[Core] Add AuraFlow (#8796)

* add lavender flow transformer

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
Sayak Paul
2024-07-11 20:50:19 +02:00
committed by GitHub
parent 87b9db644b
commit 2261510bbc
18 changed files with 1459 additions and 27 deletions

View File

@@ -0,0 +1,131 @@
import argparse
import torch
from huggingface_hub import hf_hub_download
from diffusers.models.transformers.auraflow_transformer_2d import AuraFlowTransformer2DModel
def load_original_state_dict(args):
model_pt = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename="aura_diffusion_pytorch_model.bin")
state_dict = torch.load(model_pt, map_location="cpu")
return state_dict
def calculate_layers(state_dict_keys, key_prefix):
dit_layers = set()
for k in state_dict_keys:
if key_prefix in k:
dit_layers.add(int(k.split(".")[2]))
print(f"{key_prefix}: {len(dit_layers)}")
return len(dit_layers)
# similar to SD3 but only for the last norm layer
def swap_scale_shift(weight, dim):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def convert_transformer(state_dict):
converted_state_dict = {}
state_dict_keys = list(state_dict.keys())
converted_state_dict["register_tokens"] = state_dict.pop("model.register_tokens")
converted_state_dict["pos_embed.pos_embed"] = state_dict.pop("model.positional_encoding")
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("model.init_x_linear.weight")
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("model.init_x_linear.bias")
converted_state_dict["time_step_proj.linear_1.weight"] = state_dict.pop("model.t_embedder.mlp.0.weight")
converted_state_dict["time_step_proj.linear_1.bias"] = state_dict.pop("model.t_embedder.mlp.0.bias")
converted_state_dict["time_step_proj.linear_2.weight"] = state_dict.pop("model.t_embedder.mlp.2.weight")
converted_state_dict["time_step_proj.linear_2.bias"] = state_dict.pop("model.t_embedder.mlp.2.bias")
converted_state_dict["context_embedder.weight"] = state_dict.pop("model.cond_seq_linear.weight")
mmdit_layers = calculate_layers(state_dict_keys, key_prefix="double_layers")
single_dit_layers = calculate_layers(state_dict_keys, key_prefix="single_layers")
# MMDiT blocks 🎸.
for i in range(mmdit_layers):
# feed-forward
path_mapping = {"mlpX": "ff", "mlpC": "ff_context"}
weight_mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
for orig_k, diffuser_k in path_mapping.items():
for k, v in weight_mapping.items():
converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.{v}.weight"] = state_dict.pop(
f"model.double_layers.{i}.{orig_k}.{k}.weight"
)
# norms
path_mapping = {"modX": "norm1", "modC": "norm1_context"}
for orig_k, diffuser_k in path_mapping.items():
converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.linear.weight"] = state_dict.pop(
f"model.double_layers.{i}.{orig_k}.1.weight"
)
# attns
x_attn_mapping = {"w2q": "to_q", "w2k": "to_k", "w2v": "to_v", "w2o": "to_out.0"}
context_attn_mapping = {"w1q": "add_q_proj", "w1k": "add_k_proj", "w1v": "add_v_proj", "w1o": "to_add_out"}
for attn_mapping in [x_attn_mapping, context_attn_mapping]:
for k, v in attn_mapping.items():
converted_state_dict[f"joint_transformer_blocks.{i}.attn.{v}.weight"] = state_dict.pop(
f"model.double_layers.{i}.attn.{k}.weight"
)
# Single-DiT blocks.
for i in range(single_dit_layers):
# feed-forward
mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
for k, v in mapping.items():
converted_state_dict[f"single_transformer_blocks.{i}.ff.{v}.weight"] = state_dict.pop(
f"model.single_layers.{i}.mlp.{k}.weight"
)
# norms
converted_state_dict[f"single_transformer_blocks.{i}.norm1.linear.weight"] = state_dict.pop(
f"model.single_layers.{i}.modCX.1.weight"
)
# attns
x_attn_mapping = {"w1q": "to_q", "w1k": "to_k", "w1v": "to_v", "w1o": "to_out.0"}
for k, v in x_attn_mapping.items():
converted_state_dict[f"single_transformer_blocks.{i}.attn.{v}.weight"] = state_dict.pop(
f"model.single_layers.{i}.attn.{k}.weight"
)
# Final blocks.
converted_state_dict["proj_out.weight"] = state_dict.pop("model.final_linear.weight")
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(state_dict.pop("model.modF.1.weight"), dim=None)
return converted_state_dict
@torch.no_grad()
def populate_state_dict(args):
original_state_dict = load_original_state_dict(args)
state_dict_keys = list(original_state_dict.keys())
mmdit_layers = calculate_layers(state_dict_keys, key_prefix="double_layers")
single_dit_layers = calculate_layers(state_dict_keys, key_prefix="single_layers")
converted_state_dict = convert_transformer(original_state_dict)
model_diffusers = AuraFlowTransformer2DModel(
num_mmdit_layers=mmdit_layers, num_single_dit_layers=single_dit_layers
)
model_diffusers.load_state_dict(converted_state_dict, strict=True)
return model_diffusers
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--original_state_dict_repo_id", default="AuraDiffusion/auradiffusion-v0.1a0", type=str)
parser.add_argument("--dump_path", default="aura-flow", type=str)
parser.add_argument("--hub_id", default=None, type=str)
args = parser.parse_args()
model_diffusers = populate_state_dict(args)
model_diffusers.save_pretrained(args.dump_path)
if args.hub_id is not None:
model_diffusers.push_to_hub(args.hub_id)

