mirror of
https://github.com/vllm-project/vllm.git
synced 2025-12-06 06:53:12 +08:00
[Misc] Update TokenizerLike interface and move get_cached_tokenizer (#29730)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
@@ -61,8 +61,8 @@ steps:
|
||||
- pytest -v -s -m 'not cpu_test' multimodal
|
||||
- pytest -v -s utils_
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 4 mins
|
||||
timeout_in_minutes: 10
|
||||
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 15min
|
||||
timeout_in_minutes: 20
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
agent_pool: mi325_1
|
||||
# grade: Blocking
|
||||
@@ -72,6 +72,7 @@ steps:
|
||||
- tests/test_outputs.py
|
||||
- tests/multimodal
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/tokenizers_
|
||||
- tests/transformers_utils
|
||||
- tests/config
|
||||
no_gpu: true
|
||||
@@ -80,6 +81,7 @@ steps:
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s -m 'cpu_test' multimodal
|
||||
- pytest -v -s tokenizers_
|
||||
- pytest -v -s transformers_utils
|
||||
- pytest -v -s config
|
||||
|
||||
@@ -308,23 +310,20 @@ steps:
|
||||
- pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 25min
|
||||
timeout_in_minutes: 40
|
||||
- label: Engine Test # 9min
|
||||
timeout_in_minutes: 15
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
agent_pool: mi325_1
|
||||
# grade: Blocking
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
- tests/tokenizers_
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
- tests/test_vllm_port
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenizers_
|
||||
|
||||
- label: V1 Test e2e + engine # 30min
|
||||
timeout_in_minutes: 45
|
||||
|
||||
@@ -57,14 +57,15 @@ steps:
|
||||
- pytest -v -s -m 'not cpu_test' multimodal
|
||||
- pytest -v -s utils_
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 4 mins
|
||||
timeout_in_minutes: 10
|
||||
- label: Async Engine, Inputs, Utils, Worker, Config Test (CPU) # 15min
|
||||
timeout_in_minutes: 20
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_inputs.py
|
||||
- tests/test_outputs.py
|
||||
- tests/multimodal
|
||||
- tests/standalone_tests/lazy_imports.py
|
||||
- tests/tokenizers_
|
||||
- tests/transformers_utils
|
||||
- tests/config
|
||||
no_gpu: true
|
||||
@@ -73,6 +74,7 @@ steps:
|
||||
- pytest -v -s test_inputs.py
|
||||
- pytest -v -s test_outputs.py
|
||||
- pytest -v -s -m 'cpu_test' multimodal
|
||||
- pytest -v -s tokenizers_
|
||||
- pytest -v -s transformers_utils
|
||||
- pytest -v -s config
|
||||
|
||||
@@ -276,21 +278,18 @@ steps:
|
||||
- pytest -v -s test_regression.py
|
||||
working_dir: "/vllm-workspace/tests" # optional
|
||||
|
||||
- label: Engine Test # 25min
|
||||
timeout_in_minutes: 40
|
||||
- label: Engine Test # 9min
|
||||
timeout_in_minutes: 15
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/engine
|
||||
- tests/tokenizers_
|
||||
- tests/test_sequence
|
||||
- tests/test_config
|
||||
- tests/test_logger
|
||||
- tests/test_vllm_port
|
||||
commands:
|
||||
- pytest -v -s engine test_sequence.py test_config.py test_logger.py test_vllm_port.py
|
||||
# OOM in the CI unless we run this separately
|
||||
- pytest -v -s tokenizers_
|
||||
|
||||
- label: V1 Test e2e + engine # 30min
|
||||
timeout_in_minutes: 45
|
||||
|
||||
@@ -21,7 +21,7 @@ Let's say we want to serve the popular Qwen model by running `vllm serve Qwen/Qw
|
||||
|
||||
Beyond that, there are two more things vLLM depends on Hugging Face for.
