduler` keyword argument to [`DiffusionPipeline.from_pretrained`]. This works because the [`StableDiffusionPipeline`] defines its scheduler with the `scheduler` attribute. It's not possible to use a different name, such as `sampler=scheduler` since `sampler` is not a defined keyword for [`StableDiffusionPipeline.__init__`]
Not only the scheduler components can be customized for diffusion pipelines; in theory, all components of a pipeline can be customized. In practice, however, it often only makes sense to switch out a component that has **compatible** alternatives to what the pipeline expects.
Many scheduler classes are compatible with each other as can be seen [here](https://github.com/huggingface/diffusers/blob/0dd8c6b4dbab4069de9ed1cafb53cbd495873879/src/diffusers/schedulers/scheduling_ddim.py#L112). This is not always the case for other components, such as the `"unet"`.
One special case that can also be customized is the `"safety_checker"` of stable diffusion. If you believe the safety checker doesn't serve you any good, you can simply disable it by passing `None`:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None)
```
Another common use case is to reuse the same components in multiple pipelines, *e.g.* the weights and configurations of [`"runwayml/stable-diffusion-v1-5"`](https://huggingface.co/runwayml/stable-diffusion-v1-5) can be used for both [`StableDiffusionPipeline`] and [`StableDiffusionImg2ImgPipeline`] and we might not want to
use the exact same weights into RAM twice. In this case, customizing all the input instances would help us
to only load the weights into RAM once:
```python
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
components = stable_diffusion_txt2img.components
# weights are not reloaded into RAM
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(**components)
```
Note how the above code snippet makes use of [`DiffusionPipeline.components`].
### How does loading work?
As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things:
- Download the latest version of the folder structure required to run the `repo_id` with `diffusers` and cache them. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] will simply reuse the cache and **not** re-download the files.
- Load the cached weights into the _correct_ pipeline class one of the [officially supported pipeline classes](./api/overview#diffusers-summary) - and return an instance of the class. The _correct_ pipeline class is thereby retrieved from the `model_index.json` file.
The underlying folder structure of diffusion pipelines correspond 1-to-1 to their corresponding class instances, *e.g.* [`LDMTextToImagePipeline`] for [`CompVis/ldm-text2im-large-256`](https://huggingface.co/CompVis/ldm-text2im-large-256)
This can be understood better by looking at an example. Let's print out pipeline class instance `pipeline` we just defined:
```python
from diffusers import DiffusionPipeline
repo_id = "CompVis/ldm-text2im-large-256"
ldm = DiffusionPipeline.from_pretrained(repo_id)
print(ldm)
```
*Output*:
```
LDMTextToImagePipeline {
"bert": [
"latent_diffusion",
"LDMBertModel"
],
"scheduler": [
"diffusers",
"DDIMScheduler"
],
"tokenizer": [
"transformers",
"BertTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vqvae": [
"diffusers",
"AutoencoderKL"
]
}
```
First, we see that the official pipeline is the [`LDMTextToImagePipeline`], and second we see that the `LDMTextToImagePipeline` consists of 5 components:
- `"bert"` of class `LDMBertModel` as defined [in the pipeline](https://github.com/huggingface/diffusers/blob/cd502b25cf0debac6f98d27a6638ef95208d1ea2/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py#L664)
- `"scheduler"` of class [`DDIMScheduler`]
- `"tokenizer"` of class `BertTokenizer` as defined [in `transformers`](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
- `"unet"` of class [`UNet2DConditionModel`]
- `"vqvae"` of class [`AutoencoderKL`]
Let's now compare the pipeline instance to the folder structure of the model repository `CompVis/ldm-text2im-large-256`. Looking at the folder structure of [`CompVis/ldm-text2im-large-256`](https://huggingface.co/CompVis/ldm-text2im-large-256/tree/main) on the Hub, we can see it matches 1-to-1 the printed out instance of `LDMTextToImagePipeline` above:
```
.
├── bert
│   ├── config.json
│   └── pytorch_model.bin
├── model_index.json
├── scheduler
│   └── scheduler_config.json
├── tokenizer
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.txt
├── unet
│   ├── config.json
│   └── diffusion_pytorch_model.bin
└── vqvae
├── config.json
└── diffusion_pytorch_model.bin
```
As we can see each attribute of the instance of `LDMTextToImagePipeline` has its configuration and possibly weights defined in a subfolder that is called **exactly** like the class attribute (`"bert"`, `"scheduler"`, `"tokenizer"`, `"unet"`, `"vqvae"`). Importantly, every pipeline expects a `model_index.json` file that tells the `DiffusionPipeline` both:
- which pipeline class should be loaded, and
- what sub-classes from which library are stored in which subfolders
In the case of `CompVis/ldm-text2im-large-256` the `model_index.json` is therefore defined as follows:
```
{
"_class_name": "LDMTextToImagePipeline",
"_diffusers_version": "0.0.4",
"bert": [
"latent_diffusion",
"LDMBertModel"
],
"scheduler": [
"diffusers",
"DDIMScheduler"
],
"tokenizer": [
"transformers",
"BertTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vqvae": [
"diffusers",
"AutoencoderKL"
]
}
```
- `_class_name` tells `DiffusionPipeline` which pipeline class should be loaded.
- `_diffusers_version` can be useful to know under which `diffusers` version this model was created.
- Every component of the pipeline is then defined under the form:
```
"name" : [
"library",
"class"
]
```
- The `"name"` field corresponds both to the name of the subfolder in which the configuration and weights are stored as well as the attribute name of the pipeline class (as can be seen [here](https://huggingface.co/CompVis/ldm-text2im-large-256/tree/main/bert) and [here](https://github.com/huggingface/diffusers/blob/cd502b25cf0debac6f98d27a6638ef95208d1ea2/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py#L42)
- The `"library"` field corresponds to the name of the library, *e.g.* `diffusers` or `transformers` from which the `"class"` should be loaded
- The `"class"` field corresponds to the name of the class, *e.g.* [`BertTokenizer`](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer) or [`UNet2DConditionModel`]
## Loading models
Models as defined under [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) can be loaded via the [`ModelMixin.from_pretrained`] function. The API is very similar the [`DiffusionPipeline.from_pretrained`] and works in the same way:
- Download the latest version of the model weights and configuration with `diffusers` and cache them. If the latest files are available in the local cache, [`ModelMixin.from_pretrained`] will simply reuse the cache and **not** re-download the files.
- Load the cached weights into the _defined_ model class - one of [the existing model classes](./api/models) - and return an instance of the class.
In constrast to [`DiffusionPipeline.from_pretrained`], models rely on fewer files that usually don't require a folder structure, but just a `diffusion_pytorch_model.bin` and `config.json` file.
Let's look at an example:
```python
from diffusers import UNet2DConditionModel
repo_id = "CompVis/ldm-text2im-large-256"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet")
```
Note how we have to define the `subfolder="unet"` argument to tell [`ModelMixin.from_pretrained`] that the model weights are located in a [subfolder of the repository](https://huggingface.co/CompVis/ldm-text2im-large-256/tree/main/unet).
As explained in [Loading customized pipelines]("./using-diffusers/loading#loading-customized-pipelines"), one can pass a loaded model to a diffusion pipeline, via [`DiffusionPipeline.from_pretrained`]:
```python
from diffusers import DiffusionPipeline
repo_id = "CompVis/ldm-text2im-large-256"
ldm = DiffusionPipeline.from_pretrained(repo_id, unet=model)
```
If the model files can be found directly at the root level, which is usually only the case for some very simple diffusion models, such as [`google/ddpm-cifar10-32`](https://huggingface.co/google/ddpm-cifar10-32), we don't
need to pass a `subfolder` argument:
```python
from diffusers import UNet2DModel
repo_id = "google/ddpm-cifar10-32"
model = UNet2DModel.from_pretrained(repo_id)
```
## Loading schedulers
Schedulers rely on [`SchedulerMixin.from_pretrained`]. Schedulers are **not parameterized** or **trained**, but instead purely defined by a configuration file.
For consistency, we use the same method name as we do for models or pipelines, but no weights are loaded in this case.
In constrast to pipelines or models, loading schedulers does not consume any significant amount of memory and the same configuration file can often be used for a variety of different schedulers.
For example, all of:
- [`DDPMScheduler`]
- [`DDIMScheduler`]
- [`PNDMScheduler`]
- [`LMSDiscreteScheduler`]
- [`EulerDiscreteScheduler`]
- [`EulerAncestralDiscreteScheduler`]
- [`DPMSolverMultistepScheduler`]
are compatible with [`StableDiffusionPipeline`] and therefore the same scheduler configuration file can be loaded in any of those classes:
```python
from diffusers import StableDiffusionPipeline
from diffusers import (
DDPMScheduler,
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
repo_id = "runwayml/stable-diffusion-v1-5"
ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler`, `euler_anc`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm)
```
## API
[[autodoc]] modeling_utils.ModelMixin
- from_pretrained
@@ -29,6 +396,3 @@ The core functionality for saving and loading systems in `Diffusers` is the Hugg
[[autodoc]] pipeline_flax_utils.FlaxDiffusionPipeline
- from_pretrained
- save_pretrained
Under further construction 🚧, open a [PR](https://github.com/huggingface/diffusers/compare) if you want to contribute!

View File

@@ -0,0 +1,20 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Using Diffusers with other modalities
Diffusers is in the process of expanding to modalities other than images.
Currently, one example is for [molecule conformation](https://www.nature.com/subjects/molecular-conformation#:~:text=Definition,to%20changes%20in%20their%20environment.) generation.
* Generate conformations in Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb)
More coming soon!

View File

@@ -0,0 +1,18 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Using Diffusers for reinforcement learning
Support for one RL model and related pipelines is included in the `experimental` source of diffusers.
To try some of this in colab, please look at the following example:
* Model-based reinforcement learning on Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)

View File

@@ -0,0 +1,262 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Schedulers
Diffusion pipelines are inherently a collection of diffusion models and schedulers that are partly independent from each other. This means that one is able to switch out parts of the pipeline to better customize
a pipeline to one's use case. The best example of this are the [Schedulers](../api/schedulers.mdx).
Whereas diffusion models usually simply define the forward pass from noise to a less noisy sample,
schedulers define the whole denoising process, *i.e.*:
- How many denoising steps?
- Stochastic or deterministic?
- What algorithm to use to find the denoised sample
They can be quite complex and often define a trade-off between **denoising speed** and **denoising quality**.
It is extremely difficult to measure quantitatively which scheduler works best for a given diffusion pipeline, so it is often recommended to simply try out which works best.
The following paragraphs shows how to do so with the 🧨 Diffusers library.
## Load pipeline
Let's start by loading the stable diffusion pipeline.
Remember that you have to be a registered user on the 🤗 Hugging Face Hub, and have "click-accepted" the [license](https://huggingface.co/runwayml/stable-diffusion-v1-5) in order to use stable diffusion.
```python
from huggingface_hub import login
from diffusers import DiffusionPipeline
import torch
# first we need to login with our access token
login()
# Now we can download the pipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
```
Next, we move it to GPU:
```python
pipeline.to("cuda")
```
## Access the scheduler
The scheduler is always one of the components of the pipeline and is usually called `"scheduler"`.
So it can be accessed via the `"scheduler"` property.
```python
pipeline.scheduler
```
**Output**:
```
PNDMScheduler {
"_class_name": "PNDMScheduler",
"_diffusers_version": "0.8.0.dev0",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"clip_sample": false,
"num_train_timesteps": 1000,
"set_alpha_to_one": false,
"skip_prk_steps": true,
"steps_offset": 1,
"trained_betas": null
}
```
We can see that the scheduler is of type [`PNDMScheduler`].
Cool, now let's compare the scheduler in its performance to other schedulers.
First we define a prompt on which we will test all the different schedulers:
```python
prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition."
```
Next, we create a generator from a random seed that will ensure that we can generate similar images as well as run the pipeline:
```python
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_pndm.png" width="400"/>
<br>
</p>
## Changing the scheduler
Now we show how easy it is to change the scheduler of a pipeline. Every scheduler has a property [`SchedulerMixin.compatibles`]
which defines all compatible schedulers. You can take a look at all available, compatible schedulers for the Stable Diffusion pipeline as follows.
```python
pipeline.scheduler.compatibles
```
**Output**:
```
[diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler,
diffusers.schedulers.scheduling_ddim.DDIMScheduler,
diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler,
diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler,
diffusers.schedulers.scheduling_pndm.PNDMScheduler,
diffusers.schedulers.scheduling_ddpm.DDPMScheduler,
diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler]
```
Cool, lots of schedulers to look at. Feel free to have a look at their respective class definitions:
- [`LMSDiscreteScheduler`],
- [`DDIMScheduler`],
- [`DPMSolverMultistepScheduler`],
- [`EulerDiscreteScheduler`],
- [`PNDMScheduler`],
- [`DDPMScheduler`],
- [`EulerAncestralDiscreteScheduler`].
We will now compare the input prompt with all other schedulers. To change the scheduler of the pipeline you can make use of the
convenient [`ConfigMixin.config`] property in combination with the [`ConfigMixin.from_config`] function.
```python
pipeline.scheduler.config
```
returns a dictionary of the configuration of the scheduler:
**Output**:
```
FrozenDict([('num_train_timesteps', 1000),
('beta_start', 0.00085),
('beta_end', 0.012),
('beta_schedule', 'scaled_linear'),
('trained_betas', None),
('skip_prk_steps', True),
('set_alpha_to_one', False),
('steps_offset', 1),
('_class_name', 'PNDMScheduler'),
('_diffusers_version', '0.8.0.dev0'),
('clip_sample', False)])
```
This configuration can then be used to instantiate a scheduler
of a different class that is compatible with the pipeline. Here,
we change the scheduler to the [`DDIMScheduler`].
```python
from diffusers import DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
```
Cool, now we can run the pipeline again to compare the generation quality.
```python
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_ddim.png" width="400"/>
<br>
</p>
## Compare schedulers
So far we have tried running the stable diffusion pipeline with two schedulers: [`PNDMScheduler`] and [`DDIMScheduler`].
A number of better schedulers have been released that can be run with much fewer steps, let's compare them here:
[`LMSDiscreteScheduler`] usually leads to better results:
```python
from diffusers import LMSDiscreteScheduler
pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_lms.png" width="400"/>
<br>
</p>
[`EulerDiscreteScheduler`] and [`EulerAncestralDiscreteScheduler`] can generate high quality results with as little as 30 steps.
```python
from diffusers import EulerDiscreteScheduler
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_discrete.png" width="400"/>
<br>
</p>
and:
```python
from diffusers import EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_ancestral.png" width="400"/>
<br>
</p>
At the time of writing this doc [`DPMSolverMultistepScheduler`] gives arguably the best speed/quality trade-off and can be run with as little
as 20 steps.
```python
from diffusers import DPMSolverMultistepScheduler
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cuda").manual_seed(8)
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
<p align="center">
<br>
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_dpm.png" width="400"/>
<br>
</p>
As you can see most images look very similar and are arguably of very similar quality. It often really depends on the specific use case which scheduler to choose. A good approach is always to run multiple different
schedulers to compare results.

View File

@@ -38,11 +38,11 @@ Training examples show how to pretrain or fine-tune diffusion models for a varie
| Task | 🤗 Accelerate | 🤗 Datasets | Colab
|---|---|:---:|:---:|
| [**Unconditional Image Generation**](./unconditional_training) | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [**Text-to-Image fine-tuning**](./text2image) | ✅ | ✅ |
| [**Textual Inversion**](./text_inversion) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)
| [**Unconditional Image Generation**](./unconditional_image_generation) | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [**Text-to-Image fine-tuning**](./text_to_image) | ✅ | ✅ |
| [**Textual Inversion**](./textual_inversion) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**Reinforcement Learning for Control**](https://github.com/huggingface/diffusers/blob/main/examples/rl/run_diffusers_locomotion.py) | - | - | coming soon.
## Community

View File

@@ -15,8 +15,14 @@ If a community doesn't work as expected, please open an issue and ping the autho
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| Composable Stable Diffusion| Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion| Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image| [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion| Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | - | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting| [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting| [Text Based Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - |[Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
@@ -176,9 +182,20 @@ images = pipe.inpaint(prompt=prompt, init_image=init_image, mask_image=mask_imag
As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.
### Long Prompt Weighting Stable Diffusion
Features of this custom pipeline:
- Input a prompt without the 77 token length limit.
- Includes tx2img, img2img. and inpainting pipelines.
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`
The Pipeline lets you input prompt without 77 token length limit. And you can increase words weighting by using "()" or decrease words weighting by using "[]"
The Pipeline also lets you use the main use cases of the stable diffusion pipeline in a single class.
Prompt weighting equivalents:
- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`
You can run this custom pipeline as so:
#### pytorch
@@ -328,9 +345,10 @@ out = pipe(
)
```
### Composable Stable diffusion
[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.
```python
import torch as th
import numpy as np
@@ -353,7 +371,7 @@ def dummy(images, **kwargs):
pipe.safety_checker = dummy
images = []
generator = th.Generator("cuda").manual_seed(0)
generator = torch.Generator("cuda").manual_seed(0)
seed = 0
prompt = "a forest | a camel"
@@ -373,6 +391,51 @@ for i in range(4):
for i, img in enumerate(images):
img.save(f"./composable_diffusion/image_{i}.png")
```
### Imagic Stable Diffusion
Allows you to edit an image using stable diffusion.
```python
import requests
from PIL import Image
from io import BytesIO
import torch
import os
from diffusers import DiffusionPipeline, DDIMScheduler
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
safety_checker=None,
use_auth_token=True,
custom_pipeline="imagic_stable_diffusion",
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
).to(device)
generator = th.Generator("cuda").manual_seed(0)
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
prompt,
init_image,
guidance_scale=7.5,
num_inference_steps=50,
generator=generator)
res = pipe(alpha=1)
os.makedirs("imagic", exist_ok=True)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
res = pipe(alpha=1.5)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
res = pipe(alpha=2)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```
### Seed Resizing
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.
@@ -456,4 +519,210 @@ res = pipe_compare(
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
```
```
### Multilingual Stable Diffusion Pipeline
The following code can generate an images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.
```python
from PIL import Image
import torch
from diffusers import DiffusionPipeline
from transformers import (
pipeline,
MBart50TokenizerFast,
MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}
# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
model=language_detection_model_ckpt,
device=device_dict[device])
# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)
diffuser_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="multilingual_stable_diffusion",
detection_pipeline=language_detection_pipeline,
translation_model=trans_model,
translation_tokenizer=trans_tokenizer,
revision="fp16",
torch_dtype=torch.float16,
)
diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)
prompt = ["a photograph of an astronaut riding a horse",
"Una casa en la playa",
"Ein Hund, der Orange isst",
"Un restaurant parisien"]
output = diffuser_pipeline(prompt)
images = output.images
grid = image_grid(images, rows=2, cols=2)
```
This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)
### Image to Image Inpainting Stable Diffusion
Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.
`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.
The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.
```python
import PIL
import torch
from diffusers import StableDiffusionInpaintPipeline
image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"
init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
```
### Text Based Inpainting Stable Diffusion
Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.
```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline
from PIL import Image
import requests
from torch import autocast
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
custom_pipeline="text_inpainting",
segmentation_model=model,
segmentation_processor=processor
)
pipe = pipe.to("cuda")
url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
text = "a glass" # will mask out this text
prompt = "a cup" # the masked out region will be replaced with this
with autocast("cuda"):
image = pipe(image=image, text=text, prompt=prompt).images[0]
```
### Bit Diffusion
Based https://arxiv.org/abs/2208.04202, this is used for diffusion on discrete data - eg, discreate image data, DNA sequence data. An unconditional discreate image can be generated like this:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]
```
### Stable Diffusion with K Diffusion
Make sure you have @crowsonkb's https://github.com/crowsonkb/k-diffusion installed:
```
pip install k-diffusion
```
You can use the community pipeline as follows:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")
prompt = "an astronaut riding a horse on mars"
pipe.set_sampler("sample_heun")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
image.save("./astronaut_heun_k_diffusion.png")
```
To make sure that K Diffusion and `diffusers` yield the same results:
**Diffusers**:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
seed = 33
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```
![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)
**K Diffusion**:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
seed = 33
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
pipe.set_sampler("sample_euler")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```
![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

View File

@@ -0,0 +1,263 @@
from typing import Optional, Tuple, Union
import torch
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.pipeline_utils import ImagePipelineOutput
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
from einops import rearrange, reduce
BITS = 8
# convert to bit representations and back taken from https://github.com/lucidrains/bit-diffusion/blob/main/bit_diffusion/bit_diffusion.py
def decimal_to_bits(x, bits=BITS):
"""expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1"""
device = x.device
x = (x * 255).int().clamp(0, 255)
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device)
mask = rearrange(mask, "d -> d 1 1")
x = rearrange(x, "b c h w -> b c 1 h w")
bits = ((x & mask) != 0).float()
bits = rearrange(bits, "b c d h w -> b (c d) h w")
bits = bits * 2 - 1
return bits
def bits_to_decimal(x, bits=BITS):
"""expects bits from -1 to 1, outputs image tensor from 0 to 1"""
device = x.device
x = (x > 0).int()
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32)
mask = rearrange(mask, "d -> d 1 1")
x = rearrange(x, "b (c d) h w -> b c d h w", d=8)
dec = reduce(x * mask, "b c d h w -> b c h w", "sum")
return (dec / 255).clamp(0.0, 1.0)
