[Bugfix] Mistral tool parser streaming update (#19425)

Signed-off-by: avigny <47987522+avigny@users.noreply.github.com>
Signed-off-by: Chauncey <chaunceyjiang@gmail.com>
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
Co-authored-by: Jeff Cook <jeff@jeffcook.io>
Co-authored-by: sfbemerk <benjaminmerkel@mail.de>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
avigny
2025-12-03 18:45:31 +01:00
committed by GitHub
parent d1f7392c5f
commit dd5d1ef780
4 changed files with 1277 additions and 207 deletions

View File

@@ -46,6 +46,7 @@ scipy # Required for phi-4-multimodal-instruct
ninja # Required for xgrammar, rocm, tpu, xpu
pybase64 # fast base64 implementation
cbor2 # Required for cross-language serialization of hashable objects
ijson # Required for mistral streaming tool parser
setproctitle # Used to set process names for better debugging and monitoring
openai-harmony >= 0.0.3 # Required for gpt-oss
anthropic == 0.71.0

View File

@@ -0,0 +1,847 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
from collections.abc import Generator
import partial_json_parser
import pytest
from mistral_common.protocol.instruct.messages import AssistantMessage
from mistral_common.protocol.instruct.request import InstructRequest
from mistral_common.protocol.instruct.tool_calls import FunctionCall, ToolCall
from partial_json_parser.core.options import Allow
from vllm.entrypoints.openai.protocol import DeltaMessage, DeltaToolCall
from vllm.entrypoints.openai.tool_parsers.mistral_tool_parser import MistralToolParser
from vllm.tokenizers import (
MistralTokenizer,
TokenizerLike,
get_tokenizer,
)
from vllm.tokenizers.detokenizer_utils import detokenize_incrementally
@pytest.fixture(scope="module")
def mistral_pre_v11_tokenizer():
MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
return get_tokenizer(tokenizer_name=MODEL)
@pytest.fixture(scope="module")
def mistral_tokenizer():
MODEL = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
return get_tokenizer(tokenizer_name=MODEL, tokenizer_mode="mistral")
@pytest.fixture
def mistral_pre_v11_tool_parser(mistral_pre_v11_tokenizer):
return MistralToolParser(mistral_pre_v11_tokenizer)
@pytest.fixture
def mistral_tool_parser(mistral_tokenizer):
return MistralToolParser(mistral_tokenizer)
def assert_tool_calls(
actual_tool_calls: list[ToolCall] | list[DeltaToolCall],
expected_tool_calls: list[ToolCall],
):
assert len(actual_tool_calls) == len(expected_tool_calls)
for actual_tool_call, expected_tool_call in zip(
actual_tool_calls, expected_tool_calls
):
assert isinstance(actual_tool_call.id, str)
assert len(actual_tool_call.id) == 9
if isinstance(actual_tool_call, ToolCall):
assert actual_tool_call.type == "function"
elif isinstance(actual_tool_call, DeltaToolCall):
assert actual_tool_call.function is not None
assert actual_tool_call.function.name is not None
assert actual_tool_call.function.arguments is not None
assert actual_tool_call.function is not None
assert actual_tool_call.function.name == expected_tool_call.function.name, (
f"got wrong function name:${actual_tool_call.function.name}"
)
assert (
actual_tool_call.function.arguments == expected_tool_call.function.arguments
), f"got wrong function argument:${actual_tool_call.function.arguments}"
def fix_tool_call_tokenization(
tokens: list[int],
mistral_tool_parser: MistralToolParser,
mistral_tokenizer: TokenizerLike,
):
"""
Replaces the textual token sequence for [TOOL_CALLS]
with its single special token ID.
