use dedicated wrappers from fa3 for cp.

This commit is contained in:
sayakpaul
2026-02-19 18:52:13 +05:30
parent 99daaa802d
commit e976dc9aff
2 changed files with 98 additions and 65 deletions

View File

@@ -0,0 +1,8 @@
{
"permissions": {
"allow": [
"WebFetch(domain:github.com)",
"WebFetch(domain:raw.githubusercontent.com)"
]
}
}

View File

@@ -276,7 +276,11 @@ class _HubKernelConfig:
_HUB_KERNELS_REGISTRY: dict["AttentionBackendName", _HubKernelConfig] = {
# TODO: temporary revision for now. Remove when merged upstream into `main`.
AttentionBackendName._FLASH_3_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn3", function_attr="flash_attn_func", revision="fake-ops-return-probs"
repo_id="kernels-community/flash-attn3",
function_attr="flash_attn_func",
revision="fake-ops-return-probs",
wrapped_forward_attr="flash_attn_interface._flash_attn_forward",
wrapped_backward_attr="flash_attn_interface._flash_attn_backward",
),
AttentionBackendName._FLASH_3_VARLEN_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn3",
@@ -1237,36 +1241,62 @@ def _flash_attention_3_hub_forward_op(
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
config = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB]
wrapped_forward_fn = config.wrapped_forward_fn
if wrapped_forward_fn is None:
raise RuntimeError(
"Flash attention 3 hub kernels must expose `flash_attn_interface._flash_attn_forward` "
"for context parallel execution."
)
if scale is None:
scale = query.shape[-1] ** (-0.5)
out, softmax_lse, *_ = wrapped_forward_fn(
query,
key,
value,
None,
None, # k_new, v_new
None, # qv
None, # out
None,
None,
None, # cu_seqlens_q/k/k_new
None,
None, # seqused_q/k
None,
None, # max_seqlen_q/k
None,
None,
None, # page_table, kv_batch_idx, leftpad_k
None,
None,
None, # rotary_cos/sin, seqlens_rotary
None,
None,
None, # q_descale, k_descale, v_descale
scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
window_size_left=window_size[0],
window_size_right=window_size[1],
attention_chunk=0,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=return_lse,
)
lse = None
if return_lse:
out, lse = out
lse = lse.permute(0, 2, 1).contiguous()
lse = softmax_lse.permute(0, 2, 1).contiguous() if return_lse else None
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.save_for_backward(query, key, value, out, softmax_lse)
ctx.scale = scale
ctx.is_causal = is_causal
ctx._hub_kernel = func
ctx.window_size = window_size
ctx.softcap = softcap
ctx.deterministic = deterministic
ctx.sm_margin = sm_margin
return (out, lse) if return_lse else out
@@ -1275,54 +1305,49 @@ def _flash_attention_3_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
**kwargs,
):
query, key, value = ctx.saved_tensors
kernel_fn = ctx._hub_kernel
# NOTE: Unlike the FA2 hub kernel, the FA3 hub kernel does not expose separate wrapped forward/backward
# primitives (no `wrapped_forward_attr`/`wrapped_backward_attr` in its `_HubKernelConfig`). We
# therefore rerun the forward pass under `torch.enable_grad()` and differentiate through it with
# `torch.autograd.grad()`. This is a second forward pass during backward; it can be avoided once
# the FA3 hub exposes a dedicated fused backward kernel (analogous to `_wrapped_flash_attn_backward`
# in the FA2 hub), at which point this can be refactored to match `_flash_attention_hub_backward_op`.
with torch.enable_grad():
query_r = query.detach().requires_grad_(True)
key_r = key.detach().requires_grad_(True)
value_r = value.detach().requires_grad_(True)
out = kernel_fn(
q=query_r,
k=key_r,
v=value_r,
softmax_scale=ctx.scale,
causal=ctx.is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=False,
config = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB]
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention 3 hub kernels must expose `flash_attn_interface._flash_attn_backward` "
"for context parallel execution."
)
if isinstance(out, tuple):
out = out[0]
grad_query, grad_key, grad_value = torch.autograd.grad(
out,
(query_r, key_r, value_r),
grad_out,
retain_graph=False,
allow_unused=False,
)
query, key, value, out, softmax_lse = ctx.saved_tensors
grad_query = torch.empty_like(query)
grad_key = torch.empty_like(key)
grad_value = torch.empty_like(value)
wrapped_backward_fn(
grad_out,
query,
key,
value,
out,
softmax_lse,
None,
None, # cu_seqlens_q, cu_seqlens_k
None,
None, # seqused_q, seqused_k
None,
None, # max_seqlen_q, max_seqlen_k
grad_query,
grad_key,
grad_value,
ctx.scale,
ctx.is_causal,
ctx.window_size[0],
ctx.window_size[1],
ctx.softcap,
ctx.deterministic,
ctx.sm_margin,
)
grad_query = grad_query[..., : grad_out.shape[-1]]
grad_key = grad_key[..., : grad_out.shape[-1]]
grad_value = grad_value[..., : grad_out.shape[-1]]
return grad_query, grad_key, grad_value