mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
[@cene555][Kandinsky 3.0] Add Kandinsky 3.0 (#5913)
* finalize * finalize * finalize * add slow test * add slow test * add slow test * Fix more * add slow test * fix more * fix more * fix more * fix more * fix more * fix more * fix more * fix more * fix more * Better * Fix more * Fix more * add slow test * Add auto pipelines * add slow test * Add all * add slow test * add slow test * add slow test * add slow test * add slow test * Apply suggestions from code review * add slow test * add slow test
This commit is contained in:
committed by
GitHub
parent
e5f232f76b
commit
b978334d71
@@ -278,6 +278,8 @@
|
||||
title: Kandinsky 2.1
|
||||
- local: api/pipelines/kandinsky_v22
|
||||
title: Kandinsky 2.2
|
||||
- local: api/pipelines/kandinsky3
|
||||
title: Kandinsky 3
|
||||
- local: api/pipelines/latent_consistency_models
|
||||
title: Latent Consistency Models
|
||||
- local: api/pipelines/latent_diffusion
|
||||
|
||||
24
docs/source/en/api/pipelines/kandinsky3.md
Normal file
24
docs/source/en/api/pipelines/kandinsky3.md
Normal file
@@ -0,0 +1,24 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Kandinsky 3
|
||||
|
||||
TODO
|
||||
|
||||
## Kandinsky3Pipeline
|
||||
|
||||
[[autodoc]] Kandinsky3Pipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## Kandinsky3Img2ImgPipeline
|
||||
|
||||
[[autodoc]] Kandinsky3Img2ImgPipeline
|
||||
- all
|
||||
- __call__
|
||||
98
scripts/convert_kandinsky3_unet.py
Normal file
98
scripts/convert_kandinsky3_unet.py
Normal file
@@ -0,0 +1,98 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import fnmatch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from diffusers import Kandinsky3UNet
|
||||
|
||||
|
||||
MAPPING = {
|
||||
"to_time_embed.1": "time_embedding.linear_1",
|
||||
"to_time_embed.3": "time_embedding.linear_2",
|
||||
"in_layer": "conv_in",
|
||||
"out_layer.0": "conv_norm_out",
|
||||
"out_layer.2": "conv_out",
|
||||
"down_samples": "down_blocks",
|
||||
"up_samples": "up_blocks",
|
||||
"projection_lin": "encoder_hid_proj.projection_linear",
|
||||
"projection_ln": "encoder_hid_proj.projection_norm",
|
||||
"feature_pooling": "add_time_condition",
|
||||
"to_query": "to_q",
|
||||
"to_key": "to_k",
|
||||
"to_value": "to_v",
|
||||
"output_layer": "to_out.0",
|
||||
"self_attention_block": "attentions.0",
|
||||
}
|
||||
|
||||
DYNAMIC_MAP = {
|
||||
"resnet_attn_blocks.*.0": "resnets_in.*",
|
||||
"resnet_attn_blocks.*.1": ("attentions.*", 1),
|
||||
"resnet_attn_blocks.*.2": "resnets_out.*",
|
||||
}
|
||||
# MAPPING = {}
|
||||
|
||||
|
||||
def convert_state_dict(unet_state_dict):
|
||||
"""
|
||||
Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model.
|
||||
Args:
|
||||
unet_model (torch.nn.Module): The original U-Net model.
|
||||
unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with.
|
||||
|
||||
Returns:
|
||||
OrderedDict: The converted state dictionary.
|
||||
"""
|
||||
# Example of renaming logic (this will vary based on your model's architecture)
|
||||
converted_state_dict = {}
|
||||
for key in unet_state_dict:
|
||||
new_key = key
|
||||
for pattern, new_pattern in MAPPING.items():
|
||||
new_key = new_key.replace(pattern, new_pattern)
|
||||
|
||||
for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items():
|
||||
has_matched = False
|
||||
if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched:
|
||||
star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1])
|
||||
|
||||
if isinstance(dyn_new_pattern, tuple):
|
||||
new_star = star + dyn_new_pattern[-1]
|
||||
dyn_new_pattern = dyn_new_pattern[0]
|
||||
else:
|
||||
new_star = star
|
||||
|
||||
pattern = dyn_pattern.replace("*", str(star))
|
||||
new_pattern = dyn_new_pattern.replace("*", str(new_star))
|
||||
|
||||
new_key = new_key.replace(pattern, new_pattern)
|
||||
has_matched = True
|
||||
|
||||
converted_state_dict[new_key] = unet_state_dict[key]
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
def main(model_path, output_path):
|
||||
# Load your original U-Net model
|
||||
unet_state_dict = load_file(model_path)
|
||||
|
||||
# Initialize your Kandinsky3UNet model
|
||||
config = {}
|
||||
|
||||
# Convert the state dict
|
||||
converted_state_dict = convert_state_dict(unet_state_dict)
|
||||
|
||||
unet = Kandinsky3UNet(config)
|
||||
unet.load_state_dict(converted_state_dict)
|
||||
|
||||
unet.save_pretrained(output_path)
|
||||
print(f"Converted model saved to {output_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format")
|
||||
parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model")
|
||||
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model_path, args.output_path)
|
||||
@@ -79,6 +79,7 @@ else:
|
||||
"AutoencoderTiny",
|
||||
"ConsistencyDecoderVAE",
|
||||
"ControlNetModel",
|
||||
"Kandinsky3UNet",
|
||||
"ModelMixin",
|
||||
"MotionAdapter",
|
||||
"MultiAdapter",
|
||||
@@ -214,6 +215,8 @@ else:
|
||||
"IFPipeline",
|
||||
"IFSuperResolutionPipeline",
|
||||
"ImageTextPipelineOutput",
|
||||
"Kandinsky3Img2ImgPipeline",
|
||||
"Kandinsky3Pipeline",
|
||||
"KandinskyCombinedPipeline",
|
||||
"KandinskyImg2ImgCombinedPipeline",
|
||||
"KandinskyImg2ImgPipeline",
|
||||
@@ -446,6 +449,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AutoencoderTiny,
|
||||
ConsistencyDecoderVAE,
|
||||
ControlNetModel,
|
||||
Kandinsky3UNet,
|
||||
ModelMixin,
|
||||
MotionAdapter,
|
||||
MultiAdapter,
|
||||
@@ -560,6 +564,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
IFPipeline,
|
||||
IFSuperResolutionPipeline,
|
||||
ImageTextPipelineOutput,
|
||||
Kandinsky3Img2ImgPipeline,
|
||||
Kandinsky3Pipeline,
|
||||
KandinskyCombinedPipeline,
|
||||
KandinskyImg2ImgCombinedPipeline,
|
||||
KandinskyImg2ImgPipeline,
|
||||
|
||||
@@ -36,6 +36,7 @@ if is_torch_available():
|
||||
_import_structure["unet_2d"] = ["UNet2DModel"]
|
||||
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
|
||||
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
|
||||
_import_structure["unet_kandi3"] = ["Kandinsky3UNet"]
|
||||
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
||||
_import_structure["vq_model"] = ["VQModel"]
|
||||
|
||||
@@ -63,6 +64,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .unet_2d import UNet2DModel
