mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 13:34:27 +08:00
Compare commits
7 Commits
add-uv-scr
...
hidream-si
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4e2c346992 | ||
|
|
5de8cb7ddb | ||
|
|
406a656d9a | ||
|
|
971794454f | ||
|
|
4436f54a80 | ||
|
|
2a19302e65 | ||
|
|
721375bb81 |
@@ -21,6 +21,22 @@ from diffusers import HiDreamImageTransformer2DModel
|
||||
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## Loading GGUF quantized checkpoints for HiDream-I1
|
||||
|
||||
GGUF checkpoints for the `HiDreamImageTransformer2DModel` can be loaded using `~FromOriginalModelMixin.from_single_file`
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel
|
||||
|
||||
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
|
||||
transformer = HiDreamImageTransformer2DModel.from_single_file(
|
||||
ckpt_path,
|
||||
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
```
|
||||
|
||||
## HiDreamImageTransformer2DModel
|
||||
|
||||
[[autodoc]] HiDreamImageTransformer2DModel
|
||||
|
||||
@@ -31,6 +31,7 @@ from .single_file_utils import (
|
||||
convert_autoencoder_dc_checkpoint_to_diffusers,
|
||||
convert_controlnet_checkpoint,
|
||||
convert_flux_transformer_checkpoint_to_diffusers,
|
||||
convert_hidream_transformer_to_diffusers,
|
||||
convert_hunyuan_video_transformer_to_diffusers,
|
||||
convert_ldm_unet_checkpoint,
|
||||
convert_ldm_vae_checkpoint,
|
||||
@@ -133,6 +134,10 @@ SINGLE_FILE_LOADABLE_CLASSES = {
|
||||
"checkpoint_mapping_fn": convert_wan_vae_to_diffusers,
|
||||
"default_subfolder": "vae",
|
||||
},
|
||||
"HiDreamImageTransformer2DModel": {
|
||||
"checkpoint_mapping_fn": convert_hidream_transformer_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -126,6 +126,7 @@ CHECKPOINT_KEY_NAMES = {
|
||||
],
|
||||
"wan": ["model.diffusion_model.head.modulation", "head.modulation"],
|
||||
"wan_vae": "decoder.middle.0.residual.0.gamma",
|
||||
"hidream": "double_stream_blocks.0.block.adaLN_modulation.1.bias",
|
||||
}
|
||||
|
||||
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
|
||||
@@ -190,6 +191,7 @@ DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
|
||||
"wan-t2v-1.3B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"},
|
||||
"wan-t2v-14B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-T2V-14B-Diffusers"},
|
||||
"wan-i2v-14B": {"pretrained_model_name_or_path": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"},
|
||||
"hidream": {"pretrained_model_name_or_path": "HiDream-ai/HiDream-I1-Dev"},
|
||||
}
|
||||
|
||||
# Use to configure model sample size when original config is provided
|
||||
@@ -701,6 +703,8 @@ def infer_diffusers_model_type(checkpoint):
|
||||
elif CHECKPOINT_KEY_NAMES["wan_vae"] in checkpoint:
|
||||
# All Wan models use the same VAE so we can use the same default model repo to fetch the config
|
||||
model_type = "wan-t2v-14B"
|
||||
elif CHECKPOINT_KEY_NAMES["hidream"] in checkpoint:
|
||||
model_type = "hidream"
|
||||
else:
|
||||
model_type = "v1"
|
||||
|
||||
@@ -3293,3 +3297,12 @@ def convert_wan_vae_to_diffusers(checkpoint, **kwargs):
|
||||
converted_state_dict[key] = value
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs):
|
||||
keys = list(checkpoint.keys())
|
||||
for k in keys:
|
||||
if "model.diffusion_model." in k:
|
||||
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
|
||||
|
||||
return checkpoint
|
||||
|
||||
@@ -5,7 +5,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import PeftAdapterMixin
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...models.modeling_outputs import Transformer2DModelOutput
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
||||
@@ -602,7 +602,7 @@ class HiDreamBlock(nn.Module):
|
||||
)
|
||||
|
||||
|
||||
class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["HiDreamImageTransformerBlock", "HiDreamImageSingleTransformerBlock"]
|
||||
|
||||
|
||||
@@ -36,11 +36,11 @@ EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
|
||||
>>> from diffusers import UniPCMultistepScheduler, HiDreamImagePipeline
|
||||
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
||||
>>> from diffusers import HiDreamImagePipeline
|
||||
|
||||
|
||||
>>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
||||
>>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
||||
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
||||
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
... output_hidden_states=True,
|
||||
|
||||
@@ -12,6 +12,7 @@ from diffusers import (
|
||||
FluxPipeline,
|
||||
FluxTransformer2DModel,
|
||||
GGUFQuantizationConfig,
|
||||
HiDreamImageTransformer2DModel,
|
||||
SD3Transformer2DModel,
|
||||
StableDiffusion3Pipeline,
|
||||
)
|
||||
@@ -549,3 +550,30 @@ class FluxControlLoRAGGUFTests(unittest.TestCase):
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
|
||||
self.assertTrue(max_diff < 1e-3)
|
||||
|
||||
|
||||
class HiDreamGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
|
||||
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
|
||||
torch_dtype = torch.bfloat16
|
||||
model_cls = HiDreamImageTransformer2DModel
|
||||
expected_memory_use_in_gb = 8
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
return {
|
||||
"hidden_states": torch.randn((1, 16, 128, 128), generator=torch.Generator("cpu").manual_seed(0)).to(
|
||||
torch_device, self.torch_dtype
|
||||
),
|
||||
"encoder_hidden_states_t5": torch.randn(
|
||||
(1, 128, 4096),
|
||||
generator=torch.Generator("cpu").manual_seed(0),
|
||||
).to(torch_device, self.torch_dtype),
|
||||
"encoder_hidden_states_llama3": torch.randn(
|
||||
(32, 1, 128, 4096),
|
||||
generator=torch.Generator("cpu").manual_seed(0),
|
||||
).to(torch_device, self.torch_dtype),
|
||||
"pooled_embeds": torch.randn(
|
||||
(1, 2048),
|
||||
generator=torch.Generator("cpu").manual_seed(0),
|
||||
).to(torch_device, self.torch_dtype),
|
||||
"timesteps": torch.tensor([1]).to(torch_device, self.torch_dtype),
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user