|
||||
|
||||
1. **Tokenizer**: vLLM uses the tokenizer from Hugging Face to tokenize the input text. The tokenizer is loaded using [AutoTokenizer.from_pretrained](https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoTokenizer.from_pretrained) with the `model` argument as the model name and the `--revision` argument as the revision. It is also possible to use a tokenizer from another model by specifying the `--tokenizer` argument in the `vllm serve` command. Other relevant arguments are `--tokenizer-revision` and `--tokenizer-mode`. Please check Hugging Face's documentation for the meaning of these arguments. This part of the logic can be found in the [get_tokenizer](https://github.com/vllm-project/vllm/blob/127c07480ecea15e4c2990820c457807ff78a057/vllm/transformers_utils/tokenizer.py#L87) function. After obtaining the tokenizer, notably, vLLM will cache some expensive attributes of the tokenizer in [get_cached_tokenizer](https://github.com/vllm-project/vllm/blob/127c07480ecea15e4c2990820c457807ff78a057/vllm/transformers_utils/tokenizer.py#L24).
|
||||
1. **Tokenizer**: vLLM uses the tokenizer from Hugging Face to tokenize the input text. The tokenizer is loaded using [AutoTokenizer.from_pretrained](https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoTokenizer.from_pretrained) with the `model` argument as the model name and the `--revision` argument as the revision. It is also possible to use a tokenizer from another model by specifying the `--tokenizer` argument in the `vllm serve` command. Other relevant arguments are `--tokenizer-revision` and `--tokenizer-mode`. Please check Hugging Face's documentation for the meaning of these arguments. This part of the logic can be found in the [get_tokenizer](https://github.com/vllm-project/vllm/blob/127c07480ecea15e4c2990820c457807ff78a057/vllm/transformers_utils/tokenizer.py#L87) function. After obtaining the tokenizer, notably, vLLM will cache some expensive attributes of the tokenizer in [vllm.tokenizers.hf.get_cached_tokenizer][].
|
||||
|
||||
2. **Model weight**: vLLM downloads the model weight from the Hugging Face model hub using the `model` argument as the model name and the `--revision` argument as the revision. vLLM provides the argument `--load-format` to control what files to download from the model hub. By default, it will try to load the weights in the safetensors format and fall back to the PyTorch bin format if the safetensors format is not available. We can also pass `--load-format dummy` to skip downloading the weights.
|
||||
- It is recommended to use the safetensors format, as it is efficient for loading in distributed inference and also safe from arbitrary code execution. See the [documentation](https://huggingface.co/docs/safetensors/en/index) for more information on the safetensors format. This part of the logic can be found [here](https://github.com/vllm-project/vllm/blob/10b67d865d92e376956345becafc249d4c3c0ab7/vllm/model_executor/model_loader/loader.py#L385). Please note that:
|
||||
|
||||
@@ -7,7 +7,7 @@ import pytest
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm.tokenizers import TokenizerLike
|
||||
from vllm.transformers_utils.tokenizer import get_cached_tokenizer
|
||||
from vllm.tokenizers.hf import get_cached_tokenizer
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_id", ["gpt2", "zai-org/chatglm3-6b"])
|
||||
@@ -356,8 +356,8 @@ class TestMistralTokenizer:
|
||||
)
|
||||
attn_mask = [1 for _ in range(len(token_ids))]
|
||||
|
||||
# Test 1: default
|
||||
assert mistral_tokenizer("Hello world !") == {
|
||||
# Test 1: no special tokens
|
||||
assert mistral_tokenizer("Hello world !", add_special_tokens=False) == {
|
||||
"attention_mask": attn_mask[1:],
|
||||
"input_ids": token_ids[1:],
|
||||
}
|
||||
@@ -381,7 +381,7 @@ class TestMistralTokenizer:
|
||||
"input_ids": token_ids,
|
||||
}
|
||||
# Test 5: empty string
|
||||
assert mistral_tokenizer("") == {