|
||||
from .unet_2d_condition import UNet2DConditionModel
|
||||
from .unet_3d_condition import UNet3DConditionModel
|
||||
from .unet_kandi3 import Kandinsky3UNet
|
||||
from .unet_motion_model import MotionAdapter, UNetMotionModel
|
||||
from .vq_model import VQModel
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ from typing import Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from torch import einsum, nn
|
||||
|
||||
from ..utils import USE_PEFT_BACKEND, deprecate, logging
|
||||
from ..utils.import_utils import is_xformers_available
|
||||
@@ -2219,6 +2219,44 @@ class IPAdapterAttnProcessor2_0(torch.nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should not exist, we can replace it with a normal attention processor I believe
|
||||
# this way torch.compile and co. will work as well
|
||||
class Kandi3AttnProcessor:
|
||||
r"""
|
||||
Default kandinsky3 proccesor for performing attention-related computations.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _reshape(hid_states, h):
|
||||
b, n, f = hid_states.shape
|
||||
d = f // h
|
||||
return hid_states.unsqueeze(-1).reshape(b, n, h, d).permute(0, 2, 1, 3)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
x,
|
||||
context,
|
||||
context_mask=None,
|
||||
):
|
||||
query = self._reshape(attn.to_q(x), h=attn.num_heads)
|
||||
key = self._reshape(attn.to_k(context), h=attn.num_heads)
|
||||
value = self._reshape(attn.to_v(context), h=attn.num_heads)
|
||||
|
||||
attention_matrix = einsum("b h i d, b h j d -> b h i j", query, key)
|
||||
|
||||
if context_mask is not None:
|
||||
max_neg_value = -torch.finfo(attention_matrix.dtype).max
|
||||
context_mask = context_mask.unsqueeze(1).unsqueeze(1)
|
||||
attention_matrix = attention_matrix.masked_fill(~(context_mask != 0), max_neg_value)
|
||||
attention_matrix = (attention_matrix * attn.scale).softmax(dim=-1)
|
||||
|
||||
out = einsum("b h i j, b h j d -> b h i d", attention_matrix, value)
|
||||
out = out.permute(0, 2, 1, 3).reshape(out.shape[0], out.shape[2], -1)
|
||||
out = attn.to_out[0](out)
|
||||
return out
|
||||
|
||||
|
||||
LORA_ATTENTION_PROCESSORS = (
|
||||
LoRAAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
@@ -2244,6 +2282,7 @@ CROSS_ATTENTION_PROCESSORS = (
|
||||
LoRAXFormersAttnProcessor,
|
||||
IPAdapterAttnProcessor,
|
||||
IPAdapterAttnProcessor2_0,
|
||||
Kandi3AttnProcessor,
|
||||
)
|
||||
|
||||
AttentionProcessor = Union[
|
||||
|
||||
589
src/diffusers/models/unet_kandi3.py
Normal file
589
src/diffusers/models/unet_kandi3.py
Normal file
@@ -0,0 +1,589 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, logging
|
||||
from .attention_processor import AttentionProcessor, Kandi3AttnProcessor
|
||||
from .embeddings import TimestepEmbedding
|
||||
from .modeling_utils import ModelMixin
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class Kandinsky3UNetOutput(BaseOutput):
|
||||
sample: torch.FloatTensor = None
|
||||
|
||||
|
||||
# TODO(Yiyi): This class needs to be removed
|
||||
def set_default_item(condition, item_1, item_2=None):
|
||||
if condition:
|
||||
return item_1
|
||||
else:
|
||||
return item_2
|
||||
|
||||
|
||||
# TODO(Yiyi): This class needs to be removed
|
||||
def set_default_layer(condition, layer_1, args_1=[], kwargs_1={}, layer_2=torch.nn.Identity, args_2=[], kwargs_2={}):
|
||||
if condition:
|
||||
return layer_1(*args_1, **kwargs_1)
|
||||
else:
|
||||
return layer_2(*args_2, **kwargs_2)
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should be removed and be replaced by Timesteps
|
||||
class SinusoidalPosEmb(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x, type_tensor=None):
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, device=x.device) * -emb)
|
||||
emb = x[:, None] * emb[None, :]
|
||||
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
|
||||
|
||||
class Kandinsky3EncoderProj(nn.Module):
|
||||
def __init__(self, encoder_hid_dim, cross_attention_dim):
|
||||
super().__init__()
|
||||
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
|
||||
self.projection_norm = nn.LayerNorm(cross_attention_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.projection_linear(x)
|
||||
x = self.projection_norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class Kandinsky3UNet(ModelMixin, ConfigMixin):
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 4,
|
||||
time_embedding_dim: int = 1536,
|
||||
groups: int = 32,
|
||||
attention_head_dim: int = 64,
|
||||
layers_per_block: Union[int, Tuple[int]] = 3,
|
||||
block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
|
||||
cross_attention_dim: Union[int, Tuple[int]] = 4096,
|
||||
encoder_hid_dim: int = 4096,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# TOOD(Yiyi): Give better name and put into config for the following 4 parameters
|
||||
expansion_ratio = 4
|
||||
compression_ratio = 2
|
||||
add_cross_attention = (False, True, True, True)
|
||||
add_self_attention = (False, True, True, True)
|
||||
|
||||
out_channels = in_channels
|
||||
init_channels = block_out_channels[0] // 2
|
||||
# TODO(Yiyi): Should be replaced with Timesteps class -> make sure that results are the same
|
||||
# self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
|
||||
self.time_proj = SinusoidalPosEmb(init_channels)
|
||||
|
||||
self.time_embedding = TimestepEmbedding(
|
||||
init_channels,
|
||||
time_embedding_dim,
|
||||
)
|
||||
|
||||
self.add_time_condition = Kandinsky3AttentionPooling(
|
||||
time_embedding_dim, cross_attention_dim, attention_head_dim
|
||||
)
|
||||
|
||||
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)
|
||||
|
||||
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)
|
||||
|
||||
hidden_dims = [init_channels] + list(block_out_channels)
|
||||
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
|
||||
text_dims = [set_default_item(is_exist, cross_attention_dim) for is_exist in add_cross_attention]
|
||||
num_blocks = len(block_out_channels) * [layers_per_block]
|
||||
layer_params = [num_blocks, text_dims, add_self_attention]
|
||||
rev_layer_params = map(reversed, layer_params)
|
||||
|
||||
cat_dims = []
|
||||
self.num_levels = len(in_out_dims)
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
