mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
[Core] Add AuraFlow (#8796)
* add lavender flow transformer --------- Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
131
scripts/convert_aura_flow_to_diffusers.py
Normal file
131
scripts/convert_aura_flow_to_diffusers.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from diffusers.models.transformers.auraflow_transformer_2d import AuraFlowTransformer2DModel
|
||||
|
||||
|
||||
def load_original_state_dict(args):
|
||||
model_pt = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename="aura_diffusion_pytorch_model.bin")
|
||||
state_dict = torch.load(model_pt, map_location="cpu")
|
||||
return state_dict
|
||||
|
||||
|
||||
def calculate_layers(state_dict_keys, key_prefix):
|
||||
dit_layers = set()
|
||||
for k in state_dict_keys:
|
||||
if key_prefix in k:
|
||||
dit_layers.add(int(k.split(".")[2]))
|
||||
print(f"{key_prefix}: {len(dit_layers)}")
|
||||
return len(dit_layers)
|
||||
|
||||
|
||||
# similar to SD3 but only for the last norm layer
|
||||
def swap_scale_shift(weight, dim):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
|
||||
def convert_transformer(state_dict):
|
||||
converted_state_dict = {}
|
||||
state_dict_keys = list(state_dict.keys())
|
||||
|
||||
converted_state_dict["register_tokens"] = state_dict.pop("model.register_tokens")
|
||||
converted_state_dict["pos_embed.pos_embed"] = state_dict.pop("model.positional_encoding")
|
||||
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("model.init_x_linear.weight")
|
||||
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("model.init_x_linear.bias")
|
||||
|
||||
converted_state_dict["time_step_proj.linear_1.weight"] = state_dict.pop("model.t_embedder.mlp.0.weight")
|
||||
converted_state_dict["time_step_proj.linear_1.bias"] = state_dict.pop("model.t_embedder.mlp.0.bias")
|
||||
converted_state_dict["time_step_proj.linear_2.weight"] = state_dict.pop("model.t_embedder.mlp.2.weight")
|
||||
converted_state_dict["time_step_proj.linear_2.bias"] = state_dict.pop("model.t_embedder.mlp.2.bias")
|
||||
|
||||
converted_state_dict["context_embedder.weight"] = state_dict.pop("model.cond_seq_linear.weight")
|
||||
|
||||
mmdit_layers = calculate_layers(state_dict_keys, key_prefix="double_layers")
|
||||
single_dit_layers = calculate_layers(state_dict_keys, key_prefix="single_layers")
|
||||
|
||||
# MMDiT blocks 🎸.
|
||||
for i in range(mmdit_layers):
|
||||
# feed-forward
|
||||
path_mapping = {"mlpX": "ff", "mlpC": "ff_context"}
|
||||
weight_mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
|
||||
for orig_k, diffuser_k in path_mapping.items():
|
||||
for k, v in weight_mapping.items():
|
||||
converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.{v}.weight"] = state_dict.pop(
|
||||
f"model.double_layers.{i}.{orig_k}.{k}.weight"
|
||||
)
|
||||
|
||||
# norms
|
||||
path_mapping = {"modX": "norm1", "modC": "norm1_context"}
|
||||
for orig_k, diffuser_k in path_mapping.items():
|
||||
converted_state_dict[f"joint_transformer_blocks.{i}.{diffuser_k}.linear.weight"] = state_dict.pop(
|
||||
f"model.double_layers.{i}.{orig_k}.1.weight"
|
||||
)
|
||||
|
||||
# attns
|
||||
x_attn_mapping = {"w2q": "to_q", "w2k": "to_k", "w2v": "to_v", "w2o": "to_out.0"}
|
||||
context_attn_mapping = {"w1q": "add_q_proj", "w1k": "add_k_proj", "w1v": "add_v_proj", "w1o": "to_add_out"}
|
||||
for attn_mapping in [x_attn_mapping, context_attn_mapping]:
|
||||
for k, v in attn_mapping.items():
|
||||
converted_state_dict[f"joint_transformer_blocks.{i}.attn.{v}.weight"] = state_dict.pop(
|
||||
f"model.double_layers.{i}.attn.{k}.weight"
|
||||
)
