mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
4 Commits
add-no-lor
...
rename-att
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ef8c0bf51d | ||
|
|
04be74ed94 | ||
|
|
e4bee5d8df | ||
|
|
9b1ff58b40 |
@@ -20,7 +20,7 @@ from torch.nn import functional as F
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..loaders import FromOriginalControlNetMixin
|
||||
from ..utils import BaseOutput, logging
|
||||
from ..utils import BaseOutput, deprecate, logging
|
||||
from .attention_processor import (
|
||||
ADDED_KV_ATTENTION_PROCESSORS,
|
||||
CROSS_ATTENTION_PROCESSORS,
|
||||
@@ -43,6 +43,20 @@ from .unets.unet_2d_condition import UNet2DConditionModel
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def correct_incorrect_names(attention_head_dim, down_block_types, mid_block_type):
|
||||
incorrect_attention_head_dim_name = False
|
||||
if "CrossAttnDownBlock2D" in down_block_types or mid_block_type == "UNetMidBlock2DCrossAttn":
|
||||
incorrect_attention_head_dim_name = True
|
||||
|
||||
if incorrect_attention_head_dim_name:
|
||||
num_attention_heads = attention_head_dim
|
||||
attention_head_dimension = None
|
||||
else:
|
||||
num_attention_heads = None
|
||||
attention_head_dimension = attention_head_dim
|
||||
return num_attention_heads, attention_head_dimension
|
||||
|
||||
|
||||
@dataclass
|
||||
class ControlNetOutput(BaseOutput):
|
||||
"""
|
||||
@@ -206,6 +220,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
encoder_hid_dim: Optional[int] = None,
|
||||
encoder_hid_dim_type: Optional[str] = None,
|
||||
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
||||
attention_head_dimension: Optional[Union[int, Tuple[int]]] = None,
|
||||
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
||||
use_linear_projection: bool = False,
|
||||
class_embed_type: Optional[str] = None,
|
||||
@@ -222,15 +237,21 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# If `num_attention_heads` is not defined (which is the case for most models)
|
||||
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||||
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||||
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||||
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||||
# which is why we correct for the naming here.
|
||||
num_attention_heads = num_attention_heads or attention_head_dim
|
||||
|
||||
if attention_head_dim is not None:
|
||||
deprecation_message = " `attention_head_dim` is deprecated and will be removed in a future version. Use `num_attention_heads` and `attention_head_dimension` instead."
|
||||
deprecate("attention_head_dim not None", "1.0.0", deprecation_message, standard_warn=False)
|
||||
num_attention_heads, attention_head_dimension = correct_incorrect_names(
|
||||
attention_head_dim, down_block_types, mid_block_type
|
||||
)
|
||||
logger.warning(
|
||||
f"corrected potentially incorrect arguments, the model will be configured with `num_attention_heads` {num_attention_heads} and `attention_head_dimension` {attention_head_dimension}."
|
||||
)
|
||||
# Check inputs
|
||||
if attention_head_dimension is not None and num_attention_heads is not None:
|
||||
raise ValueError(
|
||||
"You can only define either `attention_head_dimension` or `num_attention_heads` but not both."