|
||||
zip(in_out_dims, *layer_params)
|
||||
):
|
||||
down_sample = level != (self.num_levels - 1)
|
||||
cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
|
||||
self.down_blocks.append(
|
||||
Kandinsky3DownSampleBlock(
|
||||
in_dim,
|
||||
out_dim,
|
||||
time_embedding_dim,
|
||||
text_dim,
|
||||
res_block_num,
|
||||
groups,
|
||||
attention_head_dim,
|
||||
expansion_ratio,
|
||||
compression_ratio,
|
||||
down_sample,
|
||||
self_attention,
|
||||
)
|
||||
)
|
||||
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
|
||||
zip(reversed(in_out_dims), *rev_layer_params)
|
||||
):
|
||||
up_sample = level != 0
|
||||
self.up_blocks.append(
|
||||
Kandinsky3UpSampleBlock(
|
||||
in_dim,
|
||||
cat_dims.pop(),
|
||||
out_dim,
|
||||
time_embedding_dim,
|
||||
text_dim,
|
||||
res_block_num,
|
||||
groups,
|
||||
attention_head_dim,
|
||||
expansion_ratio,
|
||||
compression_ratio,
|
||||
up_sample,
|
||||
self_attention,
|
||||
)
|
||||
)
|
||||
|
||||
self.conv_norm_out = nn.GroupNorm(groups, init_channels)
|
||||
self.conv_act_out = nn.SiLU()
|
||||
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
|
||||
|
||||
@property
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "set_processor"):
|
||||
processors[f"{name}.processor"] = module.processor
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
def set_default_attn_processor(self):
|
||||
"""
|
||||
Disables custom attention processors and sets the default attention implementation.
|
||||
"""
|
||||
self.set_attn_processor(Kandi3AttnProcessor())
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
|
||||
# TODO(Yiyi): Clean up the following variables - these names should not be used
|
||||
# but instead only the ones that we pass to forward
|
||||
x = sample
|
||||
context_mask = encoder_attention_mask
|
||||
context = encoder_hidden_states
|
||||
|
||||
if not torch.is_tensor(timestep):
|
||||
dtype = torch.float32 if isinstance(timestep, float) else torch.int32
|
||||
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
|
||||
elif len(timestep.shape) == 0:
|
||||
timestep = timestep[None].to(sample.device)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = timestep.expand(sample.shape[0])
|
||||
time_embed_input = self.time_proj(timestep).to(x.dtype)
|
||||
time_embed = self.time_embedding(time_embed_input)
|
||||
|
||||
context = self.encoder_hid_proj(context)
|
||||
|
||||
if context is not None:
|
||||
time_embed = self.add_time_condition(time_embed, context, context_mask)
|
||||
|
||||
hidden_states = []
|
||||
x = self.conv_in(x)
|
||||
for level, down_sample in enumerate(self.down_blocks):
|
||||
x = down_sample(x, time_embed, context, context_mask)
|
||||
if level != self.num_levels - 1:
|
||||
hidden_states.append(x)
|
||||
|
||||
for level, up_sample in enumerate(self.up_blocks):
|
||||
if level != 0:
|
||||
x = torch.cat([x, hidden_states.pop()], dim=1)
|
||||
x = up_sample(x, time_embed, context, context_mask)
|
||||
|
||||
x = self.conv_norm_out(x)
|
||||
x = self.conv_act_out(x)
|
||||
x = self.conv_out(x)
|
||||
|
||||
if not return_dict:
|
||||
return (x,)
|
||||
return Kandinsky3UNetOutput(sample=x)
|
||||
|
||||
|
||||
class Kandinsky3UpSampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
cat_dim,
|
||||
out_channels,
|
||||
time_embed_dim,
|
||||
context_dim=None,
|
||||
num_blocks=3,
|
||||
groups=32,
|
||||
head_dim=64,
|
||||
expansion_ratio=4,
|
||||
compression_ratio=2,
|
||||
up_sample=True,
|
||||
self_attention=True,
|
||||
):
|
||||
super().__init__()
|
||||
up_resolutions = [[None, set_default_item(up_sample, True), None, None]] + [[None] * 4] * (num_blocks - 1)
|
||||
hidden_channels = (
|
||||
[(in_channels + cat_dim, in_channels)]
|
||||
+ [(in_channels, in_channels)] * (num_blocks - 2)
|
||||
+ [(in_channels, out_channels)]
|
||||
)
|
||||
attentions = []
|
||||
resnets_in = []
|
||||
resnets_out = []
|
||||
|
||||
self.self_attention = self_attention
|
||||
self.context_dim = context_dim
|
||||
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
self_attention,
|
||||
Kandinsky3AttentionBlock,
|
||||
(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
)
|
||||
)
|
||||
|
||||
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
||||
resnets_in.append(
|
||||
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
|
||||
)
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
context_dim is not None,
|
||||
Kandinsky3AttentionBlock,
|
||||
(in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
)
|
||||
)
|
||||
resnets_out.append(
|
||||
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
||||
)
|
||||
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets_in = nn.ModuleList(resnets_in)
|
||||
self.resnets_out = nn.ModuleList(resnets_out)
|
||||
|
||||
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
||||
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
|
||||
x = resnet_in(x, time_embed)
|
||||
if self.context_dim is not None:
|
||||
x = attention(x, time_embed, context, context_mask, image_mask)
|
||||
x = resnet_out(x, time_embed)
|
||||
|
||||
if self.self_attention:
|
||||
x = self.attentions[0](x, time_embed, image_mask=image_mask)
|
||||
return x
|
||||
|
||||
|
||||
class Kandinsky3DownSampleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
time_embed_dim,
|
||||
context_dim=None,
|
||||
num_blocks=3,
|
||||
groups=32,
|
||||
head_dim=64,
|
||||
expansion_ratio=4,
|
||||
compression_ratio=2,
|
||||
down_sample=True,
|
||||
self_attention=True,
|
||||
):
|
||||
super().__init__()
|
||||
attentions = []
|
||||
resnets_in = []
|
||||
resnets_out = []
|
||||
|
||||
self.self_attention = self_attention
|
||||
self.context_dim = context_dim
|
||||
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
self_attention,
|
||||
Kandinsky3AttentionBlock,
|
||||
(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
)
|
||||
)
|
||||
|
||||
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, set_default_item(down_sample, False), None]]
|
||||
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
|
||||
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
|
||||
resnets_in.append(
|
||||
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
|
||||
)
|
||||
attentions.append(
|
||||
set_default_layer(