"""
textual_tool_call_token_ids = mistral_tokenizer.encode(
text=mistral_tool_parser.bot_token,
add_special_tokens=False,
)
# textual_tool_call_token_ids must not contain special tokens like bos, eos etc
special_tool_call_token_ids = [mistral_tool_parser.bot_token_id]
# If the input is too short to contain the sequence, no replacement is possible
if not tokens or len(tokens) < len(textual_tool_call_token_ids):
return tokens
result_tokens = []
i = 0
target_len = len(textual_tool_call_token_ids)
while i < len(tokens):
# Check if the slice from the current position matches the target sequence
if tokens[i : i + target_len] == textual_tool_call_token_ids:
# If it matches, add the replacement and jump the index forward
result_tokens.extend(special_tool_call_token_ids)
i += target_len
else:
# Otherwise, just add the current token and move to the next one
result_tokens.append(tokens[i])
i += 1
return result_tokens
def stream_delta_message_generator(
mistral_tool_parser: MistralToolParser,
mistral_tokenizer: TokenizerLike,
model_output: str | None,
tools: list[tuple[str, str]] | None,
) -> Generator[DeltaMessage, None, None]:
if (
isinstance(mistral_tokenizer, MistralTokenizer)
and mistral_tokenizer.version >= 11
):
# With the newer versions of the tokenizer,
# we cannot tokenize free text
# so we need to create a list of messages to get tokenized
assert tools is not None
assistant_msg = AssistantMessage(
tool_calls=[
ToolCall(
function=FunctionCall(
name=name,
arguments=arg,
)
)
for (name, arg) in tools
],
)
request = InstructRequest(
messages=[assistant_msg],
)
all_token_ids = mistral_tokenizer.instruct.encode_instruct(request).tokens
else:
# Older versions of the tokenizer are
# able to encode directly the model's output (free text) into tokens
assert model_output is not None
all_token_ids = mistral_tokenizer.encode(model_output, add_special_tokens=False)
all_token_ids = fix_tool_call_tokenization(
all_token_ids, mistral_tool_parser, mistral_tokenizer
)
previous_text = ""
previous_tokens = None
prefix_offset = 0
read_offset = 0
for i, delta_token in enumerate(all_token_ids):
delta_token_ids = [delta_token]
previous_token_ids = all_token_ids[:i]
current_token_ids = all_token_ids[: i + 1]
(new_tokens, delta_text, new_prefix_offset, new_read_offset) = (
detokenize_incrementally(
tokenizer=mistral_tokenizer,
all_input_ids=current_token_ids,
prev_tokens=previous_tokens,
prefix_offset=prefix_offset,
read_offset=read_offset,
skip_special_tokens=isinstance(mistral_tokenizer, MistralTokenizer),
spaces_between_special_tokens=True,
)
)
current_text = previous_text + delta_text
delta_message = mistral_tool_parser.extract_tool_calls_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
delta_token_ids,
request=None, # type: ignore[arg-type]
)
if delta_message:
yield delta_message
previous_text = current_text
previous_tokens = (
previous_tokens + new_tokens if previous_tokens else new_tokens
)
prefix_offset = new_prefix_offset
read_offset = new_read_offset
def test_extract_tool_calls_no_tools(mistral_pre_v11_tool_parser):
model_output = "This is a test"
extracted_tool_calls = mistral_pre_v11_tool_parser.extract_tool_calls(
model_output, request=None
) # type: ignore[arg-type]
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content == model_output
@pytest.mark.parametrize(
ids=[
"single_tool_add",
"single_tool_weather",
"argument_before_name",
"argument_before_name_and_name_in_argument",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
"""[TOOL_CALLS][{"name": "add", "arguments":{"a": 3.5, "b": 4}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
)
],
None,
),
(
"""[TOOL_CALLS] [{"name": "get_current_weather", "arguments":{"city": "San Francisco", "state": "CA", "unit": "celsius"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
None,
),
(
"""[TOOL_CALLS] [{"arguments":{"city": "San Francisco", "state": "CA", "unit": "celsius"}, "name": "get_current_weather"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
None,
),
(
"""[TOOL_CALLS] [{"arguments":{"name": "John Doe"}, "name": "get_age"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_age",
arguments=json.dumps(
{
"name": "John Doe",
}
),
)
)
],
None,
),
],
)
def test_extract_tool_calls_pre_v11_tokenizer(
mistral_pre_v11_tool_parser, model_output, expected_tool_calls, expected_content
):
extracted_tool_calls = mistral_pre_v11_tool_parser.extract_tool_calls(
model_output, request=None
) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls)
assert extracted_tool_calls.content == expected_content
@pytest.mark.parametrize(
ids=[
"single_tool_add",
"single_tool_weather",
"multiple_tool_calls",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
"""[TOOL_CALLS]add_this_and_that{"a": 3.5, "b": 4}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add_this_and_that",
arguments=json.dumps({"a": 3.5, "b": 4}),
)
)
],
None,
),
(
"""[TOOL_CALLS]get_current_weather{"city": "San Francisco", "state": "CA", "unit": "celsius"}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
None,
),
(
"""[TOOL_CALLS]add{"a": 3.5, "b": 4}[TOOL_CALLS]multiply{"a": 3, "b": 6}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
),
ToolCall(
function=FunctionCall(
name="multiply", arguments=json.dumps({"a": 3, "b": 6})
)
),
],
None,
),
],
)
def test_extract_tool_calls(
mistral_tool_parser, model_output, expected_tool_calls, expected_content
):
extracted_tool_calls = mistral_tool_parser.extract_tool_calls(
model_output, request=None
) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls)
assert extracted_tool_calls.content == expected_content
def _test_extract_tool_calls_streaming(
tool_parser, tokenizer, model_output, tools, expected_tool_calls, expected_content
):
other_content: str = ""
function_names: list[str] = []
function_args_strs: list[str] = []
tool_call_idx: int = -1
tool_call_ids: list[str | None] = []
for delta_message in stream_delta_message_generator(
tool_parser, tokenizer, model_output, tools
):
# role should never be streamed from tool parser
assert not delta_message.role
if delta_message.content:
other_content += delta_message.content
streamed_tool_calls = delta_message.tool_calls
if streamed_tool_calls and len(streamed_tool_calls) > 0:
# make sure only one diff is present - correct even for parallel
assert len(streamed_tool_calls) == 1
tool_call = streamed_tool_calls[0]
assert len(tool_parser.prev_tool_call_arr) > 0
# if a new tool is being called, set up empty arguments
if tool_call.index != tool_call_idx:
tool_call_idx = tool_call.index
function_args_strs.append("")
tool_call_ids.append(None)
# if a tool call ID is streamed, make sure one hasn't been already
if tool_call.id and not tool_call_ids[tool_call.index]:
tool_call_ids[tool_call.index] = tool_call.id
# if parts of the function start being streamed
if tool_call.function:
# if the function name is defined, set it. it should be streamed
# IN ENTIRETY, exactly one time.
if tool_call.function.name:
assert isinstance(tool_call.function.name, str)
function_names.append(tool_call.function.name)
if tool_call.function.arguments:
# make sure they're a string and then add them to the list
assert isinstance(tool_call.function.arguments, str)
function_args_strs[tool_call.index] += tool_call.function.arguments
assert other_content == expected_content
actual_tool_calls = [
ToolCall(
id=tool_call_id,
function=FunctionCall(
name=function_name,
arguments=partial_json_parser.ensure_json(
function_args_str, Allow.OBJ | Allow.STR
),
),
)
for tool_call_id, function_name, function_args_str in zip(
tool_call_ids, function_names, function_args_strs
)
]
assert_tool_calls(actual_tool_calls, expected_tool_calls)
@pytest.mark.parametrize(
ids=[
"no_tools",
"single_tool_add",
"single_tool_add_strings",
"single_tool_weather",
"argument_before_name",
"argument_before_name_and_name_in_argument",
"multiple_tools",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
("""This is a test""", [], """This is a test"""),
(
"""[TOOL_CALLS] [ {"name":"add" , "arguments" : {"a": 3, "b": 4} } ]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3, "b": 4})
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"name": "add", "arguments":{"a": "3", "b": "4"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": "3", "b": "4"})
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"city": "San Francisco", "state": "CA", "unit": "celsius"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"arguments": {"city": "San Francisco", "state": "CA", "unit": "celsius"}, "name": "get_current_weather"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"arguments": {"name": "John Doe"}, "name": "get_age"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_age",
arguments=json.dumps(
{
"name": "John Doe",
}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"name": "add", "arguments": {"a": 3.5, "b": 4}}, {"name": "get_current_weather", "arguments":{"city": "San Francisco", "state": "CA", "unit": "celsius"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
),
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
),
],
"",
),
],
)
def test_extract_tool_calls_streaming_pre_v11_tokenizer(
mistral_pre_v11_tool_parser,
mistral_pre_v11_tokenizer,
model_output,
expected_tool_calls,
expected_content,
):
_test_extract_tool_calls_streaming(
mistral_pre_v11_tool_parser,
mistral_pre_v11_tokenizer,
model_output,
None,
expected_tool_calls,
expected_content,
)
@pytest.mark.parametrize(
ids=[
"single_tool_add",
"single_tool_add_strings",
"multiple_tools",
],
argnames=["tools", "expected_tool_calls", "expected_content"],
argvalues=[
(
[("add", '{"a": 3, "b": 4}')],
# [TOOL_CALLS]add{"a": 3, "b": 4}
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3, "b": 4})
)
)
],
"",
),
(
[("add_two_strings", '{"a": "3", "b": "4"}')],
# [TOOL_CALLS]add_two_strings{"a": "3", "b": "4"}
[
ToolCall(
function=FunctionCall(
name="add_two_strings",
arguments=json.dumps({"a": "3", "b": "4"}),
)
)
],
"",
),
(
[
("add", '{"a": 3.5, "b": 4}'),
(
"get_current_weather",
'{"city": "San Francisco", "state": "CA", "unit": "celsius"}', # noqa: E501
),
],
# [TOOL_CALLS]add{"a": 3.5, "b": 4}[TOOL_CALLS]get_current_weather{"city": "San Francisco", "state": "CA", "unit": "celsius"} # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
),
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
),
],
"",
),
],
)
def test_extract_tool_calls_streaming(
mistral_tool_parser,
mistral_tokenizer,
tools,
expected_tool_calls,
expected_content,
):
_test_extract_tool_calls_streaming(
mistral_tool_parser,
mistral_tokenizer,
None,
tools,
expected_tool_calls,
expected_content,
)
@pytest.mark.parametrize(
ids=[
"single_tool_add",
"single_tool_weather",
"multiple_tool_calls",
"content_before_tool",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
"""[TOOL_CALLS]add_this_and_that{"a": 3.5, "b": 4}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add_this_and_that",
arguments=json.dumps({"a": 3.5, "b": 4}),
)
)
],
"",
),
(
"""[TOOL_CALLS]get_current_weather{"city": "San Francisco", "state": "CA", "unit": "celsius"}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
"",
),
(
"""[TOOL_CALLS]add{"a": 3.5, "b": 4}[TOOL_CALLS]multiply{"a": 3, "b": 6}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
),
ToolCall(
function=FunctionCall(
name="multiply", arguments=json.dumps({"a": 3, "b": 6})
)
),
],
"",
),
(
# Additional content should not be after the tool calls
"""bla[TOOL_CALLS]add_this_and_that{"a": 3.5, "b": 4}""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add_this_and_that",
arguments=json.dumps({"a": 3.5, "b": 4}),
)
)