|
||||
|
||||
# Single-DiT blocks.
|
||||
for i in range(single_dit_layers):
|
||||
# feed-forward
|
||||
mapping = {"c_fc1": "linear_1", "c_fc2": "linear_2", "c_proj": "out_projection"}
|
||||
for k, v in mapping.items():
|
||||
converted_state_dict[f"single_transformer_blocks.{i}.ff.{v}.weight"] = state_dict.pop(
|
||||
f"model.single_layers.{i}.mlp.{k}.weight"
|
||||
)
|
||||
|
||||
# norms
|
||||
converted_state_dict[f"single_transformer_blocks.{i}.norm1.linear.weight"] = state_dict.pop(
|
||||
f"model.single_layers.{i}.modCX.1.weight"
|
||||
)
|
||||
|
||||
# attns
|
||||
x_attn_mapping = {"w1q": "to_q", "w1k": "to_k", "w1v": "to_v", "w1o": "to_out.0"}
|
||||
for k, v in x_attn_mapping.items():
|
||||
converted_state_dict[f"single_transformer_blocks.{i}.attn.{v}.weight"] = state_dict.pop(
|
||||
f"model.single_layers.{i}.attn.{k}.weight"
|
||||
)
|
||||
|
||||
# Final blocks.
|
||||
converted_state_dict["proj_out.weight"] = state_dict.pop("model.final_linear.weight")
|
||||
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(state_dict.pop("model.modF.1.weight"), dim=None)
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def populate_state_dict(args):
|
||||
original_state_dict = load_original_state_dict(args)
|
||||
state_dict_keys = list(original_state_dict.keys())
|
||||
mmdit_layers = calculate_layers(state_dict_keys, key_prefix="double_layers")
|
||||
single_dit_layers = calculate_layers(state_dict_keys, key_prefix="single_layers")
|
||||
|
||||
converted_state_dict = convert_transformer(original_state_dict)
|
||||
model_diffusers = AuraFlowTransformer2DModel(
|
||||
num_mmdit_layers=mmdit_layers, num_single_dit_layers=single_dit_layers
|
||||
)
|
||||
model_diffusers.load_state_dict(converted_state_dict, strict=True)
|
||||
|
||||
return model_diffusers
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--original_state_dict_repo_id", default="AuraDiffusion/auradiffusion-v0.1a0", type=str)
|
||||
parser.add_argument("--dump_path", default="aura-flow", type=str)
|
||||
parser.add_argument("--hub_id", default=None, type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
model_diffusers = populate_state_dict(args)
|
||||
model_diffusers.save_pretrained(args.dump_path)
|
||||
if args.hub_id is not None:
|
||||
model_diffusers.push_to_hub(args.hub_id)
|
||||
@@ -76,6 +76,7 @@ else:
|
||||
_import_structure["models"].extend(
|
||||
[
|
||||
"AsymmetricAutoencoderKL",
|
||||
"AuraFlowTransformer2DModel",
|
||||
"AutoencoderKL",
|
||||
"AutoencoderKLTemporalDecoder",
|
||||
"AutoencoderTiny",
|
||||
@@ -235,6 +236,7 @@ else:
|
||||
"AudioLDM2ProjectionModel",
|
||||
"AudioLDM2UNet2DConditionModel",
|
||||
"AudioLDMPipeline",
|
||||
"AuraFlowPipeline",
|
||||
"BlipDiffusionControlNetPipeline",
|
||||
"BlipDiffusionPipeline",
|
||||
"ChatGLMModel",
|
||||
@@ -507,6 +509,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .models import (
|
||||
AsymmetricAutoencoderKL,
|
||||
AuraFlowTransformer2DModel,
|
||||
AutoencoderKL,
|
||||
AutoencoderKLTemporalDecoder,
|
||||
AutoencoderTiny,
|
||||
@@ -646,6 +649,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AudioLDM2ProjectionModel,
|
||||
AudioLDM2UNet2DConditionModel,
|
||||
AudioLDMPipeline,
|
||||
AuraFlowPipeline,
|
||||
ChatGLMModel,
|
||||
ChatGLMTokenizer,
|
||||
CLIPImageProjection,
|
||||
|
||||
@@ -38,6 +38,7 @@ if is_torch_available():
|
||||
_import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
|
||||
_import_structure["embeddings"] = ["ImageProjection"]
|
||||
_import_structure["modeling_utils"] = ["ModelMixin"]
|
||||
_import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"]
|
||||
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
|
||||
_import_structure["transformers.dual_transformer_2d"] = ["DualTransformer2DModel"]
|
||||
_import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"]
|
||||
@@ -84,6 +85,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .embeddings import ImageProjection
|
||||
from .modeling_utils import ModelMixin
|
||||