|
||||
context_dim is not None,
|
||||
Kandinsky3AttentionBlock,
|
||||
(out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
|
||||
layer_2=nn.Identity,
|
||||
)
|
||||
)
|
||||
resnets_out.append(
|
||||
Kandinsky3ResNetBlock(
|
||||
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
|
||||
)
|
||||
)
|
||||
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets_in = nn.ModuleList(resnets_in)
|
||||
self.resnets_out = nn.ModuleList(resnets_out)
|
||||
|
||||
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
||||
if self.self_attention:
|
||||
x = self.attentions[0](x, time_embed, image_mask=image_mask)
|
||||
|
||||
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
|
||||
x = resnet_in(x, time_embed)
|
||||
if self.context_dim is not None:
|
||||
x = attention(x, time_embed, context, context_mask, image_mask)
|
||||
x = resnet_out(x, time_embed)
|
||||
return x
|
||||
|
||||
|
||||
class Kandinsky3ConditionalGroupNorm(nn.Module):
|
||||
def __init__(self, groups, normalized_shape, context_dim):
|
||||
super().__init__()
|
||||
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
|
||||
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
|
||||
self.context_mlp[1].weight.data.zero_()
|
||||
self.context_mlp[1].bias.data.zero_()
|
||||
|
||||
def forward(self, x, context):
|
||||
context = self.context_mlp(context)
|
||||
|
||||
for _ in range(len(x.shape[2:])):
|
||||
context = context.unsqueeze(-1)
|
||||
|
||||
scale, shift = context.chunk(2, dim=1)
|
||||
x = self.norm(x) * (scale + 1.0) + shift
|
||||
return x
|
||||
|
||||
|
||||
# TODO(Yiyi): This class should ideally not even exist, it slows everything needlessly down. I'm pretty
|
||||
# sure we can delete it and instead just pass an attention_mask
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, context_dim, head_dim=64):
|
||||
super().__init__()
|
||||
assert out_channels % head_dim == 0
|
||||
self.num_heads = out_channels // head_dim
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
# to_q
|
||||
self.to_q = nn.Linear(in_channels, out_channels, bias=False)
|
||||
# to_k
|
||||
self.to_k = nn.Linear(context_dim, out_channels, bias=False)
|
||||
# to_v
|
||||
self.to_v = nn.Linear(context_dim, out_channels, bias=False)
|
||||
processor = Kandi3AttnProcessor()
|
||||
self.set_processor(processor)
|
||||
# to_out
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(out_channels, out_channels, bias=False))
|
||||
|
||||
def set_processor(self, processor: "AttnProcessor"): # noqa: F821
|
||||
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
||||
# pop `processor` from `self._modules`
|
||||
if (
|
||||
hasattr(self, "processor")
|
||||
and isinstance(self.processor, torch.nn.Module)
|
||||
and not isinstance(processor, torch.nn.Module)
|
||||
):
|
||||
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
||||
self._modules.pop("processor")
|
||||
|
||||
self.processor = processor
|
||||
|
||||
def forward(self, x, context, context_mask=None, image_mask=None):
|
||||
return self.processor(
|
||||
self,
|
||||
x,
|
||||
context=context,
|
||||
context_mask=context_mask,
|
||||
)
|
||||
|
||||
|
||||
class Kandinsky3Block(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
|
||||
super().__init__()
|
||||
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
|
||||
self.activation = nn.SiLU()
|
||||
self.up_sample = set_default_layer(
|
||||
up_resolution is not None and up_resolution,
|
||||
nn.ConvTranspose2d,
|
||||
(in_channels, in_channels),
|
||||
{"kernel_size": 2, "stride": 2},
|
||||
)
|
||||
padding = int(kernel_size > 1)
|
||||
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
|
||||
self.down_sample = set_default_layer(
|
||||
up_resolution is not None and not up_resolution,
|
||||
nn.Conv2d,
|
||||
(out_channels, out_channels),
|
||||
{"kernel_size": 2, "stride": 2},
|
||||
)
|
||||
|
||||
def forward(self, x, time_embed):
|
||||
x = self.group_norm(x, time_embed)
|
||||
x = self.activation(x)
|
||||
x = self.up_sample(x)
|
||||
x = self.projection(x)
|
||||
x = self.down_sample(x)
|
||||
return x
|
||||
|
||||
|
||||
class Kandinsky3ResNetBlock(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
|
||||
):
|
||||
super().__init__()
|
||||
kernel_sizes = [1, 3, 3, 1]
|
||||
hidden_channel = max(in_channels, out_channels) // compression_ratio
|
||||
hidden_channels = (
|
||||
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
|
||||
)
|
||||
self.resnet_blocks = nn.ModuleList(
|
||||
[
|
||||
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
|
||||
for (in_channel, out_channel), kernel_size, up_resolution in zip(
|
||||
hidden_channels, kernel_sizes, up_resolutions
|
||||
)
|
||||
]
|
||||
)
|
||||
self.shortcut_up_sample = set_default_layer(
|
||||
True in up_resolutions, nn.ConvTranspose2d, (in_channels, in_channels), {"kernel_size": 2, "stride": 2}
|
||||
)
|
||||
self.shortcut_projection = set_default_layer(
|
||||
in_channels != out_channels, nn.Conv2d, (in_channels, out_channels), {"kernel_size": 1}
|
||||
)
|
||||
self.shortcut_down_sample = set_default_layer(
|
||||
False in up_resolutions, nn.Conv2d, (out_channels, out_channels), {"kernel_size": 2, "stride": 2}
|
||||
)
|
||||
|
||||
def forward(self, x, time_embed):
|
||||
out = x
|
||||
for resnet_block in self.resnet_blocks:
|
||||
out = resnet_block(out, time_embed)
|
||||
|
||||
x = self.shortcut_up_sample(x)
|
||||
x = self.shortcut_projection(x)
|
||||
x = self.shortcut_down_sample(x)
|
||||
x = x + out
|
||||
return x
|
||||
|
||||
|
||||
class Kandinsky3AttentionPooling(nn.Module):
|
||||
def __init__(self, num_channels, context_dim, head_dim=64):
|
||||
super().__init__()
|
||||
self.attention = Attention(context_dim, num_channels, context_dim, head_dim)
|
||||
|
||||
def forward(self, x, context, context_mask=None):
|
||||
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
|
||||
return x + context.squeeze(1)
|
||||
|
||||
|
||||
class Kandinsky3AttentionBlock(nn.Module):
|
||||
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
|
||||
super().__init__()
|
||||
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
||||
self.attention = Attention(num_channels, num_channels, context_dim or num_channels, head_dim)
|
||||
|
||||