# modified scheduler step functions for clamping the predicted x_0 between -bit_scale and +bit_scale
def ddim_bit_scheduler_step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = True,
generator=None,
return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): TODO
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 4. Clip "predicted x_0"
scale = self.bit_scale
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 α_t1)/(1 α_t)) * sqrt(1 α_t/α_t1)
variance = self._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
device = model_output.device if torch.is_tensor(model_output) else "cpu"
noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device)
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def ddpm_bit_scheduler_step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
predict_epsilon=True,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
predict_epsilon (`bool`):
optional flag to use when model predicts the samples directly instead of the noise, epsilon.
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
t = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if predict_epsilon:
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
else:
pred_original_sample = model_output
# 3. Clip "predicted x_0"
scale = self.bit_scale
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
variance = 0
if t > 0:
noise = torch.randn(
model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
).to(model_output.device)
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
pred_prev_sample = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
class BitDiffusion(DiffusionPipeline):
def __init__(
self,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DDPMScheduler],
bit_scale: Optional[float] = 1.0,
):
super().__init__()
self.bit_scale = bit_scale
self.scheduler.step = (
ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step
)
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
height: Optional[int] = 256,
width: Optional[int] = 256,
num_inference_steps: Optional[int] = 50,
generator: Optional[torch.Generator] = None,
batch_size: Optional[int] = 1,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
latents = torch.randn(
(batch_size, self.unet.in_channels, height, width),
generator=generator,
)
latents = decimal_to_bits(latents) * self.bit_scale
latents = latents.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# predict the noise residual
noise_pred = self.unet(latents, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
image = bits_to_decimal(latents)
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)

View File

@@ -5,7 +5,14 @@ import torch
from torch import nn
from torch.nn import functional as F
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
@@ -56,7 +63,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
@@ -123,7 +130,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, PNDMScheduler):
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
@@ -176,6 +183,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
clip_prompt: Optional[Union[str, List[str]]] = None,
num_cutouts: Optional[int] = 4,
@@ -275,6 +283,20 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
@@ -306,7 +328,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents

View File

@@ -32,7 +32,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.

View File

@@ -0,0 +1,497 @@
"""
modeled after the textual_inversion.py / train_dreambooth.py and the work
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
"""
import inspect
import warnings
from typing import List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
import PIL
from accelerate import Accelerator
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
class ImagicStableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for imagic image editing.
See paper here: https://arxiv.org/pdf/2210.09276.pdf
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def train(
self,
prompt: Union[str, List[str]],
init_image: Union[torch.FloatTensor, PIL.Image.Image],
height: Optional[int] = 512,
width: Optional[int] = 512,
generator: Optional[torch.Generator] = None,
embedding_learning_rate: float = 0.001,
diffusion_model_learning_rate: float = 2e-6,
text_embedding_optimization_steps: int = 500,
model_fine_tuning_optimization_steps: int = 1000,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
accelerator = Accelerator(
gradient_accumulation_steps=1,
mixed_precision="fp16",
)
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
" Consider using `pipe.to(torch_device)` instead."
)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# Freeze vae and unet
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.unet.eval()
self.vae.eval()
self.text_encoder.eval()
if accelerator.is_main_process:
accelerator.init_trackers(
"imagic",
config={
"embedding_learning_rate": embedding_learning_rate,
"text_embedding_optimization_steps": text_embedding_optimization_steps,
},
)
# get text embeddings for prompt
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncaton=True,
return_tensors="pt",
)
text_embeddings = torch.nn.Parameter(
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True
)
text_embeddings = text_embeddings.detach()
text_embeddings.requires_grad_()
text_embeddings_orig = text_embeddings.clone()
# Initialize the optimizer
optimizer = torch.optim.Adam(
[text_embeddings], # only optimize the embeddings
lr=embedding_learning_rate,
)
if isinstance(init_image, PIL.Image.Image):
init_image = preprocess(init_image)
latents_dtype = text_embeddings.dtype
init_image = init_image.to(device=self.device, dtype=latents_dtype)
init_latent_image_dist = self.vae.encode(init_image).latent_dist
init_image_latents = init_latent_image_dist.sample(generator=generator)
init_image_latents = 0.18215 * init_image_latents
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
logger.info("First optimizing the text embedding to better reconstruct the init image")
for _ in range(text_embedding_optimization_steps):
with accelerator.accumulate(text_embeddings):
# Sample noise that we'll add to the latents
noise = torch.randn(init_image_latents.shape).to(init_image_latents.device)
timesteps = torch.randint(1000, (1,), device=init_image_latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.scheduler.add_noise(init_image_latents, noise, timesteps)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.wait_for_everyone()
text_embeddings.requires_grad_(False)
# Now we fine tune the unet to better reconstruct the image
self.unet.requires_grad_(True)
self.unet.train()
optimizer = torch.optim.Adam(
self.unet.parameters(), # only optimize unet
lr=diffusion_model_learning_rate,
)
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process)
logger.info("Next fine tuning the entire model to better reconstruct the init image")
for _ in range(model_fine_tuning_optimization_steps):
with accelerator.accumulate(self.unet.parameters()):
# Sample noise that we'll add to the latents
noise = torch.randn(init_image_latents.shape).to(init_image_latents.device)
timesteps = torch.randint(1000, (1,), device=init_image_latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = self.scheduler.add_noise(init_image_latents, noise, timesteps)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.wait_for_everyone()
self.text_embeddings_orig = text_embeddings_orig
self.text_embeddings = text_embeddings
@torch.no_grad()
def __call__(
self,
alpha: float = 1.2,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
guidance_scale: float = 7.5,
eta: float = 0.0,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if self.text_embeddings is None:
raise ValueError("Please run the pipe.train() before trying to generate an image.")
if self.text_embeddings_orig is None:
raise ValueError("Please run the pipe.train() before trying to generate an image.")
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens = [""]
max_length = self.tokenizer.model_max_length
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (1, self.unet.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -0,0 +1,463 @@
import inspect
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
import PIL
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def prepare_mask_and_masked_image(image, mask):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
def check_size(image, height, width):
if isinstance(image, PIL.Image.Image):
w, h = image.size
elif isinstance(image, torch.Tensor):
*_, h, w = image.shape
if h != height or w != width:
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)):
inner_image = inner_image.convert("RGBA")
image = image.convert("RGB")
image.paste(inner_image, paste_offset, inner_image)
image = image.convert("RGB")
return image
class ImageToImageInpaintingPipeline(DiffusionPipeline):
r"""
Pipeline for text-guided image-to-image inpainting using Stable Diffusion. *This is an experimental feature*.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
inner_image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
inner_image (`torch.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be overlayed onto `image`. Non-transparent
regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with
the last channel representing the alpha channel, which will be used to blend `inner_image` with
`image`. If not provided, it will be forcibly cast to RGBA.
mask_image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# check if input sizes are correct
check_size(image, height, width)
check_size(inner_image, height, width)
check_size(mask_image, height, width)
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
num_channels_latents = self.vae.config.latent_channels
latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# overlay the inner image
image = overlay_inner_image(image, inner_image)
# prepare mask and masked_image
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
mask = mask.to(device=self.device, dtype=text_embeddings.dtype)
masked_image = masked_image.to(device=self.device, dtype=text_embeddings.dtype)
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.nn.functional.interpolate(mask, size=(height // 8, width // 8))
# encode the mask image into latents space so we can concatenate it to the latents
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = 0.18215 * masked_image_latents
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
mask = mask.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -65,7 +65,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
@@ -101,7 +101,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warn(
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
@@ -278,7 +278,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
@@ -307,7 +307,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.

View File

@@ -12,10 +12,32 @@ from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
from diffusers.utils import deprecate, is_accelerate_available, logging
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
re_attention = re.compile(
@@ -340,13 +362,15 @@ def get_weighted_text_embeddings(
# assign weights to the prompts and normalize in the sense of mean
# TODO: should we normalize by chunk or in a whole (current implementation)?
if (not skip_parsing) and (not skip_weighting):
previous_mean = text_embeddings.mean(axis=[-2, -1])
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
text_embeddings *= prompt_weights.unsqueeze(-1)
text_embeddings *= (previous_mean / text_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1)
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
if uncond_prompt is not None:
previous_mean = uncond_embeddings.mean(axis=[-2, -1])
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
uncond_embeddings *= uncond_weights.unsqueeze(-1)
uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1)
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
if uncond_prompt is not None:
return text_embeddings, uncond_embeddings
@@ -356,7 +380,7 @@ def get_weighted_text_embeddings(
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
@@ -367,7 +391,7 @@ def preprocess_mask(mask):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
@@ -396,7 +420,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
@@ -431,8 +455,21 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warn(
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
@@ -451,6 +488,24 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
feature_extractor=feature_extractor,
)
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
time. Speed up at training time is not guaranteed.
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
is used.
"""
self.unet.set_use_memory_efficient_attention_xformers(True)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention as implemented in xformers.
"""
self.unet.set_use_memory_efficient_attention_xformers(False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
@@ -478,6 +533,23 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = self.device
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@torch.no_grad()
def __call__(
self,
@@ -498,6 +570,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
@@ -560,11 +633,15 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
is_cancelled_callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. If the function returns
`True`, the inference will be cancelled.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
`None` if cancelled by `is_cancelled_callback`,
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
@@ -757,8 +834,11 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
latents = (init_latents_proper * mask) + (latents * (1 - mask))
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if i % callback_steps == 0:
if callback is not None:
callback(i, t, latents)
if is_cancelled_callback is not None and is_cancelled_callback():
return None
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample

View File

@@ -11,9 +11,30 @@ from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTokenizer
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
re_attention = re.compile(
@@ -365,7 +386,7 @@ def get_weighted_text_embeddings(
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
return 2.0 * image - 1.0
@@ -375,7 +396,7 @@ def preprocess_mask(mask):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
@@ -435,6 +456,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
@@ -496,11 +518,15 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
is_cancelled_callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. If the function returns
`True`, the inference will be cancelled.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
`None` if cancelled by `is_cancelled_callback`,
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
@@ -668,8 +694,11 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
latents = (init_latents_proper * mask) + (latents * (1 - mask))
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if i % callback_steps == 0:
if callback is not None:
callback(i, t, latents)
if is_cancelled_callback is not None and is_cancelled_callback():
return None
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
@@ -693,7 +722,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
)
images.append(image_i)
has_nsfw_concept.append(has_nsfw_concept_i)
has_nsfw_concept.append(has_nsfw_concept_i[0])
image = np.concatenate(images)
else:
has_nsfw_concept = None

View File

@@ -0,0 +1,436 @@
import inspect
from typing import Callable, List, Optional, Union
import torch
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
from transformers import (
CLIPFeatureExtractor,
CLIPTextModel,
CLIPTokenizer,
MBart50TokenizerFast,
MBartForConditionalGeneration,
pipeline,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def detect_language(pipe, prompt, batch_size):
"""helper function to detect language(s) of prompt"""
if batch_size == 1:
preds = pipe(prompt, top_k=1, truncation=True, max_length=128)
return preds[0]["label"]
else:
detected_languages = []
for p in prompt:
preds = pipe(p, top_k=1, truncation=True, max_length=128)
detected_languages.append(preds[0]["label"])
return detected_languages
def translate_prompt(prompt, translation_tokenizer, translation_model, device):
"""helper function to translate prompt to English"""
encoded_prompt = translation_tokenizer(prompt, return_tensors="pt").to(device)
generated_tokens = translation_model.generate(**encoded_prompt, max_new_tokens=1000)
en_trans = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return en_trans[0]
class MultilingualStableDiffusion(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion in different languages.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
detection_pipeline ([`pipeline`]):
Transformers pipeline to detect prompt's language.
translation_model ([`MBartForConditionalGeneration`]):
Model to translate prompt to English, if necessary. Please refer to the
[model card](https://huggingface.co/docs/transformers/model_doc/mbart) for details.
translation_tokenizer ([`MBart50TokenizerFast`]):
Tokenizer of the translation model.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
detection_pipeline: pipeline,
translation_model: MBartForConditionalGeneration,
translation_tokenizer: MBart50TokenizerFast,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
detection_pipeline=detection_pipeline,
translation_model=translation_model,
translation_tokenizer=translation_tokenizer,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation. Can be in different languages.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# detect language and translate if necessary
prompt_language = detect_language(self.detection_pipeline, prompt, batch_size)
if batch_size == 1 and prompt_language != "en":
prompt = translate_prompt(prompt, self.translation_tokenizer, self.translation_model, self.device)
if isinstance(prompt, list):
for index in range(batch_size):
if prompt_language[index] != "en":
p = translate_prompt(
prompt[index], self.translation_tokenizer, self.translation_model, self.device
)
prompt[index] = p
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
# detect language and translate it if necessary
negative_prompt_language = detect_language(self.detection_pipeline, negative_prompt, batch_size)
if negative_prompt_language != "en":
negative_prompt = translate_prompt(
negative_prompt, self.translation_tokenizer, self.translation_model, self.device
)
if isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
# detect language and translate it if necessary
if isinstance(negative_prompt, list):
negative_prompt_languages = detect_language(self.detection_pipeline, negative_prompt, batch_size)
for index in range(batch_size):
if negative_prompt_languages[index] != "en":
p = translate_prompt(
negative_prompt[index], self.translation_tokenizer, self.translation_model, self.device
)
negative_prompt[index] = p
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
self.device
)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -0,0 +1,479 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import Callable, List, Optional, Union
import torch
from diffusers import LMSDiscreteScheduler
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import is_accelerate_available, logging
from k_diffusion.external import CompVisDenoiser
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class ModelWrapper:
def __init__(self, model, alphas_cumprod):
self.model = model
self.alphas_cumprod = alphas_cumprod
def apply_model(self, *args, **kwargs):
return self.model(*args, **kwargs).sample
class StableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
):
super().__init__()
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
# get correct sigmas from LMS
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
model = ModelWrapper(unet, scheduler.alphas_cumprod)
self.k_diffusion_model = CompVisDenoiser(model)
def set_sampler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling")
self.sampler = getattr(sampling, scheduler_type)
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
time. Speed up at training time is not guaranteed.
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
is used.
"""
self.unet.set_use_memory_efficient_attention_xformers(True)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention as implemented in xformers.
"""
self.unet.set_use_memory_efficient_attention_xformers(False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
if not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // 8, width // 8)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
else:
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=text_embeddings.device)
sigmas = self.scheduler.sigmas
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents = latents * sigmas[0]
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
def model_fn(x, t):
latent_model_input = torch.cat([x] * 2)
noise_pred = self.k_diffusion_model(latent_model_input, t, encoder_hidden_states=text_embeddings)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
return noise_pred
latents = self.sampler(model_fn, latents, sigmas)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -37,7 +37,7 @@ class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.

View File

@@ -42,7 +42,7 @@ class SpeechToImagePipeline(DiffusionPipeline):
super().__init__()
if safety_checker is None:
logger.warn(
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
@@ -148,7 +148,7 @@ class SpeechToImagePipeline(DiffusionPipeline):
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
@@ -177,7 +177,7 @@ class SpeechToImagePipeline(DiffusionPipeline):
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.

View File

@@ -42,7 +42,7 @@ class StableDiffusionMegaPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.

View File

@@ -0,0 +1,320 @@
from typing import Callable, List, Optional, Union
import torch
import PIL
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
from transformers import (
CLIPFeatureExtractor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class TextInpainting(DiffusionPipeline):
r"""
Pipeline for text based inpainting using Stable Diffusion.
Uses CLIPSeg to get a mask from the given text, then calls the Inpainting pipeline with the generated mask
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
segmentation_model ([`CLIPSegForImageSegmentation`]):
CLIPSeg Model to generate mask from the given text. Please refer to the [model card]() for details.
segmentation_processor ([`CLIPSegProcessor`]):
CLIPSeg processor to get image, text features to translate prompt to English, if necessary. Please refer to the
[model card](https://huggingface.co/docs/transformers/model_doc/clipseg) for details.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
segmentation_model: CLIPSegForImageSegmentation,
segmentation_processor: CLIPSegProcessor,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
" Hub, it would be very nice if you could open a Pull request for the"
" `scheduler/scheduler_config.json` file"
)
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["skip_prk_steps"] = True
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
segmentation_model=segmentation_model,
segmentation_processor=segmentation_processor,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device("cuda")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
time. Speed up at training time is not guaranteed.
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
is used.
"""
self.unet.set_use_memory_efficient_attention_xformers(True)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention as implemented in xformers.
"""
self.unet.set_use_memory_efficient_attention_xformers(False)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image],
text: str,
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
text (`str``):
The text to use to generate the mask.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# We use the input text to generate the mask
inputs = self.segmentation_processor(
text=[text], images=[image], padding="max_length", return_tensors="pt"
).to(self.device)
outputs = self.segmentation_model(**inputs)
mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
mask_pil = self.numpy_to_pil(mask)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
inpainting_pipeline = StableDiffusionInpaintPipeline(
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet,
scheduler=self.scheduler,
safety_checker=self.safety_checker,
feature_extractor=self.feature_extractor,
)
return inpainting_pipeline(
prompt=prompt,
image=image,
mask_image=mask_pil,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)

View File

@@ -99,7 +99,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
@@ -135,7 +135,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None:
logger.warn(
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
@@ -295,7 +295,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
@@ -324,7 +324,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.

View File

@@ -92,7 +92,7 @@ accelerate launch train_dreambooth.py \
With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU.
Install `bitsandbytes` with `pip install bitsandbytes`
To install `bitandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation).
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
@@ -141,7 +141,7 @@ export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \
accelerate launch --mixed_precision="fp16" train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
@@ -157,8 +157,7 @@ accelerate launch train_dreambooth.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800 \
--mixed_precision=fp16
--max_train_steps=800
```
### Fine-tune text encoder with the UNet.
@@ -185,7 +184,7 @@ accelerate launch train_dreambooth.py \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--use_8bit_adam
--use_8bit_adam \
--gradient_checkpointing \
--learning_rate=2e-6 \
--lr_scheduler="constant" \
@@ -291,4 +290,4 @@ python train_dreambooth_flax.py \
--learning_rate=2e-6 \
--num_class_images=200 \
--max_train_steps=800
```
```