from .transformers import (
|
||||
AuraFlowTransformer2DModel,
|
||||
DiTTransformer2DModel,
|
||||
DualTransformer2DModel,
|
||||
HunyuanDiT2DModel,
|
||||
|
||||
@@ -22,7 +22,7 @@ from torch import nn
|
||||
from ..image_processor import IPAdapterMaskProcessor
|
||||
from ..utils import deprecate, logging
|
||||
from ..utils.import_utils import is_torch_npu_available, is_xformers_available
|
||||
from ..utils.torch_utils import maybe_allow_in_graph
|
||||
from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -104,6 +104,7 @@ class Attention(nn.Module):
|
||||
cross_attention_norm_num_groups: int = 32,
|
||||
qk_norm: Optional[str] = None,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
added_proj_bias: Optional[bool] = True,
|
||||
norm_num_groups: Optional[int] = None,
|
||||
spatial_norm_dim: Optional[int] = None,
|
||||
out_bias: bool = True,
|
||||
@@ -118,6 +119,10 @@ class Attention(nn.Module):
|
||||
context_pre_only=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# To prevent circular import.
|
||||
from .normalization import FP32LayerNorm
|
||||
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
|
||||
self.query_dim = query_dim
|
||||
@@ -170,6 +175,9 @@ class Attention(nn.Module):
|
||||
elif qk_norm == "layer_norm":
|
||||
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
|
||||
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
|
||||
elif qk_norm == "fp32_layer_norm":
|
||||
self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
elif qk_norm == "layer_norm_across_heads":
|
||||
# Lumina applys qk norm across all heads
|
||||
self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
|
||||
@@ -211,10 +219,10 @@ class Attention(nn.Module):
|
||||
self.to_v = None
|
||||
|
||||
if self.added_kv_proj_dim is not None:
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim)
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
|
||||
if self.context_pre_only is not None:
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
||||
@@ -223,6 +231,14 @@ class Attention(nn.Module):
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
|
||||
|
||||
if qk_norm is not None and added_kv_proj_dim is not None:
|
||||
if qk_norm == "fp32_layer_norm":
|
||||
self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
else:
|
||||
self.norm_added_q = None
|
||||
self.norm_added_k = None
|
||||
|
||||
# set attention processor
|
||||
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
||||
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
||||
@@ -1137,6 +1153,100 @@ class FusedJointAttnProcessor2_0:
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class AuraFlowAttnProcessor2_0:
|
||||
"""Attention processor used typically in processing Aura Flow."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
|
||||
raise ImportError(
|
||||
"AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
i=0,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
# `context` projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
# Reshape.
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim)
|
||||
|
||||
# Apply QK norm.
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Concatenate the projections.
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)
|
||||
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
||||
|
||||
query = query.transpose(1, 2)
|
||||
key = key.transpose(1, 2)
|
||||
value = value.transpose(1, 2)
|
||||
|
||||
# Attention.
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
|
||||
)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# Split the attention outputs.
|
||||
if encoder_hidden_states is not None:
|
||||
hidden_states, encoder_hidden_states = (
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
if encoder_hidden_states is not None:
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
return hidden_states, encoder_hidden_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class XFormersAttnAddedKVProcessor:
|
||||
r"""
|
||||
Processor for implementing memory efficient attention using xFormers.