hidden_channels = expansion_ratio * num_channels
|
||||
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
|
||||
self.feed_forward = nn.Sequential(
|
||||
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
|
||||
nn.SiLU(),
|
||||
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
|
||||
)
|
||||
|
||||
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
|
||||
height, width = x.shape[-2:]
|
||||
out = self.in_norm(x, time_embed)
|
||||
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
|
||||
context = context if context is not None else out
|
||||
|
||||
if image_mask is not None:
|
||||
mask_height, mask_width = image_mask.shape[-2:]
|
||||
kernel_size = (mask_height // height, mask_width // width)
|
||||
image_mask = F.max_pool2d(image_mask, kernel_size, kernel_size)
|
||||
image_mask = image_mask.reshape(image_mask.shape[0], -1)
|
||||
|
||||
out = self.attention(out, context, context_mask, image_mask)
|
||||
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
|
||||
x = x + out
|
||||
|
||||
out = self.out_norm(x, time_embed)
|
||||
out = self.feed_forward(out)
|
||||
x = x + out
|
||||
return x
|
||||
@@ -110,6 +110,7 @@ else:
|
||||
"KandinskyV22PriorEmb2EmbPipeline",
|
||||
"KandinskyV22PriorPipeline",
|
||||
]
|
||||
_import_structure["kandinsky3"] = ["Kandinsky3Img2ImgPipeline", "Kandinsky3Pipeline"]
|
||||
_import_structure["latent_consistency_models"] = [
|
||||
"LatentConsistencyModelImg2ImgPipeline",
|
||||
"LatentConsistencyModelPipeline",
|
||||
@@ -338,6 +339,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
KandinskyV22PriorEmb2EmbPipeline,
|
||||
KandinskyV22PriorPipeline,
|
||||
)
|
||||
from .kandinsky3 import (
|
||||
Kandinsky3Img2ImgPipeline,
|
||||
Kandinsky3Pipeline,
|
||||
)
|
||||
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
|
||||
from .latent_diffusion import LDMTextToImagePipeline
|
||||
from .musicldm import MusicLDMPipeline
|
||||
|
||||
@@ -42,6 +42,7 @@ from .kandinsky2_2 import (
|
||||
KandinskyV22InpaintPipeline,
|
||||
KandinskyV22Pipeline,
|
||||
)
|
||||
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
|
||||
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
|
||||
from .pixart_alpha import PixArtAlphaPipeline
|
||||
from .stable_diffusion import (
|
||||
@@ -64,6 +65,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("if", IFPipeline),
|
||||
("kandinsky", KandinskyCombinedPipeline),
|
||||
("kandinsky22", KandinskyV22CombinedPipeline),
|
||||
("kandinsky3", Kandinsky3Pipeline),
|
||||
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
|
||||
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
|
||||
("wuerstchen", WuerstchenCombinedPipeline),
|
||||
@@ -79,6 +81,7 @@ AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("if", IFImg2ImgPipeline),
|
||||
("kandinsky", KandinskyImg2ImgCombinedPipeline),
|
||||
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
|
||||
("kandinsky3", Kandinsky3Img2ImgPipeline),
|
||||
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
|
||||
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
|
||||
("lcm", LatentConsistencyModelImg2ImgPipeline),
|
||||
|
||||
49
src/diffusers/pipelines/kandinsky3/__init__.py
Normal file
49
src/diffusers/pipelines/kandinsky3/__init__.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["kandinsky3_pipeline"] = ["Kandinsky3Pipeline"]
|
||||
_import_structure["kandinsky3img2img_pipeline"] = ["Kandinsky3Img2ImgPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .kandinsky3_pipeline import Kandinsky3Pipeline
|
||||
from .kandinsky3img2img_pipeline import Kandinsky3Img2ImgPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
452
src/diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py
Normal file
452
src/diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py
Normal file
@@ -0,0 +1,452 @@
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from ...loaders import LoraLoaderMixin
|
||||
from ...models import Kandinsky3UNet, VQModel
|
||||
from ...schedulers import DDPMScheduler
|
||||
from ...utils import (
|
||||
is_accelerate_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def downscale_height_and_width(height, width, scale_factor=8):
|
||||
new_height = height // scale_factor**2
|
||||
if height % scale_factor**2 != 0:
|
||||
new_height += 1
|
||||
new_width = width // scale_factor**2
|
||||
if width % scale_factor**2 != 0:
|
||||
new_width += 1
|
||||
return new_height * scale_factor, new_width * scale_factor
|
||||
|
||||
|
||||
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
model_cpu_offload_seq = "text_encoder->unet->movq"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
unet: Kandinsky3UNet,
|
||||
scheduler: DDPMScheduler,
|
||||
movq: VQModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
|
||||
)
|
||||
|
||||
def remove_all_hooks(self):
|
||||
if is_accelerate_available():
|
||||
from accelerate.hooks import remove_hook_from_module
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
|
||||
for model in [self.text_encoder, self.unet]:
|
||||
if model is not None:
|
||||
remove_hook_from_module(model, recurse=True)
|
||||
|
||||
self.unet_offload_hook = None
|
||||
self.text_encoder_offload_hook = None
|
||||
self.final_offload_hook = None
|
||||
|
||||
def process_embeds(self, embeddings, attention_mask, cut_context):
|
||||
if cut_context:
|
||||
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
|
||||
max_seq_length = attention_mask.sum(-1).max() + 1
|
||||
embeddings = embeddings[:, :max_seq_length]
|
||||
attention_mask = attention_mask[:, :max_seq_length]
|
||||
return embeddings, attention_mask
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
do_classifier_free_guidance=True,
|
||||
num_images_per_prompt=1,
|
||||
device=None,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
_cut_context=False,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
||||
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
"""
|
||||
if prompt is not None and negative_prompt is not None:
|
||||
if type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
max_length = 128
|
||||
|
||||
if prompt_embeds is None:
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
attention_mask = text_inputs.attention_mask.to(device)
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context)