|
||||
assert mistral_tokenizer("", add_special_tokens=False) == {
|
||||
"attention_mask": [],
|
||||
"input_ids": [],
|
||||
}
|
||||
|
||||
@@ -17,20 +17,26 @@ class TestTokenizer(TokenizerLike):
|
||||
def eos_token_id(self) -> int:
|
||||
return 1
|
||||
|
||||
@property
|
||||
def pad_token_id(self) -> int:
|
||||
return 2
|
||||
|
||||
@property
|
||||
def is_fast(self) -> bool:
|
||||
return True
|
||||
|
||||
|
||||
def test_customized_tokenizer():
|
||||
TokenizerRegistry.register(
|
||||
"test_tokenizer",
|
||||
__name__,
|
||||
TestTokenizer.__name__,
|
||||
)
|
||||
TokenizerRegistry.register("test_tokenizer", __name__, TestTokenizer.__name__)
|
||||
|
||||
tokenizer = TokenizerRegistry.get_tokenizer("test_tokenizer")
|
||||
assert isinstance(tokenizer, TestTokenizer)
|
||||
assert tokenizer.bos_token_id == 0
|
||||
assert tokenizer.eos_token_id == 1
|
||||
assert tokenizer.pad_token_id == 2
|
||||
|
||||
tokenizer = get_tokenizer("test_tokenizer", tokenizer_mode="custom")
|
||||
assert isinstance(tokenizer, TestTokenizer)
|
||||
assert tokenizer.bos_token_id == 0
|
||||
assert tokenizer.eos_token_id == 1
|
||||
assert tokenizer.pad_token_id == 2
|
||||
|
||||
@@ -27,7 +27,7 @@ ALLOWED_FILES = {
|
||||
"vllm/distributed/device_communicators/shm_broadcast.py",
|
||||
"vllm/distributed/device_communicators/shm_object_storage.py",
|
||||
"vllm/utils/hashing.py",
|
||||
"tests/tokenizers_/test_cached_tokenizer.py",
|
||||
"tests/tokenizers_/test_hf.py",
|
||||
"tests/utils_/test_hashing.py",
|
||||
"benchmarks/kernels/graph_machete_bench.py",
|
||||
"benchmarks/kernels/benchmark_lora.py",
|
||||
|
||||
@@ -72,7 +72,7 @@ from vllm.pooling_params import PoolingParams
|
||||
from vllm.sampling_params import BeamSearchParams, RequestOutputKind, SamplingParams
|
||||
from vllm.tasks import PoolingTask
|
||||
from vllm.tokenizers import MistralTokenizer, TokenizerLike
|
||||
from vllm.transformers_utils.tokenizer import get_cached_tokenizer
|
||||
from vllm.tokenizers.hf import get_cached_tokenizer
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.utils.collection_utils import as_iter, is_list_of
|
||||
from vllm.utils.counter import Counter
|
||||
|
||||
@@ -51,8 +51,8 @@ def _cosine_similarity(
|
||||
for emb_1, emb_2 in zip(embed_1, embed_2):
|
||||
pair_score = scorer(emb_1.outputs.data, emb_2.outputs.data)
|
||||
|
||||
padding = []
|
||||
if (pad_token_id := getattr(tokenizer, "pad_token_id", None)) is not None:
|
||||
padding: list[int] = []
|
||||
if (pad_token_id := tokenizer.pad_token_id) is not None:
|
||||
padding = [pad_token_id]
|
||||
|
||||
tokens = emb_1.prompt_token_ids + padding + emb_2.prompt_token_ids
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from .hf import HfTokenizer
|
||||
from .mistral import MistralTokenizer
|
||||
from .protocol import TokenizerLike
|
||||
from .registry import TokenizerRegistry
|
||||
|
||||
__all__ = ["TokenizerLike", "MistralTokenizer", "TokenizerRegistry"]
|
||||
__all__ = ["TokenizerLike", "HfTokenizer", "MistralTokenizer", "TokenizerRegistry"]
|
||||
|
||||
122
vllm/tokenizers/hf.py
Normal file
122
vllm/tokenizers/hf.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import contextlib
|
||||
import copy
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm.transformers_utils.config import get_sentence_transformer_tokenizer_config
|
||||
|
||||
from .protocol import TokenizerLike
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
|
||||
|
||||
def get_cached_tokenizer(
|
||||
tokenizer: "PreTrainedTokenizer | PreTrainedTokenizerFast",
|
||||
) -> TokenizerLike:
|
||||
"""
|
||||
By default, transformers will recompute multiple tokenizer properties
|
||||
each time they are called, leading to a significant slowdown.
|
||||
This proxy caches these properties for faster access.
|
||||
"""
|
||||
cached_tokenizer = copy.copy(tokenizer)
|
||||
|
||||
tokenizer_all_special_ids = tokenizer.all_special_