View File

@@ -66,6 +66,7 @@ def parse_args(input_args=None):
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
@@ -186,12 +187,12 @@ def parse_args(input_args=None):
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
@@ -205,14 +206,16 @@ def parse_args(input_args=None):
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.instance_data_dir is None:
raise ValueError("You must specify a train data directory.")
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
if args.class_data_dir is not None:
logger.warning("You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
logger.warning("You need not use --class_prompt without --with_prior_preservation.")
return args
@@ -469,9 +472,7 @@ def main(args):
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
@@ -496,7 +497,12 @@ def main(args):
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
input_ids = tokenizer.pad(
{"input_ids": input_ids},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
@@ -532,9 +538,9 @@ def main(args):
)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.

View File

@@ -327,22 +327,6 @@ def main():
if args.seed is not None:
set_seed(args.seed)
if jax.process_index() == 0:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
rng = jax.random.PRNGKey(args.seed)
if args.with_prior_preservation:
@@ -361,7 +345,8 @@ def main():
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
total_sample_batch_size = args.sample_batch_size * jax.local_device_count()
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
@@ -451,7 +436,9 @@ def main():
weight_dtype = jnp.bfloat16
# Load models and create wrapper for stable diffusion
text_encoder = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", dtype=weight_dtype)
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
)

19
examples/rl/README.md Normal file
View File

@@ -0,0 +1,19 @@
# Overview
These examples show how to run (Diffuser)[https://arxiv.org/abs/2205.09991] in Diffusers.
There are four scripts,
1. `run_diffuser_locomotion.py` to sample actions and run them in the environment,
2. and `run_diffuser_gen_trajectories.py` to just sample actions from the pre-trained diffusion model.
You will need some RL specific requirements to run the examples:
```
pip install -f https://download.pytorch.org/whl/torch_stable.html \
free-mujoco-py \
einops \
gym==0.24.1 \
protobuf==3.20.1 \
git+https://github.com/rail-berkeley/d4rl.git \
mediapy \
Pillow==9.0.0
```

View File

@@ -0,0 +1,57 @@
import d4rl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
config = dict(
n_samples=64,
horizon=32,
num_inference_steps=20,
n_guide_steps=0,
scale_grad_by_std=True,
scale=0.1,
eta=0.0,
t_grad_cutoff=2,
device="cpu",
)
if __name__ == "__main__":
env_name = "hopper-medium-v2"
env = gym.make(env_name)
pipeline = ValueGuidedRLPipeline.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32",
env=env,
)
env.seed(0)
obs = env.reset()
total_reward = 0
total_score = 0
T = 1000
rollout = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# Call the policy
denorm_actions = pipeline(obs, planning_horizon=32)
# execute action in environment
next_observation, reward, terminal, _ = env.step(denorm_actions)
score = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
f" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
obs = next_observation
except KeyboardInterrupt:
pass
print(f"Total reward: {total_reward}")

View File

@@ -0,0 +1,57 @@
import d4rl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
config = dict(
n_samples=64,
horizon=32,
num_inference_steps=20,
n_guide_steps=2,
scale_grad_by_std=True,
scale=0.1,
eta=0.0,
t_grad_cutoff=2,
device="cpu",
)
if __name__ == "__main__":
env_name = "hopper-medium-v2"
env = gym.make(env_name)
pipeline = ValueGuidedRLPipeline.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32",
env=env,
)
env.seed(0)
obs = env.reset()
total_reward = 0
total_score = 0
T = 1000
rollout = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
denorm_actions = pipeline(obs, planning_horizon=32)
# execute action in environment
next_observation, reward, terminal, _ = env.step(denorm_actions)
score = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
f" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
obs = next_observation
except KeyboardInterrupt:
pass
print(f"Total reward: {total_reward}")

View File

@@ -46,7 +46,7 @@ With `gradient_checkpointing` and `mixed_precision` it should be possible to fin
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch train_text_to_image.py \
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
@@ -54,7 +54,6 @@ accelerate launch train_text_to_image.py \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--mixed_precision="fp16" \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
@@ -70,7 +69,7 @@ If you wish to use custom loading logic, you should modify the script, we have l
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export TRAIN_DIR="path_to_your_dataset"
accelerate launch train_text_to_image.py \
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$TRAIN_DIR \
--use_ema \
@@ -78,7 +77,6 @@ accelerate launch train_text_to_image.py \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--mixed_precision="fp16" \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \

View File

@@ -186,12 +186,12 @@ def parse_args():
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
@@ -372,11 +372,7 @@ def main():
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# TODO (patil-suraj): load scheduler using args
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
@@ -500,9 +496,9 @@ def main():
)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
@@ -609,9 +605,7 @@ def main():
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=PNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
),
scheduler=PNDMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler"),
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
)

View File

@@ -379,7 +379,9 @@ def main():
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", dtype=weight_dtype)
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", dtype=weight_dtype
)