],
"bla",
),
],
)
def test_extract_tool_calls_streaming_one_chunk(
mistral_tool_parser,
mistral_tokenizer,
model_output,
expected_tool_calls,
expected_content,
):
if isinstance(mistral_tokenizer, MistralTokenizer):
all_token_ids = mistral_tokenizer.encode(model_output)
else:
all_token_ids = mistral_tokenizer.encode(model_output, add_special_tokens=False)
all_token_ids = fix_tool_call_tokenization(
all_token_ids, mistral_tool_parser, mistral_tokenizer
)
delta_message = mistral_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=model_output,
delta_text=model_output,
previous_token_ids=[],
current_token_ids=all_token_ids,
delta_token_ids=all_token_ids,
request=None,
) # type: ignore[arg-type]
assert isinstance(delta_message, DeltaMessage)
assert len(delta_message.tool_calls) == len(expected_tool_calls)
assert_tool_calls(delta_message.tool_calls, expected_tool_calls)
if delta_message.content is None:
assert expected_content == ""
else:
assert delta_message.content == expected_content
@pytest.mark.parametrize(
ids=[
"no_tools",
"single_tool_add",
"single_tool_add_strings",
"single_tool_weather",
"argument_before_name",
"argument_before_name_and_name_in_argument",
"multiple_tools",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
("""This is a test""", [], """This is a test"""),
(
"""[TOOL_CALLS] [ {"name":"add" , "arguments" : {"a": 3, "b": 4} } ]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3, "b": 4})
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"name": "add", "arguments":{"a": "3", "b": "4"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": "3", "b": "4"})
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"city": "San Francisco", "state": "CA", "unit": "celsius"}}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"arguments": {"city": "San Francisco", "state": "CA", "unit": "celsius"}, "name": "get_current_weather"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"arguments": {"name": "John Doe"}, "name": "get_age"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="get_age",
arguments=json.dumps(
{
"name": "John Doe",
}
),
)
)
],
"",
),
(
"""[TOOL_CALLS] [{"arguments": {"a": 3.5, "b": 4}, "name": "add"}, {"arguments":{"city": "San Francisco", "state": "CA", "unit": "celsius"}, "name": "get_current_weather"}]""", # noqa: E501
[
ToolCall(
function=FunctionCall(
name="add", arguments=json.dumps({"a": 3.5, "b": 4})
)
),
ToolCall(
function=FunctionCall(
name="get_current_weather",
arguments=json.dumps(
{"city": "San Francisco", "state": "CA", "unit": "celsius"}
),
)
),
],
"",
),
],
)
def test_extract_tool_calls_streaming_pre_v11_tokenizer_one_chunk(
mistral_pre_v11_tool_parser,
mistral_pre_v11_tokenizer,
model_output,
expected_tool_calls,
expected_content,
):
if isinstance(mistral_pre_v11_tokenizer, MistralTokenizer):
all_token_ids = mistral_pre_v11_tokenizer.encode(model_output)
else:
all_token_ids = mistral_pre_v11_tokenizer.encode(
model_output, add_special_tokens=False
)
all_token_ids = fix_tool_call_tokenization(
all_token_ids, mistral_pre_v11_tool_parser, mistral_pre_v11_tokenizer
)
delta_message = mistral_pre_v11_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=model_output,
delta_text=model_output,
previous_token_ids=[],
current_token_ids=all_token_ids,
delta_token_ids=all_token_ids,
request=None,
) # type: ignore[arg-type]
assert isinstance(delta_message, DeltaMessage)
assert len(delta_message.tool_calls) == len(expected_tool_calls)
assert_tool_calls(delta_message.tool_calls, expected_tool_calls)
if delta_message.content is None:
assert expected_content == ""
else:
assert delta_message.content == expected_content

View File

@@ -123,7 +123,7 @@ CONFIGS: dict[str, ServerConfig] = {
"supports_parallel": True,
"extended": True,
},
"mistral": {
"mistral-7b": {
"model": "mistralai/Mistral-7B-Instruct-v0.3",
"arguments": [
"--enforce-eager",
@@ -145,6 +145,32 @@ CONFIGS: dict[str, ServerConfig] = {
"call the tool. Otherwise, answer the user's query directly "
"without calling a tool. DO NOT CALL A TOOL THAT IS IRRELEVANT "
"to the user's question - just respond to it normally.",
"supports_parallel": True,
},
"mistral-small-3.2": {
"model": "mistralai/Mistral-Small-3.2-24B-Instruct-2506",
"arguments": [
"--enforce-eager",
"--no-enable-prefix-caching",
"--tool-call-parser",
"mistral",
"--tokenizer-mode",
"mistral",
"--config-format",
"mistral",
"--load-format",
"mistral",
"--tensor-parallel-size",
"4",
'--ignore-patterns="consolidated.safetensors"',
],
"system_prompt": "You are a helpful assistant with access to tools. If a tool"
" that you have would be helpful to answer a user query, "
"call the tool. Otherwise, answer the user's query directly "
"without calling a tool. DO NOT CALL A TOOL THAT IS IRRELEVANT "
