Files
vllm/tests/test_pooling_params.py
wang.yuqi 4464723f22 [Frontend][Doc][5/N] Improve all pooling task | Polish encode (pooling) api & Document. (#25524)
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-30 12:13:05 +00:00

157 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
import pytest
from tests.models.utils import EmbedModelInfo
from vllm import PoolingParams
from vllm.config import ModelConfig, PoolerConfig
EMBEDDING_MODELS = [
EmbedModelInfo("intfloat/multilingual-e5-small", is_matryoshka=False),
EmbedModelInfo(
"Snowflake/snowflake-arctic-embed-m-v1.5",
is_matryoshka=True,
matryoshka_dimensions=[256],
),
]
classify_parameters = ["use_activation"]
embed_parameters = ["dimensions", "normalize"]
step_pooling_parameters = ["step_tag_id", "returned_token_ids"]
@dataclass()
class MockModelConfig:
pooler_config: PoolerConfig
def test_task():
pooling_params = PoolingParams()
pooling_params.verify(task="score")
pooling_params = PoolingParams(task="score")
pooling_params.verify(task="score")
with pytest.raises(ValueError):
pooling_params.verify(task="classify")
def test_embed():
task = "embed"
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
pooling_params = PoolingParams(normalize=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = classify_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
def test_embed_dimensions(model_info: EmbedModelInfo):
task = "embed"
model_config = ModelConfig(
model_info.name,
task="auto",
tokenizer=model_info.name,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
)
pooling_params = PoolingParams(dimensions=None)
pooling_params.verify(task=task, model_config=model_config)
with pytest.raises(ValueError):
pooling_params = PoolingParams(dimensions=1)
pooling_params.verify(task=task, model_config=model_config)
if model_info.is_matryoshka:
assert model_info.matryoshka_dimensions is not None
pooling_params = PoolingParams(dimensions=model_info.matryoshka_dimensions[0])
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("task", ["score", "classify"])
def test_classify(task):
model_config = MockModelConfig(pooler_config=PoolerConfig(pooling_type="CLS"))
pooling_params = PoolingParams(use_activation=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(use_activation=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(use_activation=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = embed_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
def test_token_embed(pooling_type: str):
task = "token_embed"
model_config = MockModelConfig(
pooler_config=PoolerConfig(pooling_type=pooling_type)
)
pooling_params = PoolingParams(normalize=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(normalize=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = classify_parameters
if pooling_type != "STEP":
invalid_parameters = classify_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("pooling_type", ["ALL", "STEP"])
def test_token_classify(pooling_type: str):
task = "token_classify"
model_config = MockModelConfig(
pooler_config=PoolerConfig(pooling_type=pooling_type)
)
pooling_params = PoolingParams(use_activation=None)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(use_activation=True)
pooling_params.verify(task=task, model_config=model_config)
pooling_params = PoolingParams(use_activation=False)
pooling_params.verify(task=task, model_config=model_config)
invalid_parameters = embed_parameters
if pooling_type != "STEP":
invalid_parameters = embed_parameters + step_pooling_parameters
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task, model_config=model_config)