View File

@@ -76,6 +76,7 @@ else:
_import_structure["models"].extend(
[
"AsymmetricAutoencoderKL",
"AuraFlowTransformer2DModel",
"AutoencoderKL",
"AutoencoderKLTemporalDecoder",
"AutoencoderTiny",
@@ -235,6 +236,7 @@ else:
"AudioLDM2ProjectionModel",
"AudioLDM2UNet2DConditionModel",
"AudioLDMPipeline",
"AuraFlowPipeline",
"BlipDiffusionControlNetPipeline",
"BlipDiffusionPipeline",
"ChatGLMModel",
@@ -507,6 +509,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .models import (
AsymmetricAutoencoderKL,
AuraFlowTransformer2DModel,
AutoencoderKL,
AutoencoderKLTemporalDecoder,
AutoencoderTiny,
@@ -646,6 +649,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
AudioLDMPipeline,
AuraFlowPipeline,
ChatGLMModel,
ChatGLMTokenizer,
CLIPImageProjection,

View File

@@ -38,6 +38,7 @@ if is_torch_available():
_import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
_import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"]
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
_import_structure["transformers.dual_transformer_2d"] = ["DualTransformer2DModel"]
_import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"]
@@ -84,6 +85,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin
from .transformers import (
AuraFlowTransformer2DModel,
DiTTransformer2DModel,
DualTransformer2DModel,
HunyuanDiT2DModel,

View File

@@ -22,7 +22,7 @@ from torch import nn
from ..image_processor import IPAdapterMaskProcessor
from ..utils import deprecate, logging
from ..utils.import_utils import is_torch_npu_available, is_xformers_available
from ..utils.torch_utils import maybe_allow_in_graph
from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -104,6 +104,7 @@ class Attention(nn.Module):
cross_attention_norm_num_groups: int = 32,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
norm_num_groups: Optional[int] = None,
spatial_norm_dim: Optional[int] = None,
out_bias: bool = True,
@@ -118,6 +119,10 @@ class Attention(nn.Module):
context_pre_only=None,
):
super().__init__()
# To prevent circular import.
from .normalization import FP32LayerNorm
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
@@ -170,6 +175,9 @@ class Attention(nn.Module):
elif qk_norm == "layer_norm":
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
elif qk_norm == "fp32_layer_norm":
self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
elif qk_norm == "layer_norm_across_heads":
# Lumina applys qk norm across all heads
self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
@@ -211,10 +219,10 @@ class Attention(nn.Module):
self.to_v = None
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim)
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
if self.context_pre_only is not None:
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
@@ -223,6 +231,14 @@ class Attention(nn.Module):
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
if qk_norm is not None and added_kv_proj_dim is not None:
if qk_norm == "fp32_layer_norm":
self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
else:
self.norm_added_q = None
self.norm_added_k = None
# set attention processor
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
@@ -1137,6 +1153,100 @@ class FusedJointAttnProcessor2_0:
return hidden_states, encoder_hidden_states
class AuraFlowAttnProcessor2_0:
"""Attention processor used typically in processing Aura Flow."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
raise ImportError(
"AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
i=0,
*args,
**kwargs,
) -> torch.FloatTensor:
batch_size = hidden_states.shape[0]
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
if encoder_hidden_states is not None:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# Reshape.
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim)
key = key.view(batch_size, -1, attn.heads, head_dim)
value = value.view(batch_size, -1, attn.heads, head_dim)
# Apply QK norm.
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Concatenate the projections.
if encoder_hidden_states is not None:
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)
query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# Attention.
hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# Split the attention outputs.
if encoder_hidden_states is not None:
hidden_states, encoder_hidden_states = (
hidden_states[:, encoder_hidden_states.shape[1] :],
hidden_states[:, : encoder_hidden_states.shape[1]],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else:
return hidden_states
class XFormersAttnAddedKVProcessor:
r"""
Processor for implementing memory efficient attention using xFormers.