View File

@@ -29,7 +29,7 @@ accelerate config
### Cat toy example
You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree.
You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-5`, so you'll need to visit [its card](https://huggingface.co/runwayml/stable-diffusion-v1-5), read the license and tick the checkbox if you agree.
You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
@@ -111,4 +111,4 @@ python textual_inversion_flax.py \
--learning_rate=5.0e-04 --scale_lr \
--output_dir="textual_inversion_cat"
```
It should be at least 70% faster than the PyTorch script with the same configuration.
It should be at least 70% faster than the PyTorch script with the same configuration.

View File

@@ -20,12 +20,34 @@ from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusi
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = get_logger(__name__)
@@ -260,10 +282,10 @@ class TextualInversionDataset(Dataset):
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
@@ -419,13 +441,7 @@ def main():
eps=args.adam_epsilon,
)
# TODO (patil-suraj): load scheduler using args
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
@@ -558,9 +574,7 @@ def main():
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=PNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
),
scheduler=PNDMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler"),
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
)

View File

@@ -28,12 +28,33 @@ from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
logger = logging.getLogger(__name__)
@@ -246,10 +267,10 @@ class TextualInversionDataset(Dataset):
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
@@ -391,7 +412,7 @@ def main():
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion
text_encoder = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = FlaxCLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae, vae_params = FlaxAutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")

View File

@@ -127,3 +127,24 @@ dataset.push_to_hub("name_of_your_dataset", private=True)
and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub.
More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).
#### Use ONNXRuntime to accelerate training
In order to leverage onnxruntime to accelerate training, please use train_unconditional_ort.py
The command to train a DDPM UNet model on the Oxford Flowers dataset with onnxruntime:
```bash
accelerate launch train_unconditional_ort.py \
--dataset_name="huggan/flowers-102-categories" \
--resolution=64 \
--output_dir="ddpm-ema-flowers-64" \
--train_batch_size=16 \
--num_epochs=1 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=fp16
```
Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.

View File

@@ -1,4 +1,5 @@
import argparse
import inspect
import math
import os
from pathlib import Path
@@ -10,10 +11,12 @@ import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel, __version__
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import deprecate
from huggingface_hub import HfFolder, Repository, whoami
from packaging import version
from torchvision.transforms import (
CenterCrop,
Compose,
@@ -27,6 +30,25 @@ from tqdm.auto import tqdm
logger = get_logger(__name__)
diffusers_version = version.parse(version.parse(__version__).base_version)
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
if not isinstance(arr, torch.Tensor):
arr = torch.from_numpy(arr)
res = arr[timesteps].float().to(timesteps.device)
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
def parse_args():
@@ -171,6 +193,16 @@ def parse_args():
),
)
parser.add_argument(
"--predict_epsilon",
action="store_true",
default=True,
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
)
parser.add_argument("--ddpm_num_steps", type=int, default=1000)
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
@@ -224,7 +256,17 @@ def main(args):
"UpBlock2D",
),
)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
accepts_predict_epsilon = "predict_epsilon" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
if accepts_predict_epsilon:
noise_scheduler = DDPMScheduler(
num_train_timesteps=args.ddpm_num_steps,
beta_schedule=args.ddpm_beta_schedule,
predict_epsilon=args.predict_epsilon,
)
else:
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
@@ -257,6 +299,8 @@ def main(args):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
logger.info(f"Dataset size: {len(dataset)}")
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
@@ -319,8 +363,20 @@ def main(args):
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps).sample
loss = F.mse_loss(noise_pred, noise)
model_output = model(noisy_images, timesteps).sample
if args.predict_epsilon:
loss = F.mse_loss(model_output, noise) # this could have different weights!
else:
alpha_t = _extract_into_tensor(
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
)
snr_weights = alpha_t / (1 - alpha_t)
loss = snr_weights * F.mse_loss(
model_output, clean_images, reduction="none"
) # use SNR weighting from distillation paper
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
@@ -353,9 +409,17 @@ def main(args):
scheduler=noise_scheduler,
)
generator = torch.manual_seed(0)
deprecate("todo: remove this check", "0.10.0", "when the most used version is >= 0.8.0")
if diffusers_version < version.parse("0.8.0"):
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=pipeline.device).manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images
images = pipeline(
generator=generator,
batch_size=args.eval_batch_size,
output_type="numpy",
).images
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")

View File

@@ -0,0 +1,251 @@
import argparse
import math
import os
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from onnxruntime.training.ortmodule import ORTModule
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = get_logger(__name__)
def main(args):
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
model = UNet2DModel(
sample_size=args.resolution,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
model = ORTModule(model)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
if args.dataset_name is not None:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
split="train",
)
else:
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
global_step = 0
for epoch in range(args.num_epochs):
model.train()
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=True)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
pipeline = DDPMPipeline(
unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
scheduler=noise_scheduler,
)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")
accelerator.trackers[0].writer.add_images(
"test_samples", images_processed.transpose(0, 3, 1, 2), epoch
)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_config_name", type=str, default=None)
parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.")
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10)
parser.add_argument("--save_model_epochs", type=int, default=10)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="cosine")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--adam_beta1", type=float, default=0.95)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--use_ema", action="store_true", default=True)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
parser.add_argument("--ema_power", type=float, default=3 / 4)
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--use_auth_token", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
main(args)

View File

@@ -112,9 +112,9 @@ def assign_to_checkpoint(
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid.resnets.0")
new_path = new_path.replace("middle_block.1", "mid.attentions.0")
new_path = new_path.replace("middle_block.2", "mid.resnets.1")
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
@@ -175,15 +175,16 @@ def convert_ldm_checkpoint(checkpoint, config):
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in checkpoint:
new_checkpoint[f"downsample_blocks.{block_id}.downsamplers.0.conv.weight"] = checkpoint[
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = checkpoint[
f"input_blocks.{i}.0.op.weight"
]
new_checkpoint[f"downsample_blocks.{block_id}.downsamplers.0.conv.bias"] = checkpoint[
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = checkpoint[
f"input_blocks.{i}.0.op.bias"
]
continue
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"downsample_blocks.{block_id}.resnets.{layer_in_block_id}"}
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
resnet_op = {"old": "resnets.2.op", "new": "downsamplers.0.op"}
assign_to_checkpoint(
paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config
@@ -193,18 +194,18 @@ def convert_ldm_checkpoint(checkpoint, config):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"input_blocks.{i}.1",
"new": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}",
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
to_split = {
f"input_blocks.{i}.1.qkv.bias": {
"key": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"query": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"value": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
f"input_blocks.{i}.1.qkv.weight": {
"key": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"query": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"value": f"downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(

View File

@@ -0,0 +1,100 @@
import json
import os
import torch
from diffusers import UNet1DModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def unet(hor):
if hor == 128:
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
block_out_channels = (32, 128, 256)
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D")
elif hor == 32:
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
block_out_channels = (32, 64, 128, 256)
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch")
state_dict = model.state_dict()
config = dict(
down_block_types=down_block_types,
block_out_channels=block_out_channels,
up_block_types=up_block_types,
layers_per_block=1,
use_timestep_embedding=True,
out_block_type="OutConv1DBlock",
norm_num_groups=8,
downsample_each_block=False,
in_channels=14,
out_channels=14,
extra_in_channels=0,
time_embedding_type="positional",
flip_sin_to_cos=False,
freq_shift=1,
sample_size=65536,
mid_block_type="MidResTemporalBlock1D",
act_fn="mish",
)
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
mapping = dict((k, hfk) for k, hfk in zip(model.state_dict().keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)
hf_value_function.load_state_dict(state_dict)
torch.save(hf_value_function.state_dict(), f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin")
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json", "w") as f:
json.dump(config, f)
def value_function():
config = dict(
in_channels=14,
down_block_types=("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
up_block_types=(),
out_block_type="ValueFunction",
mid_block_type="ValueFunctionMidBlock1D",
block_out_channels=(32, 64, 128, 256),
layers_per_block=1,
downsample_each_block=True,
sample_size=65536,
out_channels=14,
extra_in_channels=0,
time_embedding_type="positional",
use_timestep_embedding=True,
flip_sin_to_cos=False,
freq_shift=1,
norm_num_groups=8,
act_fn="mish",
)
model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch")
state_dict = model
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
mapping = dict((k, hfk) for k, hfk in zip(state_dict.keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)
hf_value_function.load_state_dict(state_dict)
torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin")
with open("hub/hopper-medium-v2/value_function/config.json", "w") as f:
json.dump(config, f)
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()

View File

@@ -30,6 +30,9 @@ except ImportError:
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LDMTextToImagePipeline,
LMSDiscreteScheduler,
PNDMScheduler,
@@ -647,7 +650,7 @@ if __name__ == "__main__":
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim']",
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancest', 'dpm']",
)
parser.add_argument(
"--extract_ema",
@@ -686,6 +689,16 @@ if __name__ == "__main__":
)
elif args.scheduler_type == "lms":
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler":
scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "ddim":
scheduler = DDIMScheduler(
beta_start=beta_start,

View File

@@ -81,6 +81,8 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
output_path = Path(output_path)
# TEXT ENCODER
num_tokens = pipeline.text_encoder.config.max_position_embeddings
text_hidden_size = pipeline.text_encoder.config.hidden_size
text_input = pipeline.tokenizer(
"A sample prompt",
padding="max_length",
@@ -103,13 +105,15 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
del pipeline.text_encoder
# UNET
unet_in_channels = pipeline.unet.config.in_channels
unet_sample_size = pipeline.unet.config.sample_size
unet_path = output_path / "unet" / "model.onnx"
onnx_export(
pipeline.unet,
model_args=(
torch.randn(2, pipeline.unet.in_channels, 64, 64).to(device=device, dtype=dtype),
torch.LongTensor([0, 1]).to(device=device),
torch.randn(2, 77, 768).to(device=device, dtype=dtype),
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
False,
),
output_path=unet_path,
@@ -142,11 +146,16 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
# VAE ENCODER
vae_encoder = pipeline.vae
vae_in_channels = vae_encoder.config.in_channels
vae_sample_size = vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample()
onnx_export(
vae_encoder,
model_args=(torch.randn(1, 3, 512, 512).to(device=device, dtype=dtype), False),
model_args=(
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_encoder" / "model.onnx",
ordered_input_names=["sample", "return_dict"],
output_names=["latent_sample"],
@@ -158,11 +167,16 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
# VAE DECODER
vae_decoder = pipeline.vae
vae_latent_channels = vae_decoder.config.latent_channels
vae_out_channels = vae_decoder.config.out_channels
# forward only through the decoder part
vae_decoder.forward = vae_encoder.decode
onnx_export(
vae_decoder,
model_args=(torch.randn(1, 4, 64, 64).to(device=device, dtype=dtype), False),
model_args=(
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_decoder" / "model.onnx",
ordered_input_names=["latent_sample", "return_dict"],
output_names=["sample"],
@@ -174,24 +188,35 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
del pipeline.vae
# SAFETY CHECKER
safety_checker = pipeline.safety_checker
safety_checker.forward = safety_checker.forward_onnx
onnx_export(
pipeline.safety_checker,
model_args=(
torch.randn(1, 3, 224, 224).to(device=device, dtype=dtype),
torch.randn(1, 512, 512, 3).to(device=device, dtype=dtype),
),
output_path=output_path / "safety_checker" / "model.onnx",
ordered_input_names=["clip_input", "images"],
output_names=["out_images", "has_nsfw_concepts"],
dynamic_axes={
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
},
opset=opset,
)
del pipeline.safety_checker
if pipeline.safety_checker is not None:
safety_checker = pipeline.safety_checker
clip_num_channels = safety_checker.config.vision_config.num_channels
clip_image_size = safety_checker.config.vision_config.image_size
safety_checker.forward = safety_checker.forward_onnx
onnx_export(
pipeline.safety_checker,
model_args=(
torch.randn(
1,
clip_num_channels,
clip_image_size,
clip_image_size,
).to(device=device, dtype=dtype),
torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype),
),
output_path=output_path / "safety_checker" / "model.onnx",
ordered_input_names=["clip_input", "images"],
output_names=["out_images", "has_nsfw_concepts"],
dynamic_axes={
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
},
opset=opset,
)
del pipeline.safety_checker
safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker")
else:
safety_checker = None
onnx_pipeline = OnnxStableDiffusionPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
@@ -200,7 +225,7 @@ def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = F
tokenizer=pipeline.tokenizer,
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"),
scheduler=pipeline.scheduler,
safety_checker=OnnxRuntimeModel.from_pretrained(output_path / "safety_checker"),
safety_checker=safety_checker,
feature_extractor=pipeline.feature_extractor,
)

View File

@@ -0,0 +1,791 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the Versatile Stable Diffusion checkpoints. """
import argparse
from argparse import Namespace
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
VersatileDiffusionPipeline,
)
from diffusers.pipelines.versatile_diffusion.modeling_text_unet import UNetFlatConditionModel
from transformers import (
CLIPFeatureExtractor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
SCHEDULER_CONFIG = Namespace(
**{
"beta_linear_start": 0.00085,
"beta_linear_end": 0.012,
"timesteps": 1000,
"scale_factor": 0.18215,
}
)
IMAGE_UNET_CONFIG = Namespace(
**{
"input_channels": 4,
"model_channels": 320,
"output_channels": 4,
"num_noattn_blocks": [2, 2, 2, 2],
"channel_mult": [1, 2, 4, 4],
"with_attn": [True, True, True, False],
"num_heads": 8,
"context_dim": 768,
"use_checkpoint": True,
}
)
TEXT_UNET_CONFIG = Namespace(
**{
"input_channels": 768,
"model_channels": 320,
"output_channels": 768,
"num_noattn_blocks": [2, 2, 2, 2],
"channel_mult": [1, 2, 4, 4],
"second_dim": [4, 4, 4, 4],
"with_attn": [True, True, True, False],
"num_heads": 8,
"context_dim": 768,
"use_checkpoint": True,
}
)
AUTOENCODER_CONFIG = Namespace(
**{
"double_z": True,
"z_channels": 4,
"resolution": 256,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult": [1, 2, 4, 4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
}
)
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif path["old"] in old_checkpoint:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_image_unet_diffusers_config(unet_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if unet_params.with_attn[i] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if unet_params.with_attn[-i - 1] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks):
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.")
config = dict(
sample_size=None,
in_channels=unet_params.input_channels,
out_channels=unet_params.output_channels,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=unet_params.num_noattn_blocks[0],
cross_attention_dim=unet_params.context_dim,
attention_head_dim=unet_params.num_heads,
)
return config
def create_text_unet_diffusers_config(unet_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlockFlat" if unet_params.with_attn[i] else "DownBlockFlat"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlockFlat" if unet_params.with_attn[-i - 1] else "UpBlockFlat"
up_block_types.append(block_type)
resolution //= 2
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks):
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.")
config = dict(
sample_size=None,
in_channels=(unet_params.input_channels, 1, 1),
out_channels=(unet_params.output_channels, 1, 1),
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=unet_params.num_noattn_blocks[0],
cross_attention_dim=unet_params.context_dim,
attention_head_dim=unet_params.num_heads,
)
return config
def create_vae_diffusers_config(vae_params):
"""
Creates a config for the diffusers based on the config of the VD model.
"""
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=vae_params.resolution,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
)
return config
def create_diffusers_scheduler(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def convert_vd_unet_checkpoint(checkpoint, config, unet_key, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print("Checkpoint has both EMA and non-EMA weights.")
if extract_ema:
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["model.diffusion_model.time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["model.diffusion_model.time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["model.diffusion_model.time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["model.diffusion_model.time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias"
)
elif f"input_blocks.{i}.0.weight" in unet_state_dict:
# text_unet uses linear layers in place of downsamplers
shape = unet_state_dict[f"input_blocks.{i}.0.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.weight"
)
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.bias"
)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
elif f"output_blocks.{i}.1.weight" in unet_state_dict:
# text_unet uses linear layers in place of upsamplers
shape = unet_state_dict[f"output_blocks.{i}.1.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop(
f"output_blocks.{i}.1.weight"
)
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop(
f"output_blocks.{i}.1.bias"
)
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
elif f"output_blocks.{i}.2.weight" in unet_state_dict:
# text_unet uses linear layers in place of upsamplers
shape = unet_state_dict[f"output_blocks.{i}.2.weight"].shape
if shape[0] != shape[1]:
continue
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop(