"to the user's question - just respond to it normally.",
"supports_parallel": True,
"extended": True,
},
# FIXME: This test currently fails, need to debug why.
# "granite20b": {

View File

@@ -3,12 +3,12 @@
import json
from collections.abc import Sequence
from enum import Enum, auto
from random import choices
from string import ascii_letters, digits
import partial_json_parser
import ijson
import regex as re
from partial_json_parser.core.options import Allow
from pydantic import Field
from vllm.entrypoints.openai.protocol import (
@@ -23,7 +23,6 @@ from vllm.entrypoints.openai.protocol import (
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser,
)
from vllm.entrypoints.openai.tool_parsers.utils import extract_intermediate_diff
from vllm.logger import init_logger
from vllm.tokenizers import MistralTokenizer, TokenizerLike
@@ -32,6 +31,22 @@ logger = init_logger(__name__)
ALPHANUMERIC = ascii_letters + digits
class StreamingState(Enum):
"""Enum for tracking the current streaming parsing state."""
WAITING_FOR_TOOL_START = auto()
WAITING_FOR_TOOL_KEY = (
auto()
) # waiting for the "name" or "arguments" key to be complete
PARSING_NAME = auto()
PARSING_NAME_COMPLETED = auto()
WAITING_FOR_ARGUMENTS_START = auto()
PARSING_ARGUMENTS = auto()
PARSING_ARGUMENTS_COMPLETED = auto()
TOOL_COMPLETE = auto()
ALL_TOOLS_COMPLETE = auto()
class MistralToolCall(ToolCall):
id: str = Field(default_factory=lambda: MistralToolCall.generate_random_id())
@@ -46,8 +61,8 @@ class MistralToolCall(ToolCall):
return id.isalnum() and len(id) == 9
def _is_fn_name_regex_support(model_tokenizer: TokenizerLike) -> bool:
return (
def _is_pre_v11_tokeniser(model_tokenizer: TokenizerLike) -> bool:
return not (
isinstance(model_tokenizer, MistralTokenizer) and model_tokenizer.version >= 11
)
@@ -69,16 +84,22 @@ class MistralToolParser(ToolParser):
# initialize properties used for state when parsing tool calls in
# streaming mode
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[
str
] = [] # map what has been streamed for each tool so far to a list
self.streaming_state: StreamingState = StreamingState.WAITING_FOR_TOOL_START
# For streaming pre v11 tokenizer tool calls
self.current_tool_name: str | None = None
self.current_tool_mistral_id: str | None = None
self.starting_new_tool = False
if _is_pre_v11_tokeniser(self.model_tokenizer):
self.parse_coro = ijson.parse_coro(
self.update_stream_state_pre_v11_tokenizer()
)
self.bot_token = "[TOOL_CALLS]"
self.bot_token_id = self.vocab.get(self.bot_token)
self.tool_call_regex = re.compile(r"\[{.*}\]", re.DOTALL)
if _is_fn_name_regex_support(self.model_tokenizer):
if not _is_pre_v11_tokeniser(self.model_tokenizer):
self.fn_name_regex = re.compile(
r"([a-zA-Z0-9_-]+)(\{[\s\S]*?\}+)", re.DOTALL
)
@@ -131,18 +152,19 @@ class MistralToolParser(ToolParser):
# jsons is difficult
try:
if self.fn_name_regex:
matches = self.fn_name_regex.findall(tool_content)
function_call_arr = []
for match in matches:
fn_name = match[0]
args = match[1]
for single_tool_content in model_output.split(self.bot_token):
matches = self.fn_name_regex.findall(single_tool_content)
# fn_name is encoded outside serialized json dump
# only arguments are serialized
function_call_arr.append(
{"name": fn_name, "arguments": json.loads(args)}
)
for match in matches:
fn_name = match[0]
args = match[1]
# fn_name is encoded outside serialized json dump
# only arguments are serialized
function_call_arr.append(
{"name": fn_name, "arguments": json.loads(args)}
)
else:
function_call_arr = json.loads(tool_content)
except json.JSONDecodeError:
@@ -193,198 +215,372 @@ class MistralToolParser(ToolParser):
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> DeltaMessage | None:
# if the tool call token is not in the tokens generated so far, append
# output to contents since it's not a tool
if self.bot_token not in current_text:
if self.bot_token_id not in current_token_ids:
# if the tool call token is not in the tokens generated so far,
# append output to contents since it's not a tool
return DeltaMessage(content=delta_text)
# if the tool call token ID IS in the tokens generated so far, that
# if the tool call token IS in the tokens generated so far, that
# means we're parsing as tool calls now
# handle if we detected the BOT token which means the start of tool
# calling
if self.bot_token_id in delta_token_ids and len(delta_token_ids) == 1:
# if it's the only token, return None, so we don't send a chat
# completion any don't send a control token
return None
# bit mask flags for partial JSON parsing. If the name hasn't been
# sent yet, don't allow sending
# an incomplete string since OpenAI only ever (as far as I have
# seen) allows sending the entire tool/ function name at once.
flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
try:
# replace BOT token with empty string, and convert single quotes
# to double to allow parsing as JSON since mistral uses single
# quotes instead of double for tool calls
parsable_arr = current_text.split(self.bot_token)[-1]
# tool calls are generated in an array, so do partial JSON
# parsing on the entire array
try:
tool_call_arr: list[dict] = partial_json_parser.loads(
parsable_arr, flags
if _is_pre_v11_tokeniser(self.model_tokenizer):
return self._extract_tool_calls_streaming_pre_v11_tokenizer(
delta_text=delta_text,
delta_token_ids=delta_token_ids,
)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug("not enough tokens to parse into JSON yet")
return None
# select as the current tool call the one we're on the state at
current_tool_call: dict = (
tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {}
)