|
||||
)
|
||||
|
||||
if len(block_out_channels) != len(down_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
||||
@@ -241,11 +262,43 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||||
if (
|
||||
num_attention_heads is not None
|
||||
and not isinstance(num_attention_heads, int)
|
||||
and len(num_attention_heads) != len(down_block_types)
|
||||
):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if (
|
||||
attention_head_dimension is not None
|
||||
and not isinstance(attention_head_dimension, int)
|
||||
and len(attention_head_dimension) != len(down_block_types)
|
||||
):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `attention_head_dimension` as `down_block_types`. `attention_head_dimension`: {attention_head_dimension}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
# we use attention_head_dim to calculate num_attention_heads
|
||||
if attention_head_dimension is not None:
|
||||
if isinstance(attention_head_dimension, int):
|
||||
num_attention_heads = [out_channels // attention_head_dimension for out_channels in block_out_channels]
|
||||
else:
|
||||
num_attention_heads = [
|
||||
out_channels // attn_dim
|
||||
for out_channels, attn_dim in zip(block_out_channels, attention_head_dimension)
|
||||
]
|
||||
# we use num_attention_heads to calculate attention_head_dimension
|
||||
elif num_attention_heads is not None:
|
||||
if isinstance(num_attention_heads, int):
|
||||
attention_head_dimension = [out_channels // num_attention_heads for out_channels in block_out_channels]
|
||||
else:
|
||||
attention_head_dimension = [
|
||||
out_channels // num_heads
|
||||
for out_channels, num_heads in zip(block_out_channels, num_attention_heads)
|
||||
]
|
||||
|
||||
if isinstance(transformer_layers_per_block, int):
|
||||
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
||||
|
||||
@@ -354,8 +407,8 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
if isinstance(only_cross_attention, bool):
|
||||
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
||||
|
||||
if isinstance(attention_head_dim, int):
|
||||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||||
if isinstance(attention_head_dimension, int):
|
||||
attention_head_dimension = (attention_head_dimension,) * len(down_block_types)
|
||||
|
||||
if isinstance(num_attention_heads, int):
|
||||
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||||
@@ -385,7 +438,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads[i],
|
||||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||||
attention_head_dim=attention_head_dimension[i],
|
||||
downsample_padding=downsample_padding,
|
||||
use_linear_projection=use_linear_projection,
|
||||
only_cross_attention=only_cross_attention[i],
|
||||
@@ -422,6 +475,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads[-1],
|
||||
attention_head_dim=attention_head_dimension[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
use_linear_projection=use_linear_projection,
|
||||
upcast_attention=upcast_attention,
|
||||
|
||||
@@ -119,6 +119,7 @@ def get_down_block(
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
downsample_padding=downsample_padding,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
downsample_type=downsample_type,
|
||||
@@ -140,6 +141,7 @@ def get_down_block(
|
||||
downsample_padding=downsample_padding,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
use_linear_projection=use_linear_projection,
|
||||
only_cross_attention=only_cross_attention,
|
||||
@@ -161,6 +163,7 @@ def get_down_block(
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
skip_time_act=resnet_skip_time_act,
|
||||
@@ -191,6 +194,7 @@ def get_down_block(
|
||||
add_downsample=add_downsample,
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
)
|
||||
@@ -218,6 +222,7 @@ def get_down_block(
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
downsample_padding=downsample_padding,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
)
|
||||
@@ -243,6 +248,7 @@ def get_down_block(
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
add_self_attention=True if not add_downsample else False,
|
||||
)
|
||||
@@ -335,6 +341,7 @@ def get_up_block(
|
||||
resnet_groups=resnet_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
use_linear_projection=use_linear_projection,
|
||||
only_cross_attention=only_cross_attention,
|
||||
@@ -358,6 +365,7 @@ def get_up_block(
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
skip_time_act=resnet_skip_time_act,
|
||||
@@ -382,6 +390,7 @@ def get_up_block(
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
upsample_type=upsample_type,
|
||||
@@ -412,6 +421,7 @@ def get_up_block(
|
||||
add_upsample=add_upsample,
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
)
|
||||
@@ -440,6 +450,7 @@ def get_up_block(
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
resnet_groups=resnet_groups,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
temb_channels=temb_channels,
|
||||
@@ -468,6 +479,7 @@ def get_up_block(
|
||||
resnet_eps=resnet_eps,
|
||||
resnet_act_fn=resnet_act_fn,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
|
||||
@@ -555,6 +567,7 @@ class UNetMidBlock2D(nn.Module):
|
||||
attn_groups: Optional[int] = None,
|
||||
resnet_pre_norm: bool = True,
|
||||
add_attention: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
):
|
||||
@@ -602,13 +615,15 @@ class UNetMidBlock2D(nn.Module):
|
||||
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