|
||||
|
||||
@@ -473,11 +473,12 @@ class TimestepEmbedding(nn.Module):
|
||||
|
||||
|
||||
class Timesteps(nn.Module):
|
||||
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
|
||||
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
|
||||
super().__init__()
|
||||
self.num_channels = num_channels
|
||||
self.flip_sin_to_cos = flip_sin_to_cos
|
||||
self.downscale_freq_shift = downscale_freq_shift
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, timesteps):
|
||||
t_emb = get_timestep_embedding(
|
||||
@@ -485,6 +486,7 @@ class Timesteps(nn.Module):
|
||||
self.num_channels,
|
||||
flip_sin_to_cos=self.flip_sin_to_cos,
|
||||
downscale_freq_shift=self.downscale_freq_shift,
|
||||
scale=self.scale,
|
||||
)
|
||||
return t_emb
|
||||
|
||||
|
||||
@@ -51,6 +51,18 @@ class AdaLayerNorm(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class FP32LayerNorm(nn.LayerNorm):
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
origin_dtype = inputs.dtype
|
||||
return F.layer_norm(
|
||||
inputs.float(),
|
||||
self.normalized_shape,
|
||||
self.weight.float() if self.weight is not None else None,
|
||||
self.bias.float() if self.bias is not None else None,
|
||||
self.eps,
|
||||
).to(origin_dtype)
|
||||
|
||||
|
||||
class AdaLayerNormZero(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
@@ -60,7 +72,7 @@ class AdaLayerNormZero(nn.Module):
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None):
|
||||
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
if num_embeddings is not None:
|
||||
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
||||
@@ -68,8 +80,15 @@ class AdaLayerNormZero(nn.Module):
|
||||
self.emb = None
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
elif norm_type == "fp32_layer_norm":
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -2,6 +2,7 @@ from ...utils import is_torch_available
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
from .auraflow_transformer_2d import AuraFlowTransformer2DModel
|
||||
from .dit_transformer_2d import DiTTransformer2DModel
|
||||
from .dual_transformer_2d import DualTransformer2DModel
|
||||
from .hunyuan_transformer_2d import HunyuanDiT2DModel
|
||||
|
||||
402
src/diffusers/models/transformers/auraflow_transformer_2d.py
Normal file
402
src/diffusers/models/transformers/auraflow_transformer_2d.py
Normal file
@@ -0,0 +1,402 @@
|
||||
# Copyright 2024 AuraFlow Authors, The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...utils import is_torch_version, logging
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention_processor import Attention, AuraFlowAttnProcessor2_0
|
||||
from ..embeddings import TimestepEmbedding, Timesteps
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormZero, FP32LayerNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# Taken from the original aura flow inference code.
|
||||
def find_multiple(n: int, k: int) -> int:
|
||||
if n % k == 0:
|
||||
return n
|
||||
return n + k - (n % k)
|
||||
|
||||
|
||||
# Aura Flow patch embed doesn't use convs for projections.
|
||||
# Additionally, it uses learned positional embeddings.
|
||||
class AuraFlowPatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
height=224,
|
||||
width=224,
|
||||
patch_size=16,
|
||||
in_channels=3,
|
||||
embed_dim=768,
|
||||
pos_embed_max_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.num_patches = (height // patch_size) * (width // patch_size)
|
||||
self.pos_embed_max_size = pos_embed_max_size
|
||||
|
||||
self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim)
|
||||
self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1)
|
||||
|
||||
self.patch_size = patch_size
|
||||
self.height, self.width = height // patch_size, width // patch_size
|
||||
self.base_size = height // patch_size
|
||||
|
||||
def forward(self, latent):
|
||||
batch_size, num_channels, height, width = latent.size()
|
||||
latent = latent.view(
|
||||
batch_size,
|
||||
num_channels,
|
||||
height // self.patch_size,
|
||||
self.patch_size,
|
||||
width // self.patch_size,
|
||||
self.patch_size,
|
||||
)
|
||||
latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
|
||||
latent = self.proj(latent)
|
||||
return latent + self.pos_embed
|
||||
|
||||
|
||||
# Taken from the original Aura flow inference code.
|
||||
# Our feedforward only has GELU but Aura uses SiLU.
|
||||
class AuraFlowFeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim=None) -> None:
|
||||
super().__init__()
|
||||
if hidden_dim is None:
|
||||
hidden_dim = 4 * dim
|
||||
|
||||
final_hidden_dim = int(2 * hidden_dim / 3)
|
||||
final_hidden_dim = find_multiple(final_hidden_dim, 256)
|
||||
|
||||
self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False)
|
||||
self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False)
|
||||
self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = F.silu(self.linear_1(x)) * self.linear_2(x)
|
||||
x = self.out_projection(x)
|
||||
return x
|
||||
|
||||
|
||||
class AuraFlowPreFinalBlock(nn.Module):
|
||||
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False)
|
||||
|
||||
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
||||
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
|
||||
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||
x = x * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class AuraFlowSingleTransformerBlock(nn.Module):
|
||||
"""Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT."""