View File

@@ -473,11 +473,12 @@ class TimestepEmbedding(nn.Module):
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
@@ -485,6 +486,7 @@ class Timesteps(nn.Module):
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb

View File

@@ -51,6 +51,18 @@ class AdaLayerNorm(nn.Module):
return x
class FP32LayerNorm(nn.LayerNorm):
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
origin_dtype = inputs.dtype
return F.layer_norm(
inputs.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
).to(origin_dtype)
class AdaLayerNormZero(nn.Module):
r"""
Norm layer adaptive layer norm zero (adaLN-Zero).
@@ -60,7 +72,7 @@ class AdaLayerNormZero(nn.Module):
num_embeddings (`int`): The size of the embeddings dictionary.
"""
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None):
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
super().__init__()
if num_embeddings is not None:
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
@@ -68,8 +80,15 @@ class AdaLayerNormZero(nn.Module):
self.emb = None
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
elif norm_type == "fp32_layer_norm":
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
else:
raise ValueError(
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
)
def forward(
self,

View File

@@ -2,6 +2,7 @@ from ...utils import is_torch_available
if is_torch_available():
from .auraflow_transformer_2d import AuraFlowTransformer2DModel
from .dit_transformer_2d import DiTTransformer2DModel
from .dual_transformer_2d import DualTransformer2DModel
from .hunyuan_transformer_2d import HunyuanDiT2DModel