# case -- if no tokens have been streamed for the tool, e.g.
# only the array brackets, stream nothing
if len(tool_call_arr) == 0:
return None
# case: we are starting a new tool in the array
# -> array has > 0 length AND length has moved past cursor
elif (
len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1
):
# if we're moving on to a new call, first make sure we
# haven't missed anything in the previous one that was
# auto-generated due to JSON completions, but wasn't
# streamed to the client yet.
if self.current_tool_id >= 0:
diff: str | None = current_tool_call.get("arguments")
if diff:
diff = json.dumps(diff, ensure_ascii=False).replace(
self.streamed_args_for_tool[self.current_tool_id], ""
)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += diff
else:
delta = None
else:
delta = None
# re-set stuff pertaining to progress in the current tool
self.current_tool_id = len(tool_call_arr) - 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("starting on new tool %d", self.current_tool_id)
return delta
# case: update an existing tool - this is handled below
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
if not self.current_tool_name_sent:
function_name = current_tool_call.get("name")
if function_name:
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=MistralToolCall.generate_random_id(),
function=DeltaFunctionCall(
name=function_name
).model_dump(exclude_none=True),
)
]
)
self.current_tool_name_sent = True
else:
delta = None
# now we know we're on the same tool call and we're streaming
# arguments
else:
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
"arguments"
return self._extract_tool_calls_streaming(
delta_text=delta_text, delta_token_ids=delta_token_ids
)
cur_arguments = current_tool_call.get("arguments")
new_text = delta_text.replace("'", '"')
if '"}' in new_text:
new_text = new_text[: new_text.rindex('"}')]
if not cur_arguments and not prev_arguments:
delta = None
elif not cur_arguments and prev_arguments:
logger.error(
"INVARIANT - impossible to have arguments reset mid-arguments"
)
delta = None
elif cur_arguments and not prev_arguments:
cur_arguments_json = json.dumps(cur_arguments, ensure_ascii=False)[
:-2
]
logger.debug("finding %s in %s", new_text, cur_arguments_json)
if new_text not in cur_arguments_json:
return None
arguments_delta = cur_arguments_json[
: cur_arguments_json.rindex(new_text) + len(new_text)
]
logger.debug(
"First tokens in arguments received: %s", arguments_delta
)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=arguments_delta
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += arguments_delta
elif cur_arguments and prev_arguments:
cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
logger.debug(
"Searching for diff between \n%s\n%s",
cur_args_json,
prev_args_json,
)
argument_diff = extract_intermediate_diff(
cur_args_json, prev_args_json
)
logger.debug("got arguments diff: %s", argument_diff)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += argument_diff
else:
# try parsing it with regular JSON - if it works we're
# at the end, and we need to send the difference between
# tokens streamed so far and the valid JSON
delta = None
# check to see if the name is defined and has been sent. if so,
# stream the name - otherwise keep waiting
# finish by setting old and returning None as base case
self.prev_tool_call_arr = tool_call_arr
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
logger.debug(
"Skipping chunk as a result of tool streaming extraction error"
)
return None
def _extract_tool_calls_streaming(
self,
delta_text: str,
delta_token_ids: Sequence[int],
) -> DeltaMessage | None:
"""
Extracts tool calls for Mistral models
doing tool calls of the following format:
`[TOOL_CALLS]add{"a": 3.5, "b": 4}`
"""
additional_content: str = ""
if self.streaming_state == StreamingState.WAITING_FOR_TOOL_START:
# this is the first tool call
assert self.bot_token_id in delta_token_ids
if not delta_text.startswith(self.bot_token):
additional_content += delta_text.split(self.bot_token)[0]
delta_text = self.bot_token + "".join(
delta_text.split(self.bot_token)[1:]
)
delta_tool_calls = self._generate_delta_tool_call(delta_text)
if not additional_content and len(delta_tool_calls) == 0:
if self.streaming_state in [
StreamingState.PARSING_ARGUMENTS,
StreamingState.PARSING_ARGUMENTS_COMPLETED,
StreamingState.TOOL_COMPLETE,
StreamingState.ALL_TOOLS_COMPLETE,
]:
# Return an empty DeltaMessage once the tool calls are all done
# so that finish_reason gets set.
return DeltaMessage()
else:
# return None when the tool is not likely to be finished
# This can occur when the name is being parsed for example
# and we wait for the name to be complete
# before sending the function name
return None
delta = DeltaMessage()
if additional_content:
delta.content = additional_content
if len(delta_tool_calls) > 0:
delta.tool_calls = delta_tool_calls
# HACK: serving_chat.py inspects the internal state of tool parsers
# when determining its final streaming delta, automatically
# adding autocompleted JSON.
# These two lines avoid that nonsense while ensuring finish_reason
# is set to tool_calls when at least one tool is called.
if delta_tool_calls and not self.prev_tool_call_arr:
self.prev_tool_call_arr = [{"arguments": {}}]
return delta
def _generate_delta_tool_call(self, delta_text: str) -> list[DeltaToolCall]:
if delta_text == "" or delta_text is None:
return []
delta_function_name = None
tool_id = None
if self.streaming_state not in [
StreamingState.PARSING_NAME,
StreamingState.PARSING_ARGUMENTS,
] and delta_text.startswith(self.bot_token):
self.current_tool_id += 1
self.streaming_state = StreamingState.PARSING_NAME
delta_text = delta_text.replace(self.bot_token, "", 1)
if self.streaming_state == StreamingState.PARSING_NAME:
if self.current_tool_name is None:
self.current_tool_name = ""
# The name stops where the arguments start
# And the arguments start with the `{` char
if "{" in delta_text:
tool_id = MistralToolCall.generate_random_id()
delta_function_name = delta_text.split("{")[0]
self.current_tool_name += delta_function_name
delta_text = delta_text[len(delta_function_name) :]
self.streaming_state = StreamingState.PARSING_ARGUMENTS
else:
# we want to send the tool name once it's complete
self.current_tool_name += delta_text
return []
if self.streaming_state == StreamingState.PARSING_ARGUMENTS:
next_function_text = None
if self.bot_token in delta_text:
# current tool call is over
delta_arguments = ""
delta_arguments += delta_text.split(self.bot_token)[0]
next_function_text = delta_text[len(delta_arguments) :]
self.streaming_state = StreamingState.TOOL_COMPLETE
else:
delta_arguments = delta_text
ret = []
if self.current_tool_name or delta_arguments:
ret += [
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=tool_id,
function=DeltaFunctionCall(
name=self.current_tool_name, arguments=delta_arguments
).model_dump(exclude_none=True),
)
]
self.current_tool_name = None
if next_function_text:
ret += self._generate_delta_tool_call(next_function_text)
return ret
# Should not happen
return []
@ijson.coroutine
def update_stream_state_pre_v11_tokenizer(self):
while True:
(prefix, event, value) = yield
if prefix == "item" and event == "start_map":
self.streaming_state = StreamingState.WAITING_FOR_TOOL_KEY
if prefix == "item" and event == "map_key" and value == "name":
self.streaming_state = StreamingState.PARSING_NAME
if prefix == "item.name" and event == "string":
self.current_tool_name = value
self.streaming_state = StreamingState.PARSING_NAME_COMPLETED
if prefix == "item" and event == "map_key" and value == "arguments":
self.streaming_state = StreamingState.WAITING_FOR_ARGUMENTS_START
if prefix == "item.arguments" and event == "start_map":
self.streaming_state = StreamingState.PARSING_ARGUMENTS
if prefix == "item.arguments" and event == "end_map":
self.streaming_state = StreamingState.PARSING_ARGUMENTS_COMPLETED
if prefix == "item" and event == "end_map":
self.streaming_state = StreamingState.TOOL_COMPLETE
if prefix == "" and event == "end_array":
self.streaming_state = StreamingState.ALL_TOOLS_COMPLETE
def _extract_tool_calls_streaming_pre_v11_tokenizer(
self,
delta_text: str,
delta_token_ids: Sequence[int],
) -> DeltaMessage | None:
"""
Extracts tool calls for Mistral models
doing tool calls of the following format:
`[TOOL_CALLS][{"name": "add", "arguments":{"a": 3.5, "b": 4}}`
"""
assert self.parse_coro is not None
content = None
delta_tool_calls: list[DeltaToolCall] = []
current_tool_call: DeltaToolCall = DeltaToolCall(
index=self.current_tool_id, type="function"
)
current_tool_call_modified = False
if self.bot_token_id in delta_token_ids:
# this is the first tool call
if not delta_text.startswith(self.bot_token):
content = delta_text.split(self.bot_token)[0]
delta_text = "".join(delta_text.split(self.bot_token)[1:])