|
||||
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
||||
|
||||
processor = AuraFlowAttnProcessor2_0()
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="fp32_layer_norm",
|
||||
out_dim=dim,
|
||||
bias=False,
|
||||
out_bias=False,
|
||||
processor=processor,
|
||||
)
|
||||
|
||||
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
||||
self.ff = AuraFlowFeedForward(dim, dim * 4)
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, i=9999):
|
||||
residual = hidden_states
|
||||
|
||||
# Norm + Projection.
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
||||
|
||||
# Attention.
|
||||
attn_output = self.attn(hidden_states=norm_hidden_states, i=i)
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
|
||||
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
ff_output = self.ff(hidden_states)
|
||||
hidden_states = gate_mlp.unsqueeze(1) * ff_output
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class AuraFlowJointTransformerBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive):
|
||||
|
||||
* QK Norm in the attention blocks
|
||||
* No bias in the attention blocks
|
||||
* Most LayerNorms are in FP32
|
||||
|
||||
Parameters:
|
||||
dim (`int`): The number of channels in the input and output.
|
||||
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`): The number of channels in each head.
|
||||
is_last (`bool`): Boolean to determine if this is the last block in the model.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
||||
self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
||||
|
||||
processor = AuraFlowAttnProcessor2_0()
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=dim,
|
||||
added_proj_bias=False,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="fp32_layer_norm",
|
||||
out_dim=dim,
|
||||
bias=False,
|
||||
out_bias=False,
|
||||
processor=processor,
|
||||
context_pre_only=False,
|
||||
)
|
||||
|
||||
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
||||
self.ff = AuraFlowFeedForward(dim, dim * 4)
|
||||
self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
||||
self.ff_context = AuraFlowFeedForward(dim, dim * 4)
|
||||
|
||||
def forward(
|
||||
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, i=0
|
||||
):
|
||||
residual = hidden_states
|
||||
residual_context = encoder_hidden_states
|
||||
|
||||
# Norm + Projection.
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb
|
||||
)
|
||||
|
||||
# Attention.
|
||||
attn_output, context_attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, i=i
|
||||
)
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
|
||||
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Process attention outputs for the `encoder_hidden_states`.
|
||||
encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output)
|
||||
encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states)
|
||||
encoder_hidden_states = residual_context + encoder_hidden_states
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sample_size: int = 64,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
num_mmdit_layers: int = 4,
|
||||
num_single_dit_layers: int = 32,
|
||||
attention_head_dim: int = 256,
|
||||
num_attention_heads: int = 12,
|
||||
joint_attention_dim: int = 2048,
|
||||
caption_projection_dim: int = 3072,
|
||||
out_channels: int = 4,
|
||||
pos_embed_max_size: int = 1024,
|
||||
):
|
||||
super().__init__()
|
||||
default_out_channels = in_channels
|
||||
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
||||
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
||||
|
||||
self.pos_embed = AuraFlowPatchEmbed(
|
||||
height=self.config.sample_size,
|
||||
width=self.config.sample_size,
|
||||
patch_size=self.config.patch_size,
|
||||
in_channels=self.config.in_channels,
|
||||
embed_dim=self.inner_dim,
|
||||
pos_embed_max_size=pos_embed_max_size,
|
||||
)
|
||||
|
||||
self.context_embedder = nn.Linear(
|
||||
self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False
|
||||
)
|
||||
self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True)
|
||||
self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
|
||||
|
||||
self.joint_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
AuraFlowJointTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
attention_head_dim=self.config.attention_head_dim,
|
||||
)
|
||||
for i in range(self.config.num_mmdit_layers)
|
||||
]
|
||||
)
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
AuraFlowSingleTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
attention_head_dim=self.config.attention_head_dim,
|
||||
)
|
||||
for _ in range(self.config.num_single_dit_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
|
||||
|
||||
# https://arxiv.org/abs/2309.16588
|
||||
# prevents artifacts in the attention maps
|
||||
self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
height, width = hidden_states.shape[-2:]
|
||||
|
||||
# Apply patch embedding, timestep embedding, and project the caption embeddings.
|
||||
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
||||
temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype)
|
||||
temb = self.time_step_proj(temb)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
encoder_hidden_states = torch.cat(
|
||||
[self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1
|
||||
)