View File

@@ -0,0 +1,402 @@
# Copyright 2024 AuraFlow Authors, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention_processor import Attention, AuraFlowAttnProcessor2_0
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormZero, FP32LayerNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Taken from the original aura flow inference code.
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
# Aura Flow patch embed doesn't use convs for projections.
# Additionally, it uses learned positional embeddings.
class AuraFlowPatchEmbed(nn.Module):
def __init__(
self,
height=224,
width=224,
patch_size=16,
in_channels=3,
embed_dim=768,
pos_embed_max_size=None,
):
super().__init__()
self.num_patches = (height // patch_size) * (width // patch_size)
self.pos_embed_max_size = pos_embed_max_size
self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim)
self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1)
self.patch_size = patch_size
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
def forward(self, latent):
batch_size, num_channels, height, width = latent.size()
latent = latent.view(
batch_size,
num_channels,
height // self.patch_size,
self.patch_size,
width // self.patch_size,
self.patch_size,
)
latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
latent = self.proj(latent)
return latent + self.pos_embed
# Taken from the original Aura flow inference code.
# Our feedforward only has GELU but Aura uses SiLU.
class AuraFlowFeedForward(nn.Module):
def __init__(self, dim, hidden_dim=None) -> None:
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
final_hidden_dim = int(2 * hidden_dim / 3)
final_hidden_dim = find_multiple(final_hidden_dim, 256)
self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False)
self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False)
self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.linear_1(x)) * self.linear_2(x)
x = self.out_projection(x)
return x
class AuraFlowPreFinalBlock(nn.Module):
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False)
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
scale, shift = torch.chunk(emb, 2, dim=1)
x = x * (1 + scale)[:, None, :] + shift[:, None, :]
return x
@maybe_allow_in_graph
class AuraFlowSingleTransformerBlock(nn.Module):
"""Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT."""
def __init__(self, dim, num_attention_heads, attention_head_dim):
super().__init__()
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
processor = AuraFlowAttnProcessor2_0()
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="fp32_layer_norm",
out_dim=dim,
bias=False,
out_bias=False,
processor=processor,
)
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
self.ff = AuraFlowFeedForward(dim, dim * 4)
def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, i=9999):
residual = hidden_states
# Norm + Projection.
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
# Attention.
attn_output = self.attn(hidden_states=norm_hidden_states, i=i)
# Process attention outputs for the `hidden_states`.
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(hidden_states)
hidden_states = gate_mlp.unsqueeze(1) * ff_output
hidden_states = residual + hidden_states
return hidden_states
@maybe_allow_in_graph
class AuraFlowJointTransformerBlock(nn.Module):
r"""
Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive):
* QK Norm in the attention blocks
* No bias in the attention blocks
* Most LayerNorms are in FP32
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
is_last (`bool`): Boolean to determine if this is the last block in the model.
"""
def __init__(self, dim, num_attention_heads, attention_head_dim):
super().__init__()
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
processor = AuraFlowAttnProcessor2_0()
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
added_proj_bias=False,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="fp32_layer_norm",
out_dim=dim,
bias=False,
out_bias=False,
processor=processor,
context_pre_only=False,
)
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
self.ff = AuraFlowFeedForward(dim, dim * 4)
self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
self.ff_context = AuraFlowFeedForward(dim, dim * 4)
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, i=0
):
residual = hidden_states
residual_context = encoder_hidden_states
# Norm + Projection.
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, i=i
)
# Process attention outputs for the `hidden_states`.
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states)
hidden_states = residual + hidden_states
# Process attention outputs for the `encoder_hidden_states`.
encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output)
encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states)
encoder_hidden_states = residual_context + encoder_hidden_states
return encoder_hidden_states, hidden_states
class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 64,
patch_size: int = 2,
in_channels: int = 4,
num_mmdit_layers: int = 4,
num_single_dit_layers: int = 32,
attention_head_dim: int = 256,
num_attention_heads: int = 12,
joint_attention_dim: int = 2048,
caption_projection_dim: int = 3072,
out_channels: int = 4,
pos_embed_max_size: int = 1024,
):
super().__init__()
default_out_channels = in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.pos_embed = AuraFlowPatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size,
)
self.context_embedder = nn.Linear(
self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False
)
self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True)
self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
self.joint_transformer_blocks = nn.ModuleList(
[
AuraFlowJointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_mmdit_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
AuraFlowSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for _ in range(self.config.num_single_dit_layers)
]
)
self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
# https://arxiv.org/abs/2309.16588
# prevents artifacts in the attention maps
self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
height, width = hidden_states.shape[-2:]
# Apply patch embedding, timestep embedding, and project the caption embeddings.
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype)
temb = self.time_step_proj(temb)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
encoder_hidden_states = torch.cat(
[self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1
)
# MMDiT blocks.
for index_block, block in enumerate(self.joint_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, i=index_block
)
# Single DiT blocks that combine the `hidden_states` (image) and `encoder_hidden_states` (text)
if len(self.single_transformer_blocks) > 0:
encoder_seq_len = encoder_hidden_states.size(1)
combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
combined_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
combined_hidden_states,
temb,
**ckpt_kwargs,
)
else:
combined_hidden_states = block(hidden_states=combined_hidden_states, temb=temb)
hidden_states = combined_hidden_states[:, encoder_seq_len:]
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
# unpatchify
patch_size = self.config.patch_size
out_channels = self.config.out_channels
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -14,7 +14,6 @@
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
@@ -29,20 +28,12 @@ from ..embeddings import (
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous
from ..normalization import AdaLayerNormContinuous, FP32LayerNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class FP32LayerNorm(nn.LayerNorm):
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
origin_dtype = inputs.dtype
return F.layer_norm(
inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
).to(origin_dtype)
class AdaLayerNormShift(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.