# Cut smartly the delta text to catch the ijson events
# as ijson does not give us the index in the text at each event.
# We need to cut so that we know
# where in the text the events are emitted from.
while len(delta_text) > 0:
streaming_state_before_parse = self.streaming_state
if self.streaming_state == StreamingState.WAITING_FOR_TOOL_START:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_opening_curly_braces=1,
)
elif self.streaming_state == StreamingState.WAITING_FOR_TOOL_KEY:
# Wait until another key is sent
# or the current tool is completed
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_colon=1,
stop_after_opening_curly_braces=1,
# if the tool ends, we want to separate
# at the start of the next tool
)
elif self.streaming_state == StreamingState.PARSING_NAME:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_comma=1,
stop_after_closing_brackets=1,
)
elif self.streaming_state == StreamingState.WAITING_FOR_ARGUMENTS_START:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_opening_curly_braces=1,
)
elif self.streaming_state == StreamingState.PARSING_ARGUMENTS:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_closing_curly_braces=1,
# we could be more clever
# by listening to item.arguments.* start_map events
# and know how many curly braces we can allow
)
elif self.streaming_state in [
StreamingState.PARSING_ARGUMENTS_COMPLETED,
StreamingState.PARSING_NAME_COMPLETED,
]:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_closing_curly_braces=1,
stop_after_closing_brackets=1,
)
elif self.streaming_state == StreamingState.TOOL_COMPLETE:
delta_to_be_parsed, delta_text = self._split_delta(
delta_text=delta_text,
stop_after_opening_curly_braces=1,
stop_after_closing_brackets=1,
)
elif self.streaming_state == StreamingState.ALL_TOOLS_COMPLETE:
content = delta_text
delta_text = ""
else:
delta_to_be_parsed = delta_text
delta_text = ""
if self.streaming_state != StreamingState.ALL_TOOLS_COMPLETE:
self.parse_coro.send(delta_to_be_parsed.encode("utf-8"))
# Given the parsed text and the possible streaming state change,
# let's add to the tool delta
if (
(streaming_state_before_parse != self.streaming_state)
and streaming_state_before_parse
in [StreamingState.WAITING_FOR_TOOL_START, StreamingState.TOOL_COMPLETE]
and self.streaming_state
not in [
StreamingState.ALL_TOOLS_COMPLETE,
StreamingState.TOOL_COMPLETE,
StreamingState.WAITING_FOR_TOOL_START,
]
):
# starting a new tool call
if current_tool_call_modified:
if self.current_tool_mistral_id is not None:
current_tool_call.id = self.current_tool_mistral_id
self.current_tool_mistral_id = None
delta_tool_calls.append(current_tool_call)
current_tool_call_modified = False
self.current_tool_id += 1
self.current_tool_mistral_id = MistralToolCall.generate_random_id()
current_tool_call = DeltaToolCall(
index=self.current_tool_id,
type="function",
)
if current_tool_call.function is None:
current_tool_call.function = DeltaFunctionCall()
if self.current_tool_name is not None:
# we have the complete tool name
current_tool_call_modified = True
current_tool_call.function.name = self.current_tool_name
self.current_tool_name = None
if self.streaming_state == StreamingState.PARSING_NAME_COMPLETED:
self.streaming_state = StreamingState.WAITING_FOR_TOOL_KEY
if self.streaming_state in [
StreamingState.PARSING_ARGUMENTS,
StreamingState.PARSING_ARGUMENTS_COMPLETED,
]:
if self.streaming_state == StreamingState.PARSING_ARGUMENTS_COMPLETED:
self.streaming_state = StreamingState.WAITING_FOR_TOOL_KEY
# the delta_to_be_parsed is part of arguments.
current_tool_call_modified = True
if current_tool_call.function.arguments is None:
current_tool_call.function.arguments = delta_to_be_parsed
else:
current_tool_call.function.arguments += delta_to_be_parsed
if streaming_state_before_parse != StreamingState.PARSING_ARGUMENTS:
# It's the first chunk of arg. let's lstrip it
current_tool_call.function.arguments = (
current_tool_call.function.arguments.lstrip()
)
if current_tool_call_modified:
if self.current_tool_mistral_id is not None:
current_tool_call.id = self.current_tool_mistral_id
self.current_tool_mistral_id = None
delta_tool_calls.append(current_tool_call)
# HACK: serving_chat.py inspects the internal state of tool parsers
# when determining it's final streaming delta, automatically
# adding autocompleted JSON.
# These two lines avoid that nonsense while ensuring finish_reason
# is set to tool_calls when at least one tool is called.
if delta_tool_calls and not self.prev_tool_call_arr:
self.prev_tool_call_arr = [{"arguments": {}}]
if content or len(delta_tool_calls) > 0:
delta_message = DeltaMessage()
if content:
delta_message.content = content
if len(delta_tool_calls) > 0:
delta_message.tool_calls = delta_tool_calls
return delta_message
else:
if self.streaming_state == StreamingState.ALL_TOOLS_COMPLETE:
return DeltaMessage()
else:
return None
def _split_delta(
self,
delta_text: str,
stop_after_quotes: int = -1,
stop_after_opening_curly_braces: int = -1,
stop_after_closing_curly_braces: int = -1,
stop_after_closing_brackets: int = -1,
stop_after_colon: int = -1,
stop_after_comma=-1,
) -> tuple[str, str]:
delta_to_be_parsed = ""
for i, c in enumerate(delta_text):
if c in ['"', "'"]:
delta_to_be_parsed += c
stop_after_quotes -= 1
if stop_after_quotes == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
elif c == "{":
delta_to_be_parsed += c
stop_after_opening_curly_braces -= 1
if stop_after_opening_curly_braces == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
elif c == "}":
delta_to_be_parsed += c
stop_after_closing_curly_braces -= 1
if stop_after_closing_curly_braces == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
elif c == "]":
delta_to_be_parsed += c
stop_after_closing_brackets -= 1
if stop_after_closing_brackets == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
elif c == ":":
delta_to_be_parsed += c
stop_after_colon -= 1
if stop_after_colon == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
elif c == ",":
delta_to_be_parsed += c
stop_after_comma -= 1
if stop_after_comma == 0:
return (delta_to_be_parsed, delta_text[i + 1 :])
else:
delta_to_be_parsed += c
return (delta_to_be_parsed, "")