||||
)
|
||||
attention_head_dim = in_channels
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = in_channels // attention_head_dim
|
||||
|
||||
for _ in range(num_layers):
|
||||
if self.add_attention:
|
||||
attentions.append(
|
||||
Attention(
|
||||
in_channels,
|
||||
heads=in_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -680,6 +695,7 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: int = 1,
|
||||
attention_head_dim: Optional[int] = None,
|
||||
output_scale_factor: float = 1.0,
|
||||
cross_attention_dim: int = 1280,
|
||||
dual_cross_attention: bool = False,
|
||||
@@ -693,6 +709,9 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
self.num_attention_heads = num_attention_heads
|
||||
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||||
|
||||
if attention_head_dim is None:
|
||||
attention_head_dim = in_channels // num_attention_heads
|
||||
|
||||
# support for variable transformer layers per block
|
||||
if isinstance(transformer_layers_per_block, int):
|
||||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||||
@@ -718,8 +737,8 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
num_attention_heads,
|
||||
in_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=in_channels,
|
||||
num_layers=transformer_layers_per_block[i],
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -732,8 +751,8 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
else:
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
num_attention_heads,
|
||||
in_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=in_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -824,6 +843,7 @@ class UNetMidBlock2DSimpleCrossAttn(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
cross_attention_dim: int = 1280,
|
||||
@@ -838,7 +858,9 @@ class UNetMidBlock2DSimpleCrossAttn(nn.Module):
|
||||
self.attention_head_dim = attention_head_dim
|
||||
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||||
|
||||
self.num_heads = in_channels // self.attention_head_dim
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = in_channels // attention_head_dim
|
||||
self.num_heads = num_attention_heads
|
||||
|
||||
# there is always at least one resnet
|
||||
resnets = [
|
||||
@@ -949,6 +971,7 @@ class AttnDownBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
downsample_padding: int = 1,
|
||||
@@ -965,6 +988,9 @@ class AttnDownBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
resnets.append(
|
||||
@@ -984,7 +1010,7 @@ class AttnDownBlock2D(nn.Module):
|
||||
attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -1074,6 +1100,7 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: int = 1,
|
||||
attention_head_dim: Optional[int] = None,
|
||||
cross_attention_dim: int = 1280,
|
||||
output_scale_factor: float = 1.0,
|
||||
downsample_padding: int = 1,
|
||||
@@ -1090,6 +1117,9 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
|
||||
self.has_cross_attention = True
|
||||
self.num_attention_heads = num_attention_heads
|
||||
if attention_head_dim is None:
|
||||
attention_head_dim = out_channels // num_attention_heads
|
||||
|
||||
if isinstance(transformer_layers_per_block, int):
|
||||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||||
|
||||
@@ -1112,8 +1142,8 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=out_channels,
|
||||
num_layers=transformer_layers_per_block[i],
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -1127,8 +1157,8 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
else:
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=out_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -1395,6 +1425,7 @@ class AttnDownEncoderBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
add_downsample: bool = True,
|
||||
@@ -1410,6 +1441,9 @@ class AttnDownEncoderBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
if resnet_time_scale_shift == "spatial":
|
||||
@@ -1444,7 +1478,7 @@ class AttnDownEncoderBlock2D(nn.Module):
|
||||
attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -1495,6 +1529,7 @@ class AttnSkipDownBlock2D(nn.Module):
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = np.sqrt(2.0),
|
||||
add_downsample: bool = True,
|
||||
@@ -1509,6 +1544,9 @@ class AttnSkipDownBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
self.resnets.append(
|
||||
@@ -1529,7 +1567,7 @@ class AttnSkipDownBlock2D(nn.Module):
|
||||
self.attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -1789,6 +1827,7 @@ class SimpleCrossAttnDownBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
cross_attention_dim: int = 1280,
|
||||
output_scale_factor: float = 1.0,
|
||||
@@ -1805,7 +1844,9 @@ class SimpleCrossAttnDownBlock2D(nn.Module):
|
||||
attentions = []
|
||||
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.num_heads = out_channels // self.attention_head_dim
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
self.num_heads = num_attention_heads
|
||||
|
||||
for i in range(num_layers):
|
||||
in_channels = in_channels if i == 0 else out_channels
|
||||
@@ -1833,7 +1874,7 @@ class SimpleCrossAttnDownBlock2D(nn.Module):
|
||||
Attention(
|
||||
query_dim=out_channels,
|
||||
cross_attention_dim=out_channels,
|
||||
heads=self.num_heads,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
added_kv_proj_dim=cross_attention_dim,
|
||||
norm_num_groups=resnet_groups,
|
||||
@@ -2027,6 +2068,7 @@ class KCrossAttnDownBlock2D(nn.Module):
|
||||