f"output_blocks.{i}.2.weight"
)
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop(
f"output_blocks.{i}.2.bias"
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_vd_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
keys = list(checkpoint.keys())
for key in keys:
vae_state_dict[key] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--unet_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--vae_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--optimus_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancest', 'dpm']",
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
scheduler_config = SCHEDULER_CONFIG
num_train_timesteps = scheduler_config.timesteps
beta_start = scheduler_config.beta_linear_start
beta_end = scheduler_config.beta_linear_end
if args.scheduler_type == "pndm":
scheduler = PNDMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
skip_prk_steps=True,
steps_offset=1,
)
elif args.scheduler_type == "lms":
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler":
scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear")
elif args.scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif args.scheduler_type == "ddim":
scheduler = DDIMScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
else:
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!")
# Convert the UNet2DConditionModel models.
if args.unet_checkpoint_path is not None:
# image UNet
image_unet_config = create_image_unet_diffusers_config(IMAGE_UNET_CONFIG)
checkpoint = torch.load(args.unet_checkpoint_path)
converted_image_unet_checkpoint = convert_vd_unet_checkpoint(
checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema
)
image_unet = UNet2DConditionModel(**image_unet_config)
image_unet.load_state_dict(converted_image_unet_checkpoint)
# text UNet
text_unet_config = create_text_unet_diffusers_config(TEXT_UNET_CONFIG)
converted_text_unet_checkpoint = convert_vd_unet_checkpoint(
checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema
)
text_unet = UNetFlatConditionModel(**text_unet_config)
text_unet.load_state_dict(converted_text_unet_checkpoint)
# Convert the VAE model.
if args.vae_checkpoint_path is not None:
vae_config = create_vae_diffusers_config(AUTOENCODER_CONFIG)
checkpoint = torch.load(args.vae_checkpoint_path)
converted_vae_checkpoint = convert_vd_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
image_feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
pipe = VersatileDiffusionPipeline(
scheduler=scheduler,
tokenizer=tokenizer,
image_feature_extractor=image_feature_extractor,
text_encoder=text_encoder,
image_encoder=image_encoder,
image_unet=image_unet,
text_unet=text_unet,
vae=vae,
)
pipe.save_pretrained(args.dump_path)

View File

@@ -0,0 +1,925 @@
"""
This script ports models from VQ-diffusion (https://github.com/microsoft/VQ-Diffusion) to diffusers.
It currently only supports porting the ITHQ dataset.
ITHQ dataset:
```sh
# From the root directory of diffusers.
# Download the VQVAE checkpoint
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_vqvae.pth?sv=2020-10-02&st=2022-05-30T15%3A17%3A18Z&se=2030-05-31T15%3A17%3A00Z&sr=b&sp=r&sig=1jVavHFPpUjDs%2FTO1V3PTezaNbPp2Nx8MxiWI7y6fEY%3D -O ithq_vqvae.pth
# Download the VQVAE config
# NOTE that in VQ-diffusion the documented file is `configs/ithq.yaml` but the target class
# `image_synthesis.modeling.codecs.image_codec.ema_vqvae.PatchVQVAE`
# loads `OUTPUT/pretrained_model/taming_dvae/config.yaml`
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/OUTPUT/pretrained_model/taming_dvae/config.yaml -O ithq_vqvae.yaml
# Download the main model checkpoint
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_learnable.pth?sv=2020-10-02&st=2022-05-30T10%3A22%3A06Z&se=2030-05-31T10%3A22%3A00Z&sr=b&sp=r&sig=GOE%2Bza02%2FPnGxYVOOPtwrTR4RA3%2F5NVgMxdW4kjaEZ8%3D -O ithq_learnable.pth
# Download the main model config
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/configs/ithq.yaml -O ithq.yaml
# run the convert script
$ python ./scripts/convert_vq_diffusion_to_diffusers.py \
--checkpoint_path ./ithq_learnable.pth \
--original_config_file ./ithq.yaml \
--vqvae_checkpoint_path ./ithq_vqvae.pth \
--vqvae_original_config_file ./ithq_vqvae.yaml \
--dump_path <path to save pre-trained `VQDiffusionPipeline`>
```
"""
import argparse
import tempfile
import torch
import yaml
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from transformers import CLIPTextModel, CLIPTokenizer
from yaml.loader import FullLoader
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install"
" OmegaConf`."
)
# vqvae model
PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"]
def vqvae_model_from_original_config(original_config):
assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers."
original_config = original_config.params
original_encoder_config = original_config.encoder_config.params
original_decoder_config = original_config.decoder_config.params
in_channels = original_encoder_config.in_channels
out_channels = original_decoder_config.out_ch
down_block_types = get_down_block_types(original_encoder_config)
up_block_types = get_up_block_types(original_decoder_config)
assert original_encoder_config.ch == original_decoder_config.ch
assert original_encoder_config.ch_mult == original_decoder_config.ch_mult
block_out_channels = tuple(
[original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult]
)
assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks
layers_per_block = original_encoder_config.num_res_blocks
assert original_encoder_config.z_channels == original_decoder_config.z_channels
latent_channels = original_encoder_config.z_channels
num_vq_embeddings = original_config.n_embed
# Hard coded value for ResnetBlock.GoupNorm(num_groups) in VQ-diffusion
norm_num_groups = 32
e_dim = original_config.embed_dim
model = VQModel(
in_channels=in_channels,
out_channels=out_channels,
down_block_types=down_block_types,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
latent_channels=latent_channels,
num_vq_embeddings=num_vq_embeddings,
norm_num_groups=norm_num_groups,
vq_embed_dim=e_dim,
)
return model
def get_down_block_types(original_encoder_config):
attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions)
num_resolutions = len(original_encoder_config.ch_mult)
resolution = coerce_resolution(original_encoder_config.resolution)
curr_res = resolution
down_block_types = []
for _ in range(num_resolutions):
if curr_res in attn_resolutions:
down_block_type = "AttnDownEncoderBlock2D"
else:
down_block_type = "DownEncoderBlock2D"
down_block_types.append(down_block_type)
curr_res = [r // 2 for r in curr_res]
return down_block_types
def get_up_block_types(original_decoder_config):
attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions)
num_resolutions = len(original_decoder_config.ch_mult)
resolution = coerce_resolution(original_decoder_config.resolution)
curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution]
up_block_types = []
for _ in reversed(range(num_resolutions)):
if curr_res in attn_resolutions:
up_block_type = "AttnUpDecoderBlock2D"
else:
up_block_type = "UpDecoderBlock2D"
up_block_types.append(up_block_type)
curr_res = [r * 2 for r in curr_res]
return up_block_types
def coerce_attn_resolutions(attn_resolutions):
attn_resolutions = OmegaConf.to_object(attn_resolutions)
attn_resolutions_ = []
for ar in attn_resolutions:
if isinstance(ar, (list, tuple)):
attn_resolutions_.append(list(ar))
else:
attn_resolutions_.append([ar, ar])
return attn_resolutions_
def coerce_resolution(resolution):
resolution = OmegaConf.to_object(resolution)
if isinstance(resolution, int):
resolution = [resolution, resolution] # H, W
elif isinstance(resolution, (tuple, list)):
resolution = list(resolution)
else:
raise ValueError("Unknown type of resolution:", resolution)
return resolution
# done vqvae model
# vqvae checkpoint
def vqvae_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(vqvae_encoder_to_diffusers_checkpoint(model, checkpoint))
# quant_conv
diffusers_checkpoint.update(
{
"quant_conv.weight": checkpoint["quant_conv.weight"],
"quant_conv.bias": checkpoint["quant_conv.bias"],
}
)
# quantize
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding"]})
# post_quant_conv
diffusers_checkpoint.update(
{
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"],
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"],
}
)
# decoder
diffusers_checkpoint.update(vqvae_decoder_to_diffusers_checkpoint(model, checkpoint))
return diffusers_checkpoint
def vqvae_encoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv_in
diffusers_checkpoint.update(
{
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"],
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"],
}
)
# down_blocks
for down_block_idx, down_block in enumerate(model.encoder.down_blocks):
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}"
down_block_prefix = f"encoder.down.{down_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(down_block.resnets):
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# downsample
# do not include the downsample when on the last down block
# There is no downsample on the last down block
if down_block_idx != len(model.encoder.down_blocks) - 1:
# There's a single downsample in the original checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv"
downsample_prefix = f"{down_block_prefix}.downsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(down_block, "attentions"):
for attention_idx, _ in enumerate(down_block.attentions):
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion encoder
diffusers_attention_prefix = "encoder.mid_block.attentions.0"
attention_prefix = "encoder.mid.attn_1"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion encoder
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"],
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"],
# conv_out
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"],
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def vqvae_decoder_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# conv in
diffusers_checkpoint.update(
{
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"],
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"],
}
)
# up_blocks
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks):
# up_blocks are stored in reverse order in the VQ-diffusion checkpoint
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}"
up_block_prefix = f"decoder.up.{orig_up_block_idx}"
# resnets
for resnet_idx, resnet in enumerate(up_block.resnets):
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}"
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
# upsample
# there is no up sample on the last up block
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1:
# There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples
# in the diffusers model.
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv"
downsample_prefix = f"{up_block_prefix}.upsample.conv"
diffusers_checkpoint.update(
{
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"],
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"],
}
)
# attentions
if hasattr(up_block, "attentions"):
for attention_idx, _ in enumerate(up_block.attentions):
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}"
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
attention_prefix=attention_prefix,
)
)
# mid block
# mid block attentions
# There is a single hardcoded attention block in the middle of the VQ-diffusion decoder
diffusers_attention_prefix = "decoder.mid_block.attentions.0"
attention_prefix = "decoder.mid.attn_1"
diffusers_checkpoint.update(
vqvae_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# mid block resnets
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets):
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}"
# the hardcoded prefixes to `block_` are 1 and 2
orig_resnet_idx = diffusers_resnet_idx + 1
# There are two hardcoded resnets in the middle of the VQ-diffusion decoder
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}"
diffusers_checkpoint.update(
vqvae_resnet_to_diffusers_checkpoint(
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix
)
)
diffusers_checkpoint.update(
{
# conv_norm_out
"decoder.conv_norm_out.weight": checkpoint["decoder.norm_out.weight"],
"decoder.conv_norm_out.bias": checkpoint["decoder.norm_out.bias"],
# conv_out
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"],
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"],
}
)
return diffusers_checkpoint
def vqvae_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
rv = {
# norm1
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"],
# conv1
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"],
# norm2
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"],
# conv2
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"],
}
if resnet.conv_shortcut is not None:
rv.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"],
}
)
return rv
def vqvae_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# group_norm
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
# query
f"{diffusers_attention_prefix}.query.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.query.bias": checkpoint[f"{attention_prefix}.q.bias"],
# key
f"{diffusers_attention_prefix}.key.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.key.bias": checkpoint[f"{attention_prefix}.k.bias"],
# value
f"{diffusers_attention_prefix}.value.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0],
f"{diffusers_attention_prefix}.value.bias": checkpoint[f"{attention_prefix}.v.bias"],
# proj_attn
f"{diffusers_attention_prefix}.proj_attn.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0, 0
],
f"{diffusers_attention_prefix}.proj_attn.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
# done vqvae checkpoint
# transformer model
PORTED_DIFFUSIONS = ["image_synthesis.modeling.transformers.diffusion_transformer.DiffusionTransformer"]
PORTED_TRANSFORMERS = ["image_synthesis.modeling.transformers.transformer_utils.Text2ImageTransformer"]
PORTED_CONTENT_EMBEDDINGS = ["image_synthesis.modeling.embeddings.dalle_mask_image_embedding.DalleMaskImageEmbedding"]
def transformer_model_from_original_config(
original_diffusion_config, original_transformer_config, original_content_embedding_config
):
assert (
original_diffusion_config.target in PORTED_DIFFUSIONS
), f"{original_diffusion_config.target} has not yet been ported to diffusers."
assert (
original_transformer_config.target in PORTED_TRANSFORMERS
), f"{original_transformer_config.target} has not yet been ported to diffusers."
assert (
original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS
), f"{original_content_embedding_config.target} has not yet been ported to diffusers."
original_diffusion_config = original_diffusion_config.params
original_transformer_config = original_transformer_config.params
original_content_embedding_config = original_content_embedding_config.params
inner_dim = original_transformer_config["n_embd"]
n_heads = original_transformer_config["n_head"]
# VQ-Diffusion gives dimension of the multi-headed attention layers as the
# number of attention heads times the sequence length (the dimension) of a
# single head. We want to specify our attention blocks with those values
# specified separately
assert inner_dim % n_heads == 0
d_head = inner_dim // n_heads
depth = original_transformer_config["n_layer"]
context_dim = original_transformer_config["condition_dim"]
num_embed = original_content_embedding_config["num_embed"]
# the number of embeddings in the transformer includes the mask embedding.
# the content embedding (the vqvae) does not include the mask embedding.
num_embed = num_embed + 1
height = original_transformer_config["content_spatial_size"][0]
width = original_transformer_config["content_spatial_size"][1]
assert width == height, "width has to be equal to height"
dropout = original_transformer_config["resid_pdrop"]
num_embeds_ada_norm = original_diffusion_config["diffusion_step"]
model_kwargs = {
"attention_bias": True,
"cross_attention_dim": context_dim,
"attention_head_dim": d_head,
"num_layers": depth,
"dropout": dropout,
"num_attention_heads": n_heads,
"num_vector_embeds": num_embed,
"num_embeds_ada_norm": num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
model = Transformer2DModel(**model_kwargs)
return model
# done transformer model
# transformer checkpoint
def transformer_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
transformer_prefix = "transformer.transformer"
diffusers_latent_image_embedding_prefix = "latent_image_embedding"
latent_image_embedding_prefix = f"{transformer_prefix}.content_emb"
# DalleMaskImageEmbedding
diffusers_checkpoint.update(
{
f"{diffusers_latent_image_embedding_prefix}.emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.emb.weight"
],
f"{diffusers_latent_image_embedding_prefix}.height_emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.height_emb.weight"
],
f"{diffusers_latent_image_embedding_prefix}.width_emb.weight": checkpoint[
f"{latent_image_embedding_prefix}.width_emb.weight"
],
}
)
# transformer blocks
for transformer_block_idx, transformer_block in enumerate(model.transformer_blocks):
diffusers_transformer_block_prefix = f"transformer_blocks.{transformer_block_idx}"
transformer_block_prefix = f"{transformer_prefix}.blocks.{transformer_block_idx}"
# ada norm block
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm1"
ada_norm_prefix = f"{transformer_block_prefix}.ln1"
diffusers_checkpoint.update(
transformer_ada_norm_to_diffusers_checkpoint(
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix
)
)
# attention block
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn1"
attention_prefix = f"{transformer_block_prefix}.attn1"
diffusers_checkpoint.update(
transformer_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# ada norm block
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm2"
ada_norm_prefix = f"{transformer_block_prefix}.ln1_1"
diffusers_checkpoint.update(
transformer_ada_norm_to_diffusers_checkpoint(
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix
)
)
# attention block
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn2"
attention_prefix = f"{transformer_block_prefix}.attn2"
diffusers_checkpoint.update(
transformer_attention_to_diffusers_checkpoint(
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix
)
)
# norm block
diffusers_norm_block_prefix = f"{diffusers_transformer_block_prefix}.norm3"
norm_block_prefix = f"{transformer_block_prefix}.ln2"
diffusers_checkpoint.update(
{
f"{diffusers_norm_block_prefix}.weight": checkpoint[f"{norm_block_prefix}.weight"],
f"{diffusers_norm_block_prefix}.bias": checkpoint[f"{norm_block_prefix}.bias"],
}
)
# feedforward block
diffusers_feedforward_prefix = f"{diffusers_transformer_block_prefix}.ff"
feedforward_prefix = f"{transformer_block_prefix}.mlp"
diffusers_checkpoint.update(
transformer_feedforward_to_diffusers_checkpoint(
checkpoint,
diffusers_feedforward_prefix=diffusers_feedforward_prefix,
feedforward_prefix=feedforward_prefix,
)
)
# to logits
diffusers_norm_out_prefix = "norm_out"
norm_out_prefix = f"{transformer_prefix}.to_logits.0"
diffusers_checkpoint.update(
{
f"{diffusers_norm_out_prefix}.weight": checkpoint[f"{norm_out_prefix}.weight"],
f"{diffusers_norm_out_prefix}.bias": checkpoint[f"{norm_out_prefix}.bias"],
}
)
diffusers_out_prefix = "out"
out_prefix = f"{transformer_prefix}.to_logits.1"
diffusers_checkpoint.update(
{
f"{diffusers_out_prefix}.weight": checkpoint[f"{out_prefix}.weight"],
f"{diffusers_out_prefix}.bias": checkpoint[f"{out_prefix}.bias"],
}
)
return diffusers_checkpoint
def transformer_ada_norm_to_diffusers_checkpoint(checkpoint, *, diffusers_ada_norm_prefix, ada_norm_prefix):
return {
f"{diffusers_ada_norm_prefix}.emb.weight": checkpoint[f"{ada_norm_prefix}.emb.weight"],
f"{diffusers_ada_norm_prefix}.linear.weight": checkpoint[f"{ada_norm_prefix}.linear.weight"],
f"{diffusers_ada_norm_prefix}.linear.bias": checkpoint[f"{ada_norm_prefix}.linear.bias"],
}
def transformer_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix):
return {
# key
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.key.weight"],
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.key.bias"],
# query
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.query.weight"],
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.query.bias"],
# value
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.value.weight"],
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.value.bias"],
# linear out
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj.bias"],
}
def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_feedforward_prefix, feedforward_prefix):
return {
f"{diffusers_feedforward_prefix}.net.0.proj.weight": checkpoint[f"{feedforward_prefix}.0.weight"],
f"{diffusers_feedforward_prefix}.net.0.proj.bias": checkpoint[f"{feedforward_prefix}.0.bias"],
f"{diffusers_feedforward_prefix}.net.2.weight": checkpoint[f"{feedforward_prefix}.2.weight"],
f"{diffusers_feedforward_prefix}.net.2.bias": checkpoint[f"{feedforward_prefix}.2.bias"],
}
# done transformer checkpoint
def read_config_file(filename):