|
||||
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens: List[str]
|
||||
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
if negative_prompt is not None:
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=128,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = uncond_input.input_ids.to(device)
|
||||
negative_attention_mask = uncond_input.attention_mask.to(device)
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=negative_attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
|
||||
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
|
||||
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)
|
||||
|
||||
else:
|
||||
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
||||
negative_attention_mask = torch.zeros_like(attention_mask)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
||||
if negative_prompt_embeds.shape != prompt_embeds.shape:
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
else:
|
||||
negative_prompt_embeds = None
|
||||
negative_attention_mask = None
|
||||
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
||||
|
||||
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
|
||||
latents = latents * scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
callback_steps,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_inference_steps: int = 100,
|
||||
guidance_scale: float = 3.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
height: Optional[int] = 1024,
|
||||
width: Optional[int] = 1024,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
latents=None,
|
||||
):
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
||||
timesteps are used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 3.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The width in pixels of the generated image.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
clean_caption (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
||||
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
||||
prompt.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
"""
|
||||
cut_context = True
|
||||
device = self._execution_device
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
_cut_context=cut_context,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latents
|
||||
height, width = downscale_height_and_width(height, width, 8)
|
||||
|
||||
latents = self.prepare_latents(
|
||||
(batch_size * num_images_per_prompt, 4, height, width),
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
self.scheduler,
|
||||
)
|
||||
|
||||
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
||||
self.text_encoder_offload_hook.offload()
|
||||
|
||||
# 7. Denoising loop
|
||||
# TODO(Yiyi): Correct the following line and use correctly
|
||||
# num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
|
||||
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
||||
# noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(
|
||||
noise_pred,
|
||||
t,
|
||||
latents,
|
||||
generator=generator,
|
||||
).prev_sample
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
# post-processing
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type not in ["pt", "np", "pil"]:
|
||||
raise ValueError(
|
||||
f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}"
|
||||
)
|
||||
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image)
|
||||
460
src/diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py
Normal file
460
src/diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py
Normal file
@@ -0,0 +1,460 @@
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from ...loaders import LoraLoaderMixin
|
||||
from ...models import Kandinsky3UNet, VQModel
|
||||
from ...schedulers import DDPMScheduler
|
||||
from ...utils import (
|
||||
is_accelerate_available,
|
||||
logging,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def downscale_height_and_width(height, width, scale_factor=8):
|
||||
new_height = height // scale_factor**2
|
||||
if height % scale_factor**2 != 0:
|
||||
new_height += 1
|
||||
new_width = width // scale_factor**2
|
||||
if width % scale_factor**2 != 0:
|
||||
new_width += 1
|
||||
return new_height * scale_factor, new_width * scale_factor
|
||||
|
||||
|
||||
def prepare_image(pil_image):
|
||||
arr = np.array(pil_image.convert("RGB"))
|
||||
arr = arr.astype(np.float32) / 127.5 - 1
|
||||
arr = np.transpose(arr, [2, 0, 1])
|
||||
image = torch.from_numpy(arr).unsqueeze(0)
|
||||
return image
|
||||
|
||||
|
||||
class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
||||
model_cpu_offload_seq = "text_encoder->unet->movq"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
unet: Kandinsky3UNet,
|
||||
scheduler: DDPMScheduler,
|
||||
movq: VQModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
|
||||
)
|
||||
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
def remove_all_hooks(self):
|
||||
if is_accelerate_available():
|
||||
from accelerate.hooks import remove_hook_from_module
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
|
||||
for model in [self.text_encoder, self.unet]:
|
||||
if model is not None:
|
||||
remove_hook_from_module(model, recurse=True)
|
||||
|
||||
self.unet_offload_hook = None
|
||||
self.text_encoder_offload_hook = None
|
||||
self.final_offload_hook = None
|
||||
|
||||
def _process_embeds(self, embeddings, attention_mask, cut_context):
|
||||
# return embeddings, attention_mask
|
||||
if cut_context:
|
||||
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
|
||||
max_seq_length = attention_mask.sum(-1).max() + 1
|
||||
embeddings = embeddings[:, :max_seq_length]
|
||||
attention_mask = attention_mask[:, :max_seq_length]
|
||||
return embeddings, attention_mask
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
do_classifier_free_guidance=True,
|
||||
num_images_per_prompt=1,
|
||||
device=None,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
_cut_context=False,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
||||
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
"""
|
||||
if prompt is not None and negative_prompt is not None:
|
||||
if type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
max_length = 128
|
||||
|
||||
if prompt_embeds is None:
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