View File

@@ -250,6 +250,7 @@ else:
"StableDiffusionLDM3DPipeline",
]
)
_import_structure["aura_flow"] = ["AuraFlowPipeline"]
_import_structure["stable_diffusion_3"] = [
"StableDiffusion3Pipeline",
"StableDiffusion3Img2ImgPipeline",
@@ -418,6 +419,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
)
from .aura_flow import AuraFlowPipeline
from .blip_diffusion import BlipDiffusionPipeline
from .controlnet import (
BlipDiffusionControlNetPipeline,

View File

@@ -0,0 +1,48 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_aura_flow"] = ["AuraFlowPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_aura_flow import AuraFlowPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -0,0 +1,489 @@
# Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import List, Optional, Tuple, Union
import torch
from transformers import T5Tokenizer, UMT5EncoderModel
from ...image_processor import VaeImageProcessor
from ...models import AuraFlowTransformer2DModel, AutoencoderKL
from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class AuraFlowPipeline(DiffusionPipeline):
_optional_components = []
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: UMT5EncoderModel,
vae: AutoencoderKL,
transformer: AuraFlowTransformer2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Union[str, List[str]] = None,
do_classifier_free_guidance: bool = True,
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: int = 256,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings.
max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
"""
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
max_length = max_sequence_length
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors="pt",
)
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
text_input_ids = text_inputs["input_ids"]
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because T5 can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(**text_inputs)[0]
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
prompt_embeds = prompt_embeds * prompt_attention_mask
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors="pt",
)
uncond_input = {k: v.to(device) for k, v in uncond_input.items()}
negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
negative_prompt_attention_mask = (
uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
)
negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
height: Optional[int] = 512,
width: Optional[int] = 512,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: int = 256,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[ImagePipelineOutput, Tuple]:
# 1. Check inputs. Raise error if not correct
height = height or self.transformer.config.sample_size * self.vae_scale_factor
width = width or self.transformer.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# 2. Determine batch size.
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
max_sequence_length=max_sequence_length,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# 4. Prepare timesteps
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 5. Prepare latents.
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0])
timestep = timestep.to(latents.device, dtype=latents.dtype)
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)

View File

@@ -13,7 +13,7 @@
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
@@ -158,7 +158,12 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -168,17 +173,19 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = timesteps / self.config.num_train_timesteps
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
self.timesteps = timesteps.to(device=device)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

View File

@@ -17,6 +17,21 @@ class AsymmetricAutoencoderKL(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class AuraFlowTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class AutoencoderKL(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -182,6 +182,21 @@ class AudioLDMPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class AuraFlowPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class ChatGLMModel(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -0,0 +1,73 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import AuraFlowTransformer2DModel
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = AuraFlowTransformer2DModel
main_input_name = "hidden_states"
@property
def dummy_input(self):
batch_size = 2
num_channels = 4
height = width = embedding_dim = 32
sequence_length = 256
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"patch_size": 2,
"in_channels": 4,
"num_mmdit_layers": 1,
"num_single_dit_layers": 1,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
"joint_attention_dim": 32,
"out_channels": 4,
"pos_embed_max_size": 256,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict

View File

View File

@@ -0,0 +1,121 @@
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, UMT5EncoderModel
from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel, AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.utils.testing_utils import (
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin
class AuraFlowPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = AuraFlowPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = AuraFlowTransformer2DModel(
sample_size=32,
patch_size=2,
in_channels=4,
num_mmdit_layers=1,
num_single_dit_layers=1,
attention_head_dim=8,
num_attention_heads=4,
caption_projection_dim=32,
joint_attention_dim=32,
out_channels=4,
pos_embed_max_size=256,
)
text_encoder = UMT5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-umt5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=32,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"height": None,
"width": None,
}
return inputs
def test_aura_flow_prompt_embeds(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_with_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs.pop("prompt")
do_classifier_free_guidance = inputs["guidance_scale"] > 1
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = pipe.encode_prompt(
prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
device=torch_device,
)
output_with_embeds = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_attention_mask=negative_prompt_attention_mask,
**inputs,
).images[0]
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
assert max_diff < 1e-4
def test_attention_slicing_forward_pass(self):
# Attention slicing needs to implemented differently for this because how single DiT and MMDiT
# blocks interfere with each other.
return