# The yaml file contains annotations that certain values should
# loaded as tuples. By default, OmegaConf will panic when reading
# these. Instead, we can manually read the yaml with the FullLoader and then
# construct the OmegaConf object.
with open(filename) as f:
original_config = yaml.load(f, FullLoader)
return OmegaConf.create(original_config)
# We take separate arguments for the vqvae because the ITHQ vqvae config file
# is separate from the config file for the rest of the model.
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--vqvae_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the vqvae checkpoint to convert.",
)
parser.add_argument(
"--vqvae_original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the original architecture for the vqvae.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
# See link for how ema weights are always selected
# https://github.com/microsoft/VQ-Diffusion/blob/3c98e77f721db7c787b76304fa2c96a36c7b00af/inference_VQ_Diffusion.py#L65
parser.add_argument(
"--no_use_ema",
action="store_true",
required=False,
help=(
"Set to not use the ema weights from the original VQ-Diffusion checkpoint. You probably do not want to set"
" it as the original VQ-Diffusion always uses the ema weights when loading models."
),
)
args = parser.parse_args()
use_ema = not args.no_use_ema
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
# vqvae_model
print(f"loading vqvae, config: {args.vqvae_original_config_file}, checkpoint: {args.vqvae_checkpoint_path}")
vqvae_original_config = read_config_file(args.vqvae_original_config_file).model
vqvae_checkpoint = torch.load(args.vqvae_checkpoint_path, map_location=checkpoint_map_location)["model"]
with init_empty_weights():
vqvae_model = vqvae_model_from_original_config(vqvae_original_config)
vqvae_diffusers_checkpoint = vqvae_original_checkpoint_to_diffusers_checkpoint(vqvae_model, vqvae_checkpoint)
with tempfile.NamedTemporaryFile() as vqvae_diffusers_checkpoint_file:
torch.save(vqvae_diffusers_checkpoint, vqvae_diffusers_checkpoint_file.name)
del vqvae_diffusers_checkpoint
del vqvae_checkpoint
load_checkpoint_and_dispatch(vqvae_model, vqvae_diffusers_checkpoint_file.name, device_map="auto")
print("done loading vqvae")
# done vqvae_model
# transformer_model
print(
f"loading transformer, config: {args.original_config_file}, checkpoint: {args.checkpoint_path}, use ema:"
f" {use_ema}"
)
original_config = read_config_file(args.original_config_file).model
diffusion_config = original_config.params.diffusion_config
transformer_config = original_config.params.diffusion_config.params.transformer_config
content_embedding_config = original_config.params.diffusion_config.params.content_emb_config
pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location)
if use_ema:
if "ema" in pre_checkpoint:
checkpoint = {}
for k, v in pre_checkpoint["model"].items():
checkpoint[k] = v
for k, v in pre_checkpoint["ema"].items():
# The ema weights are only used on the transformer. To mimic their key as if they came
# from the state_dict for the top level model, we prefix with an additional "transformer."
# See the source linked in the args.use_ema config for more information.
checkpoint[f"transformer.{k}"] = v
else:
print("attempted to load ema weights but no ema weights are specified in the loaded checkpoint.")
checkpoint = pre_checkpoint["model"]
else:
checkpoint = pre_checkpoint["model"]
del pre_checkpoint
with init_empty_weights():
transformer_model = transformer_model_from_original_config(
diffusion_config, transformer_config, content_embedding_config
)
diffusers_transformer_checkpoint = transformer_original_checkpoint_to_diffusers_checkpoint(
transformer_model, checkpoint
)
# classifier free sampling embeddings interlude
# The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate
# model, so we pull them off the checkpoint before the checkpoint is deleted.
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf
if learnable_classifier_free_sampling_embeddings:
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"]
else:
learned_classifier_free_sampling_embeddings_embeddings = None
# done classifier free sampling embeddings interlude
with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file:
torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name)
del diffusers_transformer_checkpoint
del checkpoint
load_checkpoint_and_dispatch(transformer_model, diffusers_transformer_checkpoint_file.name, device_map="auto")
print("done loading transformer")
# done transformer_model
# text encoder
print("loading CLIP text encoder")
clip_name = "openai/clip-vit-base-patch32"
# The original VQ-Diffusion specifies the pad value by the int used in the
# returned tokens. Each model uses `0` as the pad value. The transformers clip api
# specifies the pad value via the token before it has been tokenized. The `!` pad
# token is the same as padding with the `0` pad value.
pad_token = "!"
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto")
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0
text_encoder_model = CLIPTextModel.from_pretrained(
clip_name,
# `CLIPTextModel` does not support device_map="auto"
# device_map="auto"
)
print("done loading CLIP text encoder")
# done text encoder
# scheduler
scheduler_model = VQDiffusionScheduler(
# the scheduler has the same number of embeddings as the transformer
num_vec_classes=transformer_model.num_vector_embeds
)
# done scheduler
# learned classifier free sampling embeddings
with init_empty_weights():
learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings(
learnable_classifier_free_sampling_embeddings,
hidden_size=text_encoder_model.config.hidden_size,
length=tokenizer_model.model_max_length,
)
learned_classifier_free_sampling_checkpoint = {
"embeddings": learned_classifier_free_sampling_embeddings_embeddings.float()
}
with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file:
torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name)
del learned_classifier_free_sampling_checkpoint
del learned_classifier_free_sampling_embeddings_embeddings
load_checkpoint_and_dispatch(
learned_classifier_free_sampling_embeddings_model,
learned_classifier_free_sampling_checkpoint_file.name,
device_map="auto",
)
# done learned classifier free sampling embeddings
print(f"saving VQ diffusion model, path: {args.dump_path}")
pipe = VQDiffusionPipeline(
vqvae=vqvae_model,
transformer=transformer_model,
tokenizer=tokenizer_model,
text_encoder=text_encoder_model,
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model,
scheduler=scheduler_model,
)
pipe.save_pretrained(args.dump_path)
print("done writing VQ diffusion model")

View File

@@ -78,7 +78,7 @@ from setuptools import find_packages, setup
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/diffusers/dependency_versions_table.py
_deps = [
"Pillow<10.0", # keep the PIL.Image.Resampling deprecation away
"Pillow", # keep the PIL.Image.Resampling deprecation away
"accelerate>=0.11.0",
"black==22.8",
"datasets",
@@ -89,15 +89,15 @@ _deps = [
"huggingface-hub>=0.10.0",
"importlib_metadata",
"isort>=5.5.4",
"jax>=0.2.8,!=0.3.2,<=0.3.6",
"jaxlib>=0.1.65,<=0.3.6",
"jax>=0.2.8,!=0.3.2",
"jaxlib>=0.1.65",
"modelcards>=0.1.4",
"numpy",
"onnxruntime",
"parameterized",
"pytest",
"pytest-timeout",
"pytest-xdist",
"sentencepiece>=0.1.91,!=0.1.92",
"scipy",
"regex!=2019.12.17",
"requests",
@@ -179,18 +179,17 @@ extras["quality"] = deps_list("black", "isort", "flake8", "hf-doc-builder")
extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "tensorboard", "modelcards")
extras["test"] = deps_list(
"accelerate",
"datasets",
"onnxruntime",
"parameterized",
"pytest",
"pytest-timeout",
"pytest-xdist",
"sentencepiece",
"scipy",
"torchvision",
"transformers"
)
extras["torch"] = deps_list("torch")
extras["torch"] = deps_list("torch", "accelerate")
if os.name == "nt": # windows
extras["flax"] = [] # jax is not supported on windows
@@ -213,7 +212,7 @@ install_requires = [
setup(
name="diffusers",
version="0.7.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="0.8.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@@ -9,7 +9,7 @@ from .utils import (
)
__version__ = "0.7.0.dev0"
__version__ = "0.8.0"
from .configuration_utils import ConfigMixin
from .onnx_utils import OnnxRuntimeModel
@@ -18,7 +18,7 @@ from .utils import logging
if is_torch_available():
from .modeling_utils import ModelMixin
from .models import AutoencoderKL, UNet1DModel, UNet2DConditionModel, UNet2DModel, VQModel
from .models import AutoencoderKL, Transformer2DModel, UNet1DModel, UNet2DConditionModel, UNet2DModel, VQModel
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
@@ -35,17 +35,24 @@ if is_torch_available():
DDPMPipeline,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
else:
@@ -58,11 +65,21 @@ else:
if is_torch_available() and is_transformers_available():
from .pipelines import (
AltDiffusionImg2ImgPipeline,
AltDiffusionPipeline,
CycleDiffusionPipeline,
LDMTextToImagePipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VQDiffusionPipeline,
)
else:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
@@ -71,6 +88,7 @@ if is_torch_available() and is_transformers_available() and is_onnx_available():
from .pipelines import (
OnnxStableDiffusionImg2ImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
StableDiffusionOnnxPipeline,
)
@@ -85,6 +103,7 @@ if is_flax_available():
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,

View File

@@ -16,6 +16,7 @@
""" ConfigMixin base class and utilities."""
import dataclasses
import functools
import importlib
import inspect
import json
import os
@@ -28,7 +29,7 @@ from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, R
from requests import HTTPError
from . import __version__
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, DummyObject, deprecate, logging
logger = logging.get_logger(__name__)
@@ -36,6 +37,38 @@ logger = logging.get_logger(__name__)
_re_configuration_file = re.compile(r"config\.(.*)\.json")
class FrozenDict(OrderedDict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for key, value in self.items():
setattr(self, key, value)
self.__frozen = True
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __setattr__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setattr__(name, value)
def __setitem__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setitem__(name, value)
class ConfigMixin:
r"""
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
@@ -48,9 +81,12 @@ class ConfigMixin:
[`~ConfigMixin.save_config`] (should be overridden by parent class).
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
overridden by parent class).
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by parent
class).
"""
config_name = None
ignore_for_config = []
has_compatibles = False
def register_to_config(self, **kwargs):
if self.config_name is None:
@@ -96,12 +132,101 @@ class ConfigMixin:
output_config_file = os.path.join(save_directory, self.config_name)
self.to_json_file(output_config_file)
logger.info(f"ConfigMixinuration saved in {output_config_file}")
logger.info(f"Configuration saved in {output_config_file}")
@classmethod
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
r"""
Instantiate a Python class from a pre-defined JSON-file.
Instantiate a Python class from a config dictionary
Parameters:
config (`Dict[str, Any]`):
A config dictionary from which the Python class will be instantiated. Make sure to only load
configuration files of compatible classes.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
Whether kwargs that are not consumed by the Python class should be returned or not.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the Python class.
`**kwargs` will be directly passed to the underlying scheduler/model's `__init__` method and eventually
overwrite same named arguments of `config`.
Examples:
```python
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
>>> # Download scheduler from huggingface.co and cache.
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
>>> # Instantiate DDIM scheduler class with same config as DDPM
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
>>> # Instantiate PNDM scheduler class with same config as DDPM
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
```
"""
# <===== TO BE REMOVED WITH DEPRECATION
# TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
if "pretrained_model_name_or_path" in kwargs:
config = kwargs.pop("pretrained_model_name_or_path")
if config is None:
raise ValueError("Please make sure to provide a config as the first positional argument.")
# ======>
if not isinstance(config, dict):
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
if "Scheduler" in cls.__name__:
deprecation_message += (
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
" be removed in v1.0.0."
)
elif "Model" in cls.__name__:
deprecation_message += (
f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
" instead. This functionality will be removed in v1.0.0."
)
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
# Allow dtype to be specified on initialization
if "dtype" in unused_kwargs:
init_dict["dtype"] = unused_kwargs.pop("dtype")
# Return model and optionally state and/or unused_kwargs
model = cls(**init_dict)
# make sure to also save config parameters that might be used for compatible classes
model.register_to_config(**hidden_dict)
# add hidden kwargs of compatible classes to unused_kwargs
unused_kwargs = {**unused_kwargs, **hidden_dict}
if return_unused_kwargs:
return (model, unused_kwargs)
else:
return model
@classmethod
def get_config_dict(cls, *args, **kwargs):
deprecation_message = (
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
" removed in version v1.0.0"
)
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
return cls.load_config(*args, **kwargs)
@classmethod
def load_config(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
r"""
Instantiate a Python class from a config dictionary
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
@@ -115,10 +240,6 @@ class ConfigMixin:
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
checkpoint with 3 labels).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
@@ -156,33 +277,7 @@ class ConfigMixin:
use this method in a firewalled environment.
</Tip>
"""
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)
# Allow dtype to be specified on initialization
if "dtype" in unused_kwargs:
init_dict["dtype"] = unused_kwargs.pop("dtype")
# Return model and optionally state and/or unused_kwargs
model = cls(**init_dict)
return_tuple = (model,)
# Flax schedulers have a state, so return it.
if cls.__name__.startswith("Flax") and hasattr(model, "create_state") and getattr(model, "has_state", False):
state = model.create_state()
return_tuple += (state,)
if return_unused_kwargs:
return return_tuple + (unused_kwargs,)
else:
return return_tuple if len(return_tuple) > 1 else model
@classmethod
def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
@@ -278,11 +373,22 @@ class ConfigMixin:
except (json.JSONDecodeError, UnicodeDecodeError):
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
if return_unused_kwargs:
return config_dict, kwargs
return config_dict
@staticmethod
def _get_init_keys(cls):
return set(dict(inspect.signature(cls.__init__).parameters).keys())
@classmethod
def extract_init_dict(cls, config_dict, **kwargs):
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
# 0. Copy origin config dict
original_dict = {k: v for k, v in config_dict.items()}
# 1. Retrieve expected config attributes from __init__ signature
expected_keys = cls._get_init_keys(cls)
expected_keys.remove("self")
# remove general kwargs if present in dict
if "kwargs" in expected_keys:
@@ -292,11 +398,44 @@ class ConfigMixin:
for arg in cls._flax_internal_args:
expected_keys.remove(arg)
# 2. Remove attributes that cannot be expected from expected config attributes
# remove keys to be ignored
if len(cls.ignore_for_config) > 0:
expected_keys = expected_keys - set(cls.ignore_for_config)
# load diffusers library to import compatible and original scheduler
diffusers_library = importlib.import_module(__name__.split(".")[0])
if cls.has_compatibles:
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
else:
compatible_classes = []
expected_keys_comp_cls = set()
for c in compatible_classes:
expected_keys_c = cls._get_init_keys(c)
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
# remove attributes from orig class that cannot be expected
orig_cls_name = config_dict.pop("_class_name", cls.__name__)
if orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name):
orig_cls = getattr(diffusers_library, orig_cls_name)
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
# remove private attributes
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
init_dict = {}
for key in expected_keys:
# if config param is passed to kwarg and is present in config dict
# it should overwrite existing config dict key
if key in kwargs and key in config_dict:
config_dict[key] = kwargs.pop(key)
if key in kwargs:
# overwrite key
init_dict[key] = kwargs.pop(key)
@@ -304,8 +443,7 @@ class ConfigMixin:
# use value from config dict
init_dict[key] = config_dict.pop(key)
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
# 4. Give nice warning if unexpected values have been passed
if len(config_dict) > 0:
logger.warning(
f"The config attributes {config_dict} were passed to {cls.__name__}, "
@@ -313,15 +451,20 @@ class ConfigMixin:
f"{cls.config_name} configuration file."
)
unused_kwargs = {**config_dict, **kwargs}
# 5. Give nice info if config attributes are initiliazed to default because they have not been passed
passed_keys = set(init_dict.keys())
if len(expected_keys - passed_keys) > 0:
logger.info(
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
)
return init_dict, unused_kwargs
# 6. Define unused keyword arguments
unused_kwargs = {**config_dict, **kwargs}
# 7. Define "hidden" config parameters that were saved for compatible classes
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict and not k.startswith("_")}
return init_dict, unused_kwargs, hidden_config_dict
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
@@ -334,6 +477,12 @@ class ConfigMixin:
@property
def config(self) -> Dict[str, Any]:
"""
Returns the config of the class as a frozen dictionary
Returns:
`Dict[str, Any]`: Config of the class.
"""
return self._internal_dict
def to_json_string(self) -> str:
@@ -358,38 +507,6 @@ class ConfigMixin:
writer.write(self.to_json_string())
class FrozenDict(OrderedDict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for key, value in self.items():
setattr(self, key, value)
self.__frozen = True
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __setattr__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setattr__(name, value)
def __setitem__(self, name, value):
if hasattr(self, "__frozen") and self.__frozen:
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
super().__setitem__(name, value)
def register_to_config(init):
r"""
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are

View File

@@ -2,7 +2,7 @@
# 1. modify the `_deps` dict in setup.py
# 2. run `make deps_table_update``
deps = {
"Pillow": "Pillow<10.0",
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"black": "black==22.8",
"datasets": "datasets",
@@ -13,15 +13,15 @@ deps = {
"huggingface-hub": "huggingface-hub>=0.10.0",
"importlib_metadata": "importlib_metadata",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2,<=0.3.6",
"jaxlib": "jaxlib>=0.1.65,<=0.3.6",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"modelcards": "modelcards>=0.1.4",
"numpy": "numpy",
"onnxruntime": "onnxruntime",
"parameterized": "parameterized",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"regex": "regex!=2019.12.17",
"requests": "requests",

View File

@@ -0,0 +1,5 @@
# 🧨 Diffusers Experimental
We are adding experimental code to support novel applications and usages of the Diffusers library.
Currently, the following experiments are supported:
* Reinforcement learning via an implementation of the [Diffuser](https://arxiv.org/abs/2205.09991) model.

View File

@@ -0,0 +1 @@
from .rl import ValueGuidedRLPipeline

View File

@@ -0,0 +1 @@
from .value_guided_sampling import ValueGuidedRLPipeline

View File

@@ -0,0 +1,129 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import tqdm
from ...models.unet_1d import UNet1DModel
from ...pipeline_utils import DiffusionPipeline
from ...utils.dummy_pt_objects import DDPMScheduler
class ValueGuidedRLPipeline(DiffusionPipeline):
def __init__(
self,
value_function: UNet1DModel,
unet: UNet1DModel,
scheduler: DDPMScheduler,
env,
):
super().__init__()
self.value_function = value_function
self.unet = unet
self.scheduler = scheduler
self.env = env
self.data = env.get_dataset()
self.means = dict()
for key in self.data.keys():
try:
self.means[key] = self.data[key].mean()
except:
pass
self.stds = dict()
for key in self.data.keys():
try:
self.stds[key] = self.data[key].std()
except:
pass
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.shape[0]
def normalize(self, x_in, key):
return (x_in - self.means[key]) / self.stds[key]
def de_normalize(self, x_in, key):