attention_mask = text_inputs.attention_mask.to(device)
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context)
|
||||
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens: List[str]
|
||||
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
if negative_prompt is not None:
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=128,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = uncond_input.input_ids.to(device)
|
||||
negative_attention_mask = uncond_input.attention_mask.to(device)
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=negative_attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
|
||||
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
|
||||
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)
|
||||
|
||||
else:
|
||||
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
||||
negative_attention_mask = torch.zeros_like(attention_mask)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
||||
if negative_prompt_embeds.shape != prompt_embeds.shape:
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
else:
|
||||
negative_prompt_embeds = None
|
||||
negative_attention_mask = None
|
||||
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
||||
|
||||
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
||||
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
||||
raise ValueError(
|
||||
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
||||
)
|
||||
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
|
||||
batch_size = batch_size * num_images_per_prompt
|
||||
|
||||
if image.shape[1] == 4:
|
||||
init_latents = image
|
||||
|
||||
else:
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
elif isinstance(generator, list):
|
||||
init_latents = [
|
||||
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
||||
]
|
||||
init_latents = torch.cat(init_latents, dim=0)
|
||||
else:
|
||||
init_latents = self.movq.encode(image).latent_dist.sample(generator)
|
||||
|
||||
init_latents = self.movq.config.scaling_factor * init_latents
|
||||
|
||||
init_latents = torch.cat([init_latents], dim=0)
|
||||
|
||||
shape = init_latents.shape
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
|
||||
# get latents
|
||||
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
||||
|
||||
latents = init_latents
|
||||
|
||||
return latents
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
callback_steps,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
|
||||
strength: float = 0.3,
|
||||
num_inference_steps: int = 25,
|
||||
guidance_scale: float = 3.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
latents=None,
|
||||
):
|
||||
cut_context = True
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
_cut_context=cut_context,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
||||
if not isinstance(image, list):
|
||||
image = [image]
|
||||
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
|
||||
raise ValueError(
|
||||
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor"
|
||||
)
|
||||
|
||||
image = torch.cat([prepare_image(i) for i in image], dim=0)
|
||||
image = image.to(dtype=prompt_embeds.dtype, device=device)
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
||||
# 5. Prepare latents
|
||||
latents = self.movq.encode(image)["latents"]
|
||||
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||||
latents = self.prepare_latents(
|
||||
latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
||||
)
|
||||
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
||||
self.text_encoder_offload_hook.offload()
|
||||
|
||||
# 7. Denoising loop
|
||||
# TODO(Yiyi): Correct the following line and use correctly
|
||||
# num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=attention_mask,
|
||||
)[0]
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
|
||||
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(
|
||||
noise_pred,
|
||||
t,
|
||||
latents,
|
||||
generator=generator,
|
||||
).prev_sample
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
# post-processing
|
||||
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
||||
|
||||
if output_type not in ["pt", "np", "pil"]:
|
||||
raise ValueError(
|
||||
f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}"
|
||||
)
|
||||
|
||||
if output_type in ["np", "pil"]:
|
||||
image = image * 0.5 + 0.5
|
||||
image = image.clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image)
|
||||
@@ -77,6 +77,21 @@ class ControlNetModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class Kandinsky3UNet(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ModelMixin(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -242,6 +242,36 @@ class ImageTextPipelineOutput(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Kandinsky3Img2ImgPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Kandinsky3Pipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class KandinskyCombinedPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
98
tests/convert_kandinsky3_unet.py
Executable file
98
tests/convert_kandinsky3_unet.py
Executable file
@@ -0,0 +1,98 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import fnmatch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from diffusers import Kandinsky3UNet
|
||||
|
||||
|
||||
MAPPING = {
|
||||
"to_time_embed.1": "time_embedding.linear_1",
|
||||
"to_time_embed.3": "time_embedding.linear_2",
|
||||
"in_layer": "conv_in",
|
||||
"out_layer.0": "conv_norm_out",
|
||||
"out_layer.2": "conv_out",
|
||||
"down_samples": "down_blocks",
|
||||
"up_samples": "up_blocks",
|
||||
"projection_lin": "encoder_hid_proj.projection_linear",
|
||||
"projection_ln": "encoder_hid_proj.projection_norm",
|
||||
"feature_pooling": "add_time_condition",
|
||||
"to_query": "to_q",
|
||||
"to_key": "to_k",
|
||||
"to_value": "to_v",
|
||||
"output_layer": "to_out.0",
|
||||
"self_attention_block": "attentions.0",
|
||||
}
|
||||
|
||||
DYNAMIC_MAP = {
|
||||
"resnet_attn_blocks.*.0": "resnets_in.*",
|
||||
"resnet_attn_blocks.*.1": ("attentions.*", 1),
|
||||
"resnet_attn_blocks.*.2": "resnets_out.*",
|
||||
}
|
||||
# MAPPING = {}
|
||||
|
||||
|
||||
def convert_state_dict(unet_state_dict):
|
||||
"""
|
||||
Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model.