num_layers: int = 4,
|
||||
resnet_group_size: int = 32,
|
||||
add_downsample: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 64,
|
||||
add_self_attention: bool = False,
|
||||
resnet_eps: float = 1e-5,
|
||||
@@ -2036,6 +2078,9 @@ class KCrossAttnDownBlock2D(nn.Module):
|
||||
resnets = []
|
||||
attentions = []
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
self.has_cross_attention = True
|
||||
|
||||
for i in range(num_layers):
|
||||
@@ -2059,9 +2104,9 @@ class KCrossAttnDownBlock2D(nn.Module):
|
||||
)
|
||||
attentions.append(
|
||||
KAttentionBlock(
|
||||
out_channels,
|
||||
out_channels // attention_head_dim,
|
||||
attention_head_dim,
|
||||
dim=out_channels,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
temb_channels=temb_channels,
|
||||
attention_bias=True,
|
||||
@@ -2158,6 +2203,7 @@ class AttnUpBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
upsample_type: str = "conv",
|
||||
@@ -2174,6 +2220,9 @@ class AttnUpBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
for i in range(num_layers):
|
||||
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
||||
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
||||
@@ -2195,7 +2244,7 @@ class AttnUpBlock2D(nn.Module):
|
||||
attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -2280,6 +2329,7 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: int = 1,
|
||||
attention_head_dim: Optional[int] = None,
|
||||
cross_attention_dim: int = 1280,
|
||||
output_scale_factor: float = 1.0,
|
||||
add_upsample: bool = True,
|
||||
@@ -2296,6 +2346,9 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
self.has_cross_attention = True
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
if attention_head_dim is None:
|
||||
attention_head_dim = out_channels // num_attention_heads
|
||||
|
||||
if isinstance(transformer_layers_per_block, int):
|
||||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||||
|
||||
@@ -2320,8 +2373,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=out_channels,
|
||||
num_layers=transformer_layers_per_block[i],
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -2335,8 +2388,8 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
else:
|
||||
attentions.append(
|
||||
DualTransformer2DModel(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
in_channels=out_channels,
|
||||
num_layers=1,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
@@ -2634,6 +2687,7 @@ class AttnUpDecoderBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = 1.0,
|
||||
add_upsample: bool = True,
|
||||
@@ -2649,6 +2703,9 @@ class AttnUpDecoderBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
for i in range(num_layers):
|
||||
input_channels = in_channels if i == 0 else out_channels
|
||||
|
||||
@@ -2685,7 +2742,7 @@ class AttnUpDecoderBlock2D(nn.Module):
|
||||
attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -2737,6 +2794,7 @@ class AttnSkipUpBlock2D(nn.Module):
|
||||
resnet_time_scale_shift: str = "default",
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
output_scale_factor: float = np.sqrt(2.0),
|
||||
add_upsample: bool = True,
|
||||
@@ -2771,10 +2829,13 @@ class AttnSkipUpBlock2D(nn.Module):
|
||||
)
|
||||
attention_head_dim = out_channels
|
||||
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
|
||||
self.attentions.append(
|
||||
Attention(
|
||||
out_channels,
|
||||
heads=out_channels // attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
rescale_output_factor=output_scale_factor,
|
||||
eps=resnet_eps,
|
||||
@@ -3082,6 +3143,7 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
|
||||
resnet_act_fn: str = "swish",
|
||||
resnet_groups: int = 32,
|
||||
resnet_pre_norm: bool = True,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1,
|
||||
cross_attention_dim: int = 1280,
|
||||
output_scale_factor: float = 1.0,
|
||||
@@ -3097,7 +3159,9 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
|
||||
self.has_cross_attention = True
|
||||
self.attention_head_dim = attention_head_dim
|
||||
|
||||
self.num_heads = out_channels // self.attention_head_dim
|
||||
if num_attention_heads is None:
|
||||
num_attention_heads = out_channels // attention_head_dim
|
||||
self.num_heads = num_attention_heads
|
||||
|
||||
for i in range(num_layers):
|
||||
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
||||
@@ -3127,8 +3191,8 @@ class SimpleCrossAttnUpBlock2D(nn.Module):
|
||||
Attention(
|
||||
query_dim=out_channels,
|
||||
cross_attention_dim=out_channels,
|
||||
heads=self.num_heads,
|
||||
dim_head=self.attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
added_kv_proj_dim=cross_attention_dim,
|
||||
norm_num_groups=resnet_groups,
|
||||
bias=True,
|
||||
@@ -3334,6 +3398,7 @@ class KCrossAttnUpBlock2D(nn.Module):
|
||||
resnet_eps: float = 1e-5,
|
||||
resnet_act_fn: str = "gelu",
|
||||
resnet_group_size: int = 32,
|
||||
num_attention_heads: Optional[int] = None,
|
||||
attention_head_dim: int = 1, # attention dim_head
|
||||
cross_attention_dim: int = 768,
|
||||
add_upsample: bool = True,
|
||||
@@ -3350,6 +3415,11 @@ class KCrossAttnUpBlock2D(nn.Module):
|
||||
self.has_cross_attention = True
|
||||
self.attention_head_dim = attention_head_dim
|
||||
|
||||
if num_attention_heads is not None:
|
||||
logger.warn(
|
||||
"`num_attention_heads` argument is passed but ignored. The number of attention heads is determined by `attention_head_dim`, `in_channels` and `out_channels`."