return x_in * self.stds[key] + self.means[key]
def to_torch(self, x_in):
if type(x_in) is dict:
return {k: self.to_torch(v) for k, v in x_in.items()}
elif torch.is_tensor(x_in):
return x_in.to(self.unet.device)
return torch.tensor(x_in, device=self.unet.device)
def reset_x0(self, x_in, cond, act_dim):
for key, val in cond.items():
x_in[:, key, act_dim:] = val.clone()
return x_in
def run_diffusion(self, x, conditions, n_guide_steps, scale):
batch_size = x.shape[0]
y = None
for i in tqdm.tqdm(self.scheduler.timesteps):
# create batch of timesteps to pass into model
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
for _ in range(n_guide_steps):
with torch.enable_grad():
x.requires_grad_()
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
grad = torch.autograd.grad([y.sum()], [x])[0]
posterior_variance = self.scheduler._get_variance(i)
model_std = torch.exp(0.5 * posterior_variance)
grad = model_std * grad
grad[timesteps < 2] = 0
x = x.detach()
x = x + scale * grad
x = self.reset_x0(x, conditions, self.action_dim)
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
# apply conditions to the trajectory
x = self.reset_x0(x, conditions, self.action_dim)
x = self.to_torch(x)
return x, y
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
# normalize the observations and create batch dimension
obs = self.normalize(obs, "observations")
obs = obs[None].repeat(batch_size, axis=0)
conditions = {0: self.to_torch(obs)}
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
x1 = torch.randn(shape, device=self.unet.device)
x = self.reset_x0(x1, conditions, self.action_dim)
x = self.to_torch(x)
# run the diffusion process
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
# sort output trajectories by value
sorted_idx = y.argsort(0, descending=True).squeeze()
sorted_values = x[sorted_idx]
actions = sorted_values[:, :, : self.action_dim]
actions = actions.detach().cpu().numpy()
denorm_actions = self.de_normalize(actions, key="actions")
# select the action with the highest value
if y is not None:
selected_index = 0
else:
# if we didn't run value guiding, select a random action
selected_index = np.random.randint(0, batch_size)
denorm_actions = denorm_actions[selected_index, 0]
return denorm_actions

View File

@@ -16,13 +16,25 @@
import os
import shutil
import sys
from pathlib import Path
from typing import Optional
from typing import Dict, Optional, Union
from uuid import uuid4
from huggingface_hub import HfFolder, Repository, whoami
from .pipeline_utils import DiffusionPipeline
from .utils import deprecate, is_modelcards_available, logging
from . import __version__
from .utils import ENV_VARS_TRUE_VALUES, deprecate, logging
from .utils.import_utils import (
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_modelcards_available,
is_onnx_available,
is_torch_available,
)
if is_modelcards_available():
@@ -33,6 +45,32 @@ logger = logging.get_logger(__name__)
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md"
SESSION_ID = uuid4().hex
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
"""
Formats a user-agent string with basic info about a request.
"""
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
if DISABLE_TELEMETRY:
return ua + "; telemetry/off"
if is_torch_available():
ua += f"; torch/{_torch_version}"
if is_flax_available():
ua += f"; jax/{_jax_version}"
ua += f"; flax/{_flax_version}"
if is_onnx_available():
ua += f"; onnxruntime/{_onnxruntime_version}"
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(user_agent, dict):
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
return ua
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
@@ -101,7 +139,7 @@ def init_git_repo(args, at_init: bool = False):
def push_to_hub(
args,
pipeline: DiffusionPipeline,
pipeline,
repo: Repository,
commit_message: Optional[str] = "End of training",
blocking: bool = True,

View File

@@ -21,18 +21,37 @@ from typing import Callable, List, Optional, Tuple, Union
import torch
from torch import Tensor, device
from diffusers.utils import is_accelerate_available
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
from requests import HTTPError
from . import __version__
from .utils import CONFIG_NAME, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, WEIGHTS_NAME, logging
from .utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
WEIGHTS_NAME,
is_accelerate_available,
is_torch_version,
logging,
)
logger = logging.get_logger(__name__)
if is_torch_version(">=", "1.9.0"):
_LOW_CPU_MEM_USAGE_DEFAULT = True
else:
_LOW_CPU_MEM_USAGE_DEFAULT = False
if is_accelerate_available():
import accelerate
from accelerate.utils import set_module_tensor_to_device
from accelerate.utils.versions import is_torch_version
def get_parameter_device(parameter: torch.nn.Module):
try:
return next(parameter.parameters()).device
@@ -268,6 +287,19 @@ class ModelMixin(torch.nn.Module):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
setting this argument to `True` will raise an error.
<Tip>
@@ -296,6 +328,41 @@ class ModelMixin(torch.nn.Module):
torch_dtype = kwargs.pop("torch_dtype", None)
subfolder = kwargs.pop("subfolder", None)
device_map = kwargs.pop("device_map", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_accelerate_available():
raise NotImplementedError(
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
" `device_map=None`. You can install accelerate with `pip install accelerate`."
)
# Check if we can handle device_map and dispatching the weights
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
user_agent = {
"diffusers": __version__,
@@ -378,12 +445,8 @@ class ModelMixin(torch.nn.Module):
# restore default dtype
if device_map == "auto":
if is_accelerate_available():
import accelerate
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model, unused_kwargs = cls.from_config(
config_path,
@@ -400,7 +463,17 @@ class ModelMixin(torch.nn.Module):
**kwargs,
)
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map)
# if device_map is Non,e load the state dict on move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file)
# move the parms from meta device to cpu
for param_name, param in state_dict.items():
set_module_tensor_to_device(model, param_name, param_device, value=param)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by deafult the device_map is None and the weights are loaded on the CPU
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map)
loading_info = {
"missing_keys": [],

View File

@@ -16,6 +16,7 @@ from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .attention import Transformer2DModel
from .unet_1d import UNet1DModel
from .unet_2d import UNet2DModel
from .unet_2d_condition import UNet2DConditionModel

View File

@@ -12,12 +12,219 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..models.embeddings import ImagePositionalEmbeddings
from ..utils import BaseOutput
from ..utils.import_utils import is_xformers_available
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
for the unnoised latent pixels.
"""
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class Transformer2DModel(ModelMixin, ConfigMixin):
"""
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
embeddings) inputs.
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
transformer action. Finally, reshape to image.
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
classes of unnoised image.
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = in_channels is not None
self.is_input_vectorized = num_vector_embeds is not None
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized:
raise ValueError(
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is not None."
)
# 2. Define input layers
if self.is_input_continuous:
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
self.height = sample_size
self.width = sample_size
self.num_vector_embeds = num_vector_embeds
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if self.is_input_continuous:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
def _set_attention_slice(self, slice_size):
for block in self.transformer_blocks:
block._set_attention_slice(slice_size)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
# 1. Input
if self.is_input_continuous:
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
# 3. Output
if self.is_input_continuous:
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
hidden_states = self.proj_out(hidden_states)
output = hidden_states + residual
elif self.is_input_vectorized:
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
for block in self.transformer_blocks:
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
class AttentionBlock(nn.Module):
"""
@@ -27,19 +234,19 @@ class AttentionBlock(nn.Module):
Uses three q, k, v linear layers to compute attention.
Parameters:
channels (:obj:`int`): The number of channels in the input and output.
num_head_channels (:obj:`int`, *optional*):
channels (`int`): The number of channels in the input and output.
num_head_channels (`int`, *optional*):
The number of channels in each head. If None, then `num_heads` = 1.
num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
"""
def __init__(
self,
channels: int,
num_head_channels: Optional[int] = None,
num_groups: int = 32,
norm_num_groups: int = 32,
rescale_output_factor: float = 1.0,
eps: float = 1e-5,
):
@@ -48,7 +255,7 @@ class AttentionBlock(nn.Module):
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
self.num_head_size = num_head_channels
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
# define q,k,v as linear layers
self.query = nn.Linear(channels, channels)
@@ -78,22 +285,52 @@ class AttentionBlock(nn.Module):
key_proj = self.key(hidden_states)
value_proj = self.value(hidden_states)
# transpose
query_states = self.transpose_for_scores(query_proj)
key_states = self.transpose_for_scores(key_proj)
value_states = self.transpose_for_scores(value_proj)
scale = 1 / math.sqrt(self.channels / self.num_heads)
# get scores
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) # TODO: use baddmm
if self.num_heads > 1:
query_states = self.transpose_for_scores(query_proj)
key_states = self.transpose_for_scores(key_proj)
value_states = self.transpose_for_scores(value_proj)
# TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors?
# or reformulate this into a 3D problem?
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * scale
else:
query_states, key_states, value_states = query_proj, key_proj, value_proj
attention_scores = torch.baddbmm(
torch.empty(
query_states.shape[0],
query_states.shape[1],
key_states.shape[1],
dtype=query_states.dtype,
device=query_states.device,
),
query_states,
key_states.transpose(-1, -2),
beta=0,
alpha=scale,
)
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
# compute attention output
hidden_states = torch.matmul(attention_probs, value_states)
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
hidden_states = hidden_states.view(new_hidden_states_shape)
if self.num_heads > 1:
# TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors?
# or reformulate this into a 3D problem?
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
hidden_states = torch.matmul(attention_probs, value_states)
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
hidden_states = hidden_states.view(new_hidden_states_shape)
else:
hidden_states = torch.bmm(attention_probs, value_states)
# compute next hidden_states
hidden_states = self.proj_attn(hidden_states)
@@ -104,112 +341,118 @@ class AttentionBlock(nn.Module):
return hidden_states
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
standard transformer action. Finally, reshape to image.
Parameters:
in_channels (:obj:`int`): The number of channels in the input and output.
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
d_head (:obj:`int`): The number of channels in each head.
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
"""
def __init__(
self,
in_channels: int,
n_heads: int,
d_head: int,
depth: int = 1,
dropout: float = 0.0,
num_groups: int = 32,
context_dim: Optional[int] = None,
):
super().__init__()
self.n_heads = n_heads
self.d_head = d_head
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)
]
)
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def _set_attention_slice(self, slice_size):
for block in self.transformer_blocks:
block._set_attention_slice(slice_size)
def forward(self, hidden_states, context=None):
# note: if no context is given, cross-attention defaults to self-attention
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=context)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
hidden_states = self.proj_out(hidden_states)
return hidden_states + residual
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (:obj:`int`): The number of channels in the input and output.
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
d_head (:obj:`int`): The number of channels in each head.
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
n_heads: int,
d_head: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
context_dim: Optional[int] = None,
gated_ff: bool = True,
checkpoint: bool = True,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
):
super().__init__()
self.attn1 = CrossAttention(
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.attn2 = CrossAttention(
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
# layer norms
self.use_ada_layer_norm = num_embeds_ada_norm is not None
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
# if xformers is installed try to use memory_efficient_attention by default
if is_xformers_available():
try:
self._set_use_memory_efficient_attention_xformers(True)
except Exception as e:
warnings.warn(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
def _set_attention_slice(self, slice_size):
self.attn1._slice_size = slice_size
self.attn2._slice_size = slice_size
def forward(self, hidden_states, context=None):
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, context=None, timestep=None):
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
)
hidden_states = self.attn1(norm_hidden_states) + hidden_states
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
@@ -218,20 +461,28 @@ class CrossAttention(nn.Module):
A cross attention layer.
Parameters:
query_dim (:obj:`int`): The number of channels in the query.
context_dim (:obj:`int`, *optional*):
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the context. If not given, defaults to `query_dim`.
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = context_dim if context_dim is not None else query_dim
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.scale = dim_head**-0.5
self.heads = heads
@@ -239,12 +490,15 @@ class CrossAttention(nn.Module):
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self._slice_size = None
self._use_memory_efficient_attention_xformers = False
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
@@ -277,28 +531,34 @@ class CrossAttention(nn.Module):
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
# attention, what we cannot get enough of
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value)
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
return self.to_out(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def _attention(self, query, key, value):
# TODO: use baddbmm for better performance
if query.device.type == "mps":
# Better performance on mps (~20-25%)
attention_scores = torch.einsum("b i d, b j d -> b i j", query, key) * self.scale
else:
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
attention_probs = attention_scores.softmax(dim=-1)
# compute attention output
if query.device.type == "mps":
hidden_states = torch.einsum("b i j, b j d -> b i d", attention_probs, value)
else:
hidden_states = torch.matmul(attention_probs, value)
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
@@ -313,21 +573,15 @@ class CrossAttention(nn.Module):
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
if query.device.type == "mps":
# Better performance on mps (~20-25%)
attn_slice = (
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx])
* self.scale
)
else:
attn_slice = (
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
) # TODO: use baddbmm for better performance
attn_slice = torch.baddbmm(
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query[start_idx:end_idx],
key[start_idx:end_idx].transpose(-1, -2),
beta=0,
alpha=self.scale,
)
attn_slice = attn_slice.softmax(dim=-1)
if query.device.type == "mps":
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
else:
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
@@ -335,31 +589,56 @@ class CrossAttention(nn.Module):
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _memory_efficient_attention_xformers(self, query, key, value):
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (:obj:`int`): The number of channels in the input.
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
"""
def __init__(
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
project_in = GEGLU(dim, inner_dim)
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
if activation_fn == "geglu":
geglu = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
geglu = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(geglu)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out))
def forward(self, hidden_states):
return self.net(hidden_states)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
# feedforward
@@ -368,8 +647,8 @@ class GEGLU(nn.Module):
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (:obj:`int`): The number of channels in the input.
dim_out (:obj:`int`): The number of channels in the output.
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
@@ -385,3 +664,164 @@ class GEGLU(nn.Module):
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
"""
The approximate form of Gaussian Error Linear Unit (GELU)
For more details, see section 2: https://arxiv.org/abs/1606.08415
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
def forward(self, x):
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class DualTransformer2DModel(nn.Module):
"""
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.transformers = nn.ModuleList(
[
Transformer2DModel(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
num_layers=num_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
sample_size=sample_size,
num_vector_embeds=num_vector_embeds,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
)
for _ in range(2)
]
)
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
self.mix_ratio = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
self.condition_lengths = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
self.transformer_index_for_condition = [1, 0]
def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
input_states = hidden_states
encoded_states = []
tokens_start = 0
for i in range(2):
# for each of the two transformers, pass the corresponding condition tokens
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
transformer_index = self.transformer_index_for_condition[i]
encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
0
]
encoded_states.append(encoded_state - input_states)
tokens_start += self.condition_lengths[i]
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
output_states = output_states + input_states
if not return_dict:
return (output_states,)
return Transformer2DModelOutput(sample=output_states)
def _set_attention_slice(self, slice_size):
for transformer in self.transformers:
transformer._set_attention_slice(slice_size)
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
for transformer in self.transformers:
transformer._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

View File

@@ -142,7 +142,7 @@ class FlaxBasicTransformerBlock(nn.Module):
return hidden_states
class FlaxSpatialTransformer(nn.Module):
class FlaxTransformer2DModel(nn.Module):
r"""
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
https://arxiv.org/pdf/1506.02025.pdf

View File

@@ -62,14 +62,21 @@ def get_timestep_embedding(
class TimestepEmbedding(nn.Module):
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"):
def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None):
super().__init__()
self.linear_1 = nn.Linear(channel, time_embed_dim)
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
self.act = None
if act_fn == "silu":
self.act = nn.SiLU()
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
elif act_fn == "mish":
self.act = nn.Mish()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
def forward(self, sample):
sample = self.linear_1(sample)
@@ -126,3 +133,68 @@ class GaussianFourierProjection(nn.Module):
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out
class ImagePositionalEmbeddings(nn.Module):
"""
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
Output vector embeddings are used as input for the transformer.
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
Args:
num_embed (`int`):
Number of embeddings for the latent pixels embeddings.
height (`int`):
Height of the latent image i.e. the number of height embeddings.
width (`int`):
Width of the latent image i.e. the number of width embeddings.
embed_dim (`int`):
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