|
||||
Args:
|
||||
unet_model (torch.nn.Module): The original U-Net model.
|
||||
unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with.
|
||||
|
||||
Returns:
|
||||
OrderedDict: The converted state dictionary.
|
||||
"""
|
||||
# Example of renaming logic (this will vary based on your model's architecture)
|
||||
converted_state_dict = {}
|
||||
for key in unet_state_dict:
|
||||
new_key = key
|
||||
for pattern, new_pattern in MAPPING.items():
|
||||
new_key = new_key.replace(pattern, new_pattern)
|
||||
|
||||
for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items():
|
||||
has_matched = False
|
||||
if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched:
|
||||
star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1])
|
||||
|
||||
if isinstance(dyn_new_pattern, tuple):
|
||||
new_star = star + dyn_new_pattern[-1]
|
||||
dyn_new_pattern = dyn_new_pattern[0]
|
||||
else:
|
||||
new_star = star
|
||||
|
||||
pattern = dyn_pattern.replace("*", str(star))
|
||||
new_pattern = dyn_new_pattern.replace("*", str(new_star))
|
||||
|
||||
new_key = new_key.replace(pattern, new_pattern)
|
||||
has_matched = True
|
||||
|
||||
converted_state_dict[new_key] = unet_state_dict[key]
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
def main(model_path, output_path):
|
||||
# Load your original U-Net model
|
||||
unet_state_dict = load_file(model_path)
|
||||
|
||||
# Initialize your Kandinsky3UNet model
|
||||
config = {}
|
||||
|
||||
# Convert the state dict
|
||||
converted_state_dict = convert_state_dict(unet_state_dict)
|
||||
|
||||
unet = Kandinsky3UNet(config)
|
||||
unet.load_state_dict(converted_state_dict)
|
||||
|
||||
unet.save_pretrained(output_path)
|
||||
print(f"Converted model saved to {output_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format")
|
||||
parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model")
|
||||
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model")
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args.model_path, args.output_path)
|
||||
0
tests/pipelines/kandinsky3/__init__.py
Normal file
0
tests/pipelines/kandinsky3/__init__.py
Normal file
237
tests/pipelines/kandinsky3/test_kandinsky3.py
Normal file
237
tests/pipelines/kandinsky3/test_kandinsky3.py
Normal file
@@ -0,0 +1,237 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
AutoPipelineForText2Image,
|
||||
Kandinsky3Pipeline,
|
||||
Kandinsky3UNet,
|
||||
VQModel,
|
||||
)
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
load_image,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
)
|
||||
|
||||
from ..pipeline_params import (
|
||||
TEXT_TO_IMAGE_BATCH_PARAMS,
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
||||
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
||||
TEXT_TO_IMAGE_PARAMS,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = Kandinsky3Pipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
|
||||
test_xformers_attention = False
|
||||
|
||||
@property
|
||||
def dummy_movq_kwargs(self):
|
||||
return {
|
||||
"block_out_channels": [32, 64],
|
||||
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 1,
|
||||
"norm_num_groups": 8,
|
||||
"norm_type": "spatial",
|
||||
"num_vq_embeddings": 12,
|
||||
"out_channels": 3,
|
||||
"up_block_types": [
|
||||
"AttnUpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
],
|
||||
"vq_embed_dim": 4,
|
||||
}
|
||||
|
||||
@property
|
||||
def dummy_movq(self):
|
||||
torch.manual_seed(0)
|
||||
model = VQModel(**self.dummy_movq_kwargs)
|
||||
return model
|
||||
|
||||
def get_dummy_components(self, time_cond_proj_dim=None):
|
||||
torch.manual_seed(0)
|
||||
unet = Kandinsky3UNet(
|
||||
in_channels=4,
|
||||
time_embedding_dim=4,
|
||||
groups=2,
|
||||
attention_head_dim=4,
|
||||
layers_per_block=3,
|
||||
block_out_channels=(32, 64),
|
||||
cross_attention_dim=4,
|
||||
encoder_hid_dim=32,
|
||||
)
|
||||
scheduler = DDPMScheduler(
|
||||
beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
steps_offset=1,
|
||||
beta_schedule="squaredcos_cap_v2",
|
||||
clip_sample=True,
|
||||
thresholding=False,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"scheduler": scheduler,
|
||||
"movq": movq,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"output_type": "np",
|
||||
"width": 16,
|
||||
"height": 16,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_kandinsky3(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
output = pipe(**self.get_dummy_inputs(device))
|
||||
image = output.images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (1, 16, 16, 3)
|
||||
|
||||
expected_slice = np.array([0.3768, 0.4373, 0.4865, 0.4890, 0.4299, 0.5122, 0.4921, 0.4924, 0.5599])
|
||||
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_model_cpu_offload_forward_pass(self):
|
||||
# TODO(Yiyi) - this test should work, skipped for time reasons for now
|
||||
pass
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class Kandinsky3PipelineIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_kandinskyV3(self):
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(
|
||||
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
|
||||
image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]
|
||||
|
||||
assert image.size == (1024, 1024)
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
||||
)
|
||||
|
||||
image_processor = VaeImageProcessor()
|
||||
|
||||
image_np = image_processor.pil_to_numpy(image)
|
||||
expected_image_np = image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
|
||||
|
||||
def test_kandinskyV3_img2img(self):
|
||||
pipe = AutoPipelineForImage2Image.from_pretrained(
|
||||
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
||||
)
|
||||
w, h = 512, 512
|
||||
image = image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
||||
prompt = "A painting of the inside of a subway train with tiny raccoons."
|
||||
|
||||
image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]
|
||||
|
||||
assert image.size == (512, 512)
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/i2i.png"
|
||||
)
|
||||
|
||||
image_processor = VaeImageProcessor()
|
||||
|
||||
image_np = image_processor.pil_to_numpy(image)
|
||||
expected_image_np = image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
|
||||
Reference in New Issue
Block a user