|
||||
)
|
||||
|
||||
# in_channels, and out_channels for the block (k-unet)
|
||||
k_in_channels = out_channels if is_first_block else 2 * out_channels
|
||||
k_out_channels = in_channels
|
||||
@@ -3383,11 +3453,11 @@ class KCrossAttnUpBlock2D(nn.Module):
|
||||
)
|
||||
attentions.append(
|
||||
KAttentionBlock(
|
||||
k_out_channels if (i == num_layers - 1) else out_channels,
|
||||
k_out_channels // attention_head_dim
|
||||
dim=k_out_channels if (i == num_layers - 1) else out_channels,
|
||||
num_attention_heads=k_out_channels // attention_head_dim
|
||||
if (i == num_layers - 1)
|
||||
else out_channels // attention_head_dim,
|
||||
attention_head_dim,
|
||||
attention_head_dim=attention_head_dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
temb_channels=temb_channels,
|
||||
attention_bias=True,
|
||||
|
||||
@@ -55,6 +55,24 @@ from .unet_2d_blocks import (
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def correct_incorrect_names(attention_head_dim, down_block_types, mid_block_type, up_block_types):
|
||||
incorrect_attention_head_dim_name = False
|
||||
if (
|
||||
"CrossAttnDownBlock2D" in down_block_types
|
||||
or "CrossAttnUpBlock2D" in up_block_types
|
||||
or mid_block_type == "UNetMidBlock2DCrossAttn"
|
||||
):
|
||||
incorrect_attention_head_dim_name = True
|
||||
|
||||
if incorrect_attention_head_dim_name:
|
||||
num_attention_heads = attention_head_dim
|
||||
attention_head_dimension = None
|
||||
else:
|
||||
num_attention_heads = None
|
||||
attention_head_dimension = attention_head_dim
|
||||
return num_attention_heads, attention_head_dimension
|
||||
|
||||
|
||||
@dataclass
|
||||
class UNet2DConditionOutput(BaseOutput):
|
||||
"""
|
||||
@@ -196,6 +214,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
encoder_hid_dim: Optional[int] = None,
|
||||
encoder_hid_dim_type: Optional[str] = None,
|
||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||
attention_head_dimension: Optional[Union[int, Tuple[int]]] = None,
|
||||
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||||
dual_cross_attention: bool = False,
|
||||
use_linear_projection: bool = False,
|
||||
@@ -225,20 +244,22 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
|
||||
self.sample_size = sample_size
|
||||
|
||||
if num_attention_heads is not None:
|
||||
raise ValueError(
|
||||
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
||||
if attention_head_dim is not None:
|
||||
deprecation_message = " `attention_head_dim` is deprecated and will be removed in a future version. Use `num_attention_heads` and `attention_head_dimension` instead."
|
||||
deprecate("attention_head_dim not None", "1.0.0", deprecation_message, standard_warn=False)
|
||||
num_attention_heads, attention_head_dimension = correct_incorrect_names(
|
||||
attention_head_dim, down_block_types, mid_block_type, up_block_types
|
||||
)
|
||||
logger.warning(
|
||||
f"corrected potentially incorrect arguments, the model will be configured with `num_attention_heads` {num_attention_heads} and `attention_head_dimension` {attention_head_dimension}."
|
||||
)
|
||||
|
||||
# If `num_attention_heads` is not defined (which is the case for most models)
|
||||
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||||
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||||
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||||
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||||
# which is why we correct for the naming here.
|
||||
num_attention_heads = num_attention_heads or attention_head_dim
|
||||
|
||||
# Check inputs
|
||||
if attention_head_dimension is not None and num_attention_heads is not None:
|
||||
raise ValueError(
|
||||
"You can only define either `attention_head_dimension` or `num_attention_heads` but not both."