"""
def __init__(
self,
num_embed: int,
height: int,
width: int,
embed_dim: int,
):
super().__init__()
self.height = height
self.width = width
self.num_embed = num_embed
self.embed_dim = embed_dim
self.emb = nn.Embedding(self.num_embed, embed_dim)
self.height_emb = nn.Embedding(self.height, embed_dim)
self.width_emb = nn.Embedding(self.width, embed_dim)
def forward(self, index):
emb = self.emb(index)
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
# 1 x H x D -> 1 x H x 1 x D
height_emb = height_emb.unsqueeze(2)
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
# 1 x W x D -> 1 x 1 x W x D
width_emb = width_emb.unsqueeze(1)
pos_emb = height_emb + width_emb
# 1 x H x W x D -> 1 x L xD
pos_emb = pos_emb.view(1, self.height * self.width, -1)
emb = emb + pos_emb[:, : emb.shape[1], :]
return emb

View File

@@ -17,23 +17,41 @@ import flax.linen as nn
import jax.numpy as jnp
# This is like models.embeddings.get_timestep_embedding (PyTorch) but
# less general (only handles the case we currently need).
def get_sinusoidal_embeddings(timesteps, embedding_dim, freq_shift: float = 1):
def get_sinusoidal_embeddings(
timesteps: jnp.ndarray,
embedding_dim: int,
freq_shift: float = 1,
min_timescale: float = 1,
max_timescale: float = 1.0e4,
flip_sin_to_cos: bool = False,
scale: float = 1.0,
) -> jnp.ndarray:
"""Returns the positional encoding (same as Tensor2Tensor).
Args:
timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
embedding_dim: The number of output channels.
min_timescale: The smallest time unit (should probably be 0.0).
max_timescale: The largest time unit.
Returns:
a Tensor of timing signals [N, num_channels]
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even"
num_timescales = float(embedding_dim // 2)
log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift)
inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment)
emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0)
:param timesteps: a 1-D tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] tensor of positional embeddings.
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - freq_shift)
emb = jnp.exp(jnp.arange(half_dim) * -emb)
emb = timesteps[:, None] * emb[None, :]
emb = jnp.concatenate([jnp.cos(emb), jnp.sin(emb)], -1)
return emb
# scale embeddings
scaled_time = scale * emb
if flip_sin_to_cos:
signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1)
else:
signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1)
signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim])
return signal
class FlaxTimestepEmbedding(nn.Module):
@@ -70,4 +88,6 @@ class FlaxTimesteps(nn.Module):
@nn.compact
def __call__(self, timesteps):
return get_sinusoidal_embeddings(timesteps, self.dim, freq_shift=self.freq_shift)
return get_sinusoidal_embeddings(
timesteps, embedding_dim=self.dim, freq_shift=self.freq_shift, flip_sin_to_cos=True
)

View File

@@ -5,6 +5,75 @@ import torch.nn as nn
import torch.nn.functional as F
class Upsample1D(nn.Module):
"""
An upsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
use_conv_transpose:
out_channels:
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.conv = None
if use_conv_transpose:
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(x)
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample1D(nn.Module):
"""
A downsampling layer with an optional convolution.
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
out_channels:
padding:
"""
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
if use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.conv(x)
class Upsample2D(nn.Module):
"""
An upsampling layer with an optional convolution.
@@ -12,7 +81,8 @@ class Upsample2D(nn.Module):
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions.
use_conv_transpose:
out_channels:
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
@@ -80,7 +150,8 @@ class Downsample2D(nn.Module):
Parameters:
channels: channels in the inputs and outputs.
use_conv: a bool determining if a convolution is applied.
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions.
out_channels:
padding:
"""
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
@@ -415,6 +486,69 @@ class Mish(torch.nn.Module):
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
# unet_rl.py
def rearrange_dims(tensor):
if len(tensor.shape) == 2:
return tensor[:, :, None]
if len(tensor.shape) == 3:
return tensor[:, :, None, :]
elif len(tensor.shape) == 4:
return tensor[:, :, 0, :]
else:
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
class Conv1dBlock(nn.Module):
"""
Conv1d --> GroupNorm --> Mish
"""
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
super().__init__()
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
self.group_norm = nn.GroupNorm(n_groups, out_channels)
self.mish = nn.Mish()
def forward(self, x):
x = self.conv1d(x)
x = rearrange_dims(x)
x = self.group_norm(x)
x = rearrange_dims(x)
x = self.mish(x)
return x
# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
super().__init__()
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
self.time_emb_act = nn.Mish()
self.time_emb = nn.Linear(embed_dim, out_channels)
self.residual_conv = (
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
)
def forward(self, x, t):
"""
Args:
x : [ batch_size x inp_channels x horizon ]
t : [ batch_size x embed_dim ]
returns:
out : [ batch_size x out_channels x horizon ]
"""
t = self.time_emb_act(t)
t = self.time_emb(t)
out = self.conv_in(x) + rearrange_dims(t)
out = self.conv_out(out)
return out + self.residual_conv(x)
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
r"""Upsample2D a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given

View File

@@ -1,3 +1,17 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
@@ -8,7 +22,7 @@ from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .unet_1d_blocks import get_down_block, get_mid_block, get_up_block
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
@@ -30,11 +44,11 @@ class UNet1DModel(ModelMixin, ConfigMixin):
implements for all the model (such as downloading or saving, etc.)
Parameters:
sample_size (`int`, *optionl*): Default length of sample. Should be adaptable at runtime.
sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding.
freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for fourier time embedding.
flip_sin_to_cos (`bool`, *optional*, defaults to :
obj:`False`): Whether to flip sin to cos for fourier time embedding.
down_block_types (`Tuple[str]`, *optional*, defaults to :
@@ -43,6 +57,13 @@ class UNet1DModel(ModelMixin, ConfigMixin):
obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to :
obj:`(32, 32, 64)`): Tuple of block output channels.
mid_block_type (`str`, *optional*, defaults to "UNetMidBlock1D"): block type for middle of UNet.
out_block_type (`str`, *optional*, defaults to `None`): optional output processing of UNet.
act_fn (`str`, *optional*, defaults to None): optional activitation function in UNet blocks.
norm_num_groups (`int`, *optional*, defaults to 8): group norm member count in UNet blocks.
layers_per_block (`int`, *optional*, defaults to 1): added number of layers in a UNet block.
downsample_each_block (`int`, *optional*, defaults to False:
experimental feature for using a UNet without upsampling.
"""
@register_to_config
@@ -54,16 +75,20 @@ class UNet1DModel(ModelMixin, ConfigMixin):
out_channels: int = 2,
extra_in_channels: int = 0,
time_embedding_type: str = "fourier",
freq_shift: int = 0,
flip_sin_to_cos: bool = True,
use_timestep_embedding: bool = False,
freq_shift: float = 0.0,
down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
mid_block_type: str = "UNetMidBlock1D",
up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
mid_block_type: Tuple[str] = "UNetMidBlock1D",
out_block_type: str = None,
block_out_channels: Tuple[int] = (32, 32, 64),
act_fn: str = None,
norm_num_groups: int = 8,
layers_per_block: int = 1,
downsample_each_block: bool = False,
):
super().__init__()
self.sample_size = sample_size
# time
@@ -73,12 +98,19 @@ class UNet1DModel(ModelMixin, ConfigMixin):
)
timestep_input_dim = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
)
timestep_input_dim = block_out_channels[0]
if use_timestep_embedding:
time_embed_dim = block_out_channels[0] * 4
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.time_mlp = TimestepEmbedding(
in_channels=timestep_input_dim,
time_embed_dim=time_embed_dim,
act_fn=act_fn,
out_dim=block_out_channels[0],
)
self.down_blocks = nn.ModuleList([])
self.mid_block = None
@@ -94,38 +126,66 @@ class UNet1DModel(ModelMixin, ConfigMixin):
if i == 0:
input_channel += extra_in_channels
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=block_out_channels[0],
add_downsample=not is_final_block or downsample_each_block,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = get_mid_block(
mid_block_type=mid_block_type,
mid_channels=block_out_channels[-1],
mid_block_type,
in_channels=block_out_channels[-1],
out_channels=None,
mid_channels=block_out_channels[-1],
out_channels=block_out_channels[-1],
embed_dim=block_out_channels[0],
num_layers=layers_per_block,
add_downsample=downsample_each_block,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
if out_block_type is None:
final_upsample_channels = out_channels
else:
final_upsample_channels = block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else out_channels
output_channel = (
reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
)
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block,
in_channels=prev_output_channel,
out_channels=output_channel,
temb_channels=block_out_channels[0],
add_upsample=not is_final_block,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# TODO(PVP, Nathan) placeholder for RL application to be merged shortly
# Totally fine to add another layer with a if statement - no need for nn.Identity here
# out
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
self.out_block = get_out_block(
out_block_type=out_block_type,
num_groups_out=num_groups_out,
embed_dim=block_out_channels[0],
out_channels=out_channels,
act_fn=act_fn,
fc_dim=block_out_channels[-1] // 4,
)
def forward(
self,
@@ -144,12 +204,20 @@ class UNet1DModel(ModelMixin, ConfigMixin):
[`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
# 1. time
if len(timestep.shape) == 0:
timestep = timestep[None]
timestep_embed = self.time_proj(timestep)[..., None]
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
timestep_embed = self.time_proj(timesteps)
if self.config.use_timestep_embedding:
timestep_embed = self.time_mlp(timestep_embed)
else:
timestep_embed = timestep_embed[..., None]
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
# 2. down
down_block_res_samples = ()
@@ -158,13 +226,18 @@ class UNet1DModel(ModelMixin, ConfigMixin):
down_block_res_samples += res_samples
# 3. mid
sample = self.mid_block(sample)
if self.mid_block:
sample = self.mid_block(sample, timestep_embed)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-1:]
down_block_res_samples = down_block_res_samples[:-1]
sample = upsample_block(sample, res_samples)
sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)
# 5. post-process
if self.out_block:
sample = self.out_block(sample, timestep_embed)
if not return_dict:
return (sample,)

View File

@@ -17,6 +17,256 @@ import torch
import torch.nn.functional as F
from torch import nn
from .resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims
class DownResnetBlock1D(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
num_layers=1,
conv_shortcut=False,
temb_channels=32,
groups=32,
groups_out=None,
non_linearity=None,
time_embedding_norm="default",
output_scale_factor=1.0,
add_downsample=True,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.time_embedding_norm = time_embedding_norm
self.add_downsample = add_downsample
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
self.resnets = nn.ModuleList(resnets)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = nn.Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
else:
self.nonlinearity = None
self.downsample = None
if add_downsample:
self.downsample = Downsample1D(out_channels, use_conv=True, padding=1)
def forward(self, hidden_states, temb=None):
output_states = ()
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states,)
if self.nonlinearity is not None:
hidden_states = self.nonlinearity(hidden_states)
if self.downsample is not None:
hidden_states = self.downsample(hidden_states)
return hidden_states, output_states
class UpResnetBlock1D(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
num_layers=1,
temb_channels=32,
groups=32,
groups_out=None,
non_linearity=None,
time_embedding_norm="default",
output_scale_factor=1.0,
add_upsample=True,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.time_embedding_norm = time_embedding_norm
self.add_upsample = add_upsample
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
self.resnets = nn.ModuleList(resnets)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = nn.Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
else:
self.nonlinearity = None
self.upsample = None
if add_upsample:
self.upsample = Upsample1D(out_channels, use_conv_transpose=True)
def forward(self, hidden_states, res_hidden_states_tuple=None, temb=None):
if res_hidden_states_tuple is not None:
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat((hidden_states, res_hidden_states), dim=1)
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
if self.nonlinearity is not None:
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
hidden_states = self.upsample(hidden_states)
return hidden_states
class ValueFunctionMidBlock1D(nn.Module):
def __init__(self, in_channels, out_channels, embed_dim):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.embed_dim = embed_dim
self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim)
self.down1 = Downsample1D(out_channels // 2, use_conv=True)
self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim)
self.down2 = Downsample1D(out_channels // 4, use_conv=True)
def forward(self, x, temb=None):
x = self.res1(x, temb)
x = self.down1(x)
x = self.res2(x, temb)
x = self.down2(x)
return x
class MidResTemporalBlock1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
embed_dim,
num_layers: int = 1,
add_downsample: bool = False,
add_upsample: bool = False,
non_linearity=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.add_downsample = add_downsample
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim))
self.resnets = nn.ModuleList(resnets)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = nn.Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
else:
self.nonlinearity = None
self.upsample = None
if add_upsample:
self.upsample = Downsample1D(out_channels, use_conv=True)
self.downsample = None
if add_downsample:
self.downsample = Downsample1D(out_channels, use_conv=True)
if self.upsample and self.downsample:
raise ValueError("Block cannot downsample and upsample")
def forward(self, hidden_states, temb):
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
if self.upsample:
hidden_states = self.upsample(hidden_states)
if self.downsample:
self.downsample = self.downsample(hidden_states)
return hidden_states
class OutConv1DBlock(nn.Module):
def __init__(self, num_groups_out, out_channels, embed_dim, act_fn):
super().__init__()
self.final_conv1d_1 = nn.Conv1d(embed_dim, embed_dim, 5, padding=2)
self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim)
if act_fn == "silu":
self.final_conv1d_act = nn.SiLU()
if act_fn == "mish":
self.final_conv1d_act = nn.Mish()
self.final_conv1d_2 = nn.Conv1d(embed_dim, out_channels, 1)
def forward(self, hidden_states, temb=None):
hidden_states = self.final_conv1d_1(hidden_states)
hidden_states = rearrange_dims(hidden_states)
hidden_states = self.final_conv1d_gn(hidden_states)
hidden_states = rearrange_dims(hidden_states)
hidden_states = self.final_conv1d_act(hidden_states)
hidden_states = self.final_conv1d_2(hidden_states)
return hidden_states
class OutValueFunctionBlock(nn.Module):
def __init__(self, fc_dim, embed_dim):
super().__init__()
self.final_block = nn.ModuleList(
[
nn.Linear(fc_dim + embed_dim, fc_dim // 2),
nn.Mish(),
nn.Linear(fc_dim // 2, 1),
]
)
def forward(self, hidden_states, temb):
hidden_states = hidden_states.view(hidden_states.shape[0], -1)
hidden_states = torch.cat((hidden_states, temb), dim=-1)
for layer in self.final_block:
hidden_states = layer(hidden_states)
return hidden_states
_kernels = {
"linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8],
@@ -62,7 +312,7 @@ class Upsample1d(nn.Module):
self.pad = kernel_1d.shape[0] // 2 - 1
self.register_buffer("kernel", kernel_1d)
def forward(self, hidden_states):
def forward(self, hidden_states, temb=None):
hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode)
weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
indices = torch.arange(hidden_states.shape[1], device=hidden_states.device)
@@ -162,32 +412,6 @@ class ResConvBlock(nn.Module):
return output
def get_down_block(down_block_type, out_channels, in_channels):
if down_block_type == "DownBlock1D":
return DownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "AttnDownBlock1D":
return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "DownBlock1DNoSkip":
return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(up_block_type, in_channels, out_channels):
if up_block_type == "UpBlock1D":
return UpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "AttnUpBlock1D":
return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "UpBlock1DNoSkip":
return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels)
raise ValueError(f"{up_block_type} does not exist.")
def get_mid_block(mid_block_type, in_channels, mid_channels, out_channels):
if mid_block_type == "UNetMidBlock1D":
return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels)
raise ValueError(f"{mid_block_type} does not exist.")
class UNetMidBlock1D(nn.Module):
def __init__(self, mid_channels, in_channels, out_channels=None):
super().__init__()
@@ -217,7 +441,7 @@ class UNetMidBlock1D(nn.Module):
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states):
def forward(self, hidden_states, temb=None):
hidden_states = self.down(hidden_states)
for attn, resnet in zip(self.attentions, self.resnets):
hidden_states = resnet(hidden_states)
@@ -322,7 +546,7 @@ class AttnUpBlock1D(nn.Module):
self.resnets = nn.ModuleList(resnets)
self.up = Upsample1d(kernel="cubic")
def forward(self, hidden_states, res_hidden_states_tuple):
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
@@ -349,7 +573,7 @@ class UpBlock1D(nn.Module):
self.resnets = nn.ModuleList(resnets)
self.up = Upsample1d(kernel="cubic")
def forward(self, hidden_states, res_hidden_states_tuple):
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
@@ -374,7 +598,7 @@ class UpBlock1DNoSkip(nn.Module):
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states, res_hidden_states_tuple):
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
@@ -382,3 +606,63 @@ class UpBlock1DNoSkip(nn.Module):
hidden_states = resnet(hidden_states)
return hidden_states
def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample):
if down_block_type == "DownResnetBlock1D":
return DownResnetBlock1D(
in_channels=in_channels,
num_layers=num_layers,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
)
elif down_block_type == "DownBlock1D":
return DownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "AttnDownBlock1D":
return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "DownBlock1DNoSkip":
return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(up_block_type, num_layers, in_channels, out_channels, temb_channels, add_upsample):
if up_block_type == "UpResnetBlock1D":
return UpResnetBlock1D(
in_channels=in_channels,
num_layers=num_layers,
out_channels=out_channels,
temb_channels=temb_channels,
add_upsample=add_upsample,
)
elif up_block_type == "UpBlock1D":
return UpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "AttnUpBlock1D":
return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "UpBlock1DNoSkip":
return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels)
raise ValueError(f"{up_block_type} does not exist.")
def get_mid_block(mid_block_type, num_layers, in_channels, mid_channels, out_channels, embed_dim, add_downsample):
if mid_block_type == "MidResTemporalBlock1D":
return MidResTemporalBlock1D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
embed_dim=embed_dim,
add_downsample=add_downsample,
)
elif mid_block_type == "ValueFunctionMidBlock1D":
return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim)
elif mid_block_type == "UNetMidBlock1D":
return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels)
raise ValueError(f"{mid_block_type} does not exist.")
def get_out_block(*, out_block_type, num_groups_out, embed_dim, out_channels, act_fn, fc_dim):
if out_block_type == "OutConv1DBlock":
return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn)
elif out_block_type == "ValueFunction":
return OutValueFunctionBlock(fc_dim, embed_dim)
return None

Some files were not shown because too many files have changed in this diff Show More