|
||||
|
||||
# MMDiT blocks.
|
||||
for index_block, block in enumerate(self.joint_transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, i=index_block
|
||||
)
|
||||
|
||||
# Single DiT blocks that combine the `hidden_states` (image) and `encoder_hidden_states` (text)
|
||||
if len(self.single_transformer_blocks) > 0:
|
||||
encoder_seq_len = encoder_hidden_states.size(1)
|
||||
combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
combined_hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
combined_hidden_states,
|
||||
temb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
combined_hidden_states = block(hidden_states=combined_hidden_states, temb=temb)
|
||||
|
||||
hidden_states = combined_hidden_states[:, encoder_seq_len:]
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# unpatchify
|
||||
patch_size = self.config.patch_size
|
||||
out_channels = self.config.out_channels
|
||||
height = height // patch_size
|
||||
width = width // patch_size
|
||||
|
||||
hidden_states = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels)
|
||||
)
|
||||
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
||||
output = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size)
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -14,7 +14,6 @@
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
@@ -29,20 +28,12 @@ from ..embeddings import (
|
||||
)
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormContinuous
|
||||
from ..normalization import AdaLayerNormContinuous, FP32LayerNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class FP32LayerNorm(nn.LayerNorm):
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
origin_dtype = inputs.dtype
|
||||
return F.layer_norm(
|
||||
inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
|
||||
).to(origin_dtype)
|
||||
|
||||
|
||||
class AdaLayerNormShift(nn.Module):
|
||||
r"""
|
||||
Norm layer modified to incorporate timestep embeddings.
|
||||
|
||||
@@ -250,6 +250,7 @@ else:
|
||||
"StableDiffusionLDM3DPipeline",
|
||||
]
|
||||
)
|
||||
_import_structure["aura_flow"] = ["AuraFlowPipeline"]
|
||||
_import_structure["stable_diffusion_3"] = [
|
||||
"StableDiffusion3Pipeline",
|
||||
"StableDiffusion3Img2ImgPipeline",
|
||||
@@ -418,6 +419,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AudioLDM2ProjectionModel,
|
||||
AudioLDM2UNet2DConditionModel,
|
||||
)
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .blip_diffusion import BlipDiffusionPipeline
|
||||
from .controlnet import (
|
||||
BlipDiffusionControlNetPipeline,
|
||||
|
||||
48
src/diffusers/pipelines/aura_flow/__init__.py
Normal file
48
src/diffusers/pipelines/aura_flow/__init__.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_aura_flow"] = ["AuraFlowPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_aura_flow import AuraFlowPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
489
src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
Normal file
489
src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
Normal file
@@ -0,0 +1,489 @@
|
||||
# Copyright 2024 AuraFlow Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import T5Tokenizer, UMT5EncoderModel
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...models import AuraFlowTransformer2DModel, AutoencoderKL
|
||||
from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import logging
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class AuraFlowPipeline(DiffusionPipeline):
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: UMT5EncoderModel,
|
||||
vae: AutoencoderKL,
|
||||
transformer: AuraFlowTransformer2DModel,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
||||
|
||||
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
||||
raise ValueError(
|
||||
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
||||
f" {negative_prompt_attention_mask.shape}."
|
||||
)
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
num_images_per_prompt: int = 1,
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 256,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
||||
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
whether to use classifier free guidance or not
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
number of images that should be generated per prompt
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings.
|
||||
max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
|
||||
"""
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
max_length = max_sequence_length
|
||||
if prompt_embeds is None:
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
|
||||
text_input_ids = text_inputs["input_ids"]
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because T5 can only handle sequences up to"
|
||||
f" {max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder(**text_inputs)[0]
|
||||
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
|
||||
prompt_embeds = prompt_embeds * prompt_attention_mask
|
||||
|
||||
if self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
elif self.transformer is not None:
|
||||
dtype = self.transformer.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
truncation=True,
|
||||
max_length=max_length,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
uncond_input = {k: v.to(device) for k, v in uncond_input.items()}
|
||||
negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
|
||||
negative_prompt_attention_mask = (
|
||||
uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
else:
|
||||
negative_prompt_embeds = None
|
||||
negative_prompt_attention_mask = None
|
||||
|
||||
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
if latents is not None:
|
||||
return latents.to(device=device, dtype=dtype)
|
||||
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
|
||||
return latents
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
||||
def upcast_vae(self):
|
||||
dtype = self.vae.dtype
|
||||
self.vae.to(dtype=torch.float32)
|
||||
use_torch_2_0_or_xformers = isinstance(
|
||||
self.vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
FusedAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
self.vae.post_quant_conv.to(dtype)
|
||||
self.vae.decoder.conv_in.to(dtype)
|
||||
self.vae.decoder.mid_block.to(dtype)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: List[int] = None,
|
||||
sigmas: List[float] = None,
|
||||
guidance_scale: float = 3.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
height: Optional[int] = 512,
|
||||
width: Optional[int] = 512,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 256,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
) -> Union[ImagePipelineOutput, Tuple]:
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
)