|
||||
)
|
||||
|
||||
if len(down_block_types) != len(up_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
||||
@@ -254,14 +275,22 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||||
if (
|
||||
num_attention_heads is not None
|
||||
and not isinstance(num_attention_heads, int)
|
||||
and len(num_attention_heads) != len(down_block_types)
|
||||
):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
||||
if (
|
||||
attention_head_dimension is not None
|
||||
and not isinstance(attention_head_dimension, int)
|
||||
and len(attention_head_dimension) != len(down_block_types)
|
||||
):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
||||
f"Must provide the same number of `attention_head_dimension` as `down_block_types`. `attention_head_dimension`: {attention_head_dimension}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
||||
@@ -278,6 +307,24 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
if isinstance(layer_number_per_block, list):
|
||||
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
||||
|
||||
# we use attention_head_dim to calculate num_attention_heads
|
||||
if attention_head_dimension is not None:
|
||||
if isinstance(attention_head_dimension, int):
|
||||
num_attention_heads = [out_channels // attention_head_dimension for out_channels in block_out_channels]
|
||||
else:
|
||||
num_attention_heads = [
|
||||
out_channels // attn_dim
|
||||
for out_channels, attn_dim in zip(block_out_channels, attention_head_dimension)
|
||||
]
|
||||
# we use num_attention_heads to calculate attention_head_dimension
|
||||
elif num_attention_heads is not None:
|
||||
if isinstance(num_attention_heads, int):
|
||||
attention_head_dimension = [out_channels // num_attention_heads for out_channels in block_out_channels]
|
||||
else:
|
||||
attention_head_dimension = [
|
||||
out_channels // num_heads
|
||||
for out_channels, num_heads in zip(block_out_channels, num_attention_heads)
|
||||
]
|
||||
# input
|
||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||
self.conv_in = nn.Conv2d(
|
||||
@@ -422,8 +469,8 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
if isinstance(num_attention_heads, int):
|
||||
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||||
|
||||
if isinstance(attention_head_dim, int):
|
||||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||||
if isinstance(attention_head_dimension, int):
|
||||
attention_head_dimension = (attention_head_dimension,) * len(down_block_types)
|
||||
|
||||
if isinstance(cross_attention_dim, int):
|
||||
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
||||
@@ -472,7 +519,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
resnet_skip_time_act=resnet_skip_time_act,
|
||||
resnet_out_scale_factor=resnet_out_scale_factor,
|
||||
cross_attention_norm=cross_attention_norm,
|
||||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||||
attention_head_dim=attention_head_dimension[i],
|
||||
dropout=dropout,
|
||||
)
|
||||
self.down_blocks.append(down_block)
|
||||
@@ -490,6 +537,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
num_attention_heads=num_attention_heads[-1],
|
||||
attention_head_dim=attention_head_dimension[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
dual_cross_attention=dual_cross_attention,
|
||||
use_linear_projection=use_linear_projection,
|
||||
@@ -505,7 +553,8 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
cross_attention_dim=cross_attention_dim[-1],
|
||||
attention_head_dim=attention_head_dim[-1],
|
||||
num_attention_heads=num_attention_heads[-1],
|
||||
attention_head_dim=attention_head_dimension[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
skip_time_act=resnet_skip_time_act,
|
||||
@@ -536,6 +585,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
# up
|
||||
reversed_block_out_channels = list(reversed(block_out_channels))
|
||||
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
||||
reversed_attention_head_dimension = list(reversed(attention_head_dimension))
|
||||
reversed_layers_per_block = list(reversed(layers_per_block))
|
||||
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
||||
reversed_transformer_layers_per_block = (
|
||||
@@ -584,7 +634,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
resnet_skip_time_act=resnet_skip_time_act,
|
||||
resnet_out_scale_factor=resnet_out_scale_factor,
|
||||
cross_attention_norm=cross_attention_norm,
|
||||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||||
attention_head_dim=reversed_attention_head_dimension[i],
|
||||
dropout=dropout,
|
||||
)
|
||||
self.up_blocks.append(up_block)
|
||||
|
||||
Reference in New Issue
Block a user