|
||||
|
||||
# 2. Determine batch size.
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
(
|
||||
prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_embeds,
|
||||
negative_prompt_attention_mask,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
|
||||
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
||||
)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
|
||||
# aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0])
|
||||
timestep = timestep.to(latents.device, dtype=latents.dtype)
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
# make sure the VAE is in float32 mode, as it overflows in float16
|
||||
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
||||
if needs_upcasting:
|
||||
self.upcast_vae()
|
||||
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image)
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -158,7 +158,12 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _sigma_to_t(self, sigma):
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -168,17 +173,19 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
timesteps = np.linspace(
|
||||
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
||||
)
|
||||
if sigmas is None:
|
||||
self.num_inference_steps = num_inference_steps
|
||||
timesteps = np.linspace(
|
||||
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
||||
)
|
||||
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
||||
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
|
||||
self.timesteps = timesteps.to(device=device)
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
|
||||
@@ -17,6 +17,21 @@ class AsymmetricAutoencoderKL(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class AuraFlowTransformer2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class AutoencoderKL(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -182,6 +182,21 @@ class AudioLDMPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class AuraFlowPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ChatGLMModel(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -0,0 +1,73 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import AuraFlowTransformer2DModel
|
||||
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = AuraFlowTransformer2DModel
|
||||
main_input_name = "hidden_states"
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 2
|
||||
num_channels = 4
|
||||
height = width = embedding_dim = 32
|
||||
sequence_length = 256
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"timestep": timestep,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (4, 32, 32)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (4, 32, 32)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"sample_size": 32,
|
||||
"patch_size": 2,
|
||||
"in_channels": 4,
|
||||
"num_mmdit_layers": 1,
|
||||
"num_single_dit_layers": 1,
|
||||
"attention_head_dim": 8,
|
||||
"num_attention_heads": 4,
|
||||
"caption_projection_dim": 32,
|
||||
"joint_attention_dim": 32,
|
||||
"out_channels": 4,
|
||||
"pos_embed_max_size": 256,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
0
tests/pipelines/aura_flow/__init__.py
Normal file
0
tests/pipelines/aura_flow/__init__.py
Normal file
121
tests/pipelines/aura_flow/test_pipeline_aura_dlow.py
Normal file
121
tests/pipelines/aura_flow/test_pipeline_aura_dlow.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, UMT5EncoderModel
|
||||
|
||||
from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel, AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils.testing_utils import (
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
class AuraFlowPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
pipeline_class = AuraFlowPipeline
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"guidance_scale",
|
||||
"negative_prompt",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt"])
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = AuraFlowTransformer2DModel(
|
||||
sample_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
num_mmdit_layers=1,
|
||||
num_single_dit_layers=1,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=4,
|
||||
caption_projection_dim=32,
|
||||
joint_attention_dim=32,
|
||||
out_channels=4,
|
||||
pos_embed_max_size=256,
|
||||
)
|
||||
|
||||
text_encoder = UMT5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-umt5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
block_out_channels=[32, 64],
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
sample_size=32,
|
||||
)
|
||||
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
return {
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"output_type": "np",
|
||||
"height": None,
|
||||
"width": None,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_aura_flow_prompt_embeds(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
output_with_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = inputs.pop("prompt")
|
||||
|
||||
do_classifier_free_guidance = inputs["guidance_scale"] > 1
|
||||
(
|
||||
prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_embeds,
|
||||
negative_prompt_attention_mask,
|
||||
) = pipe.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=torch_device,
|
||||
)
|
||||
output_with_embeds = pipe(
|
||||
prompt_embeds=prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
**inputs,
|
||||
).images[0]
|
||||
|
||||
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
|
||||
assert max_diff < 1e-4
|
||||
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
# Attention slicing needs to implemented differently for this because how single DiT and MMDiT
|
||||
# blocks interfere with each other.
|
||||
return
|
||||
Reference in New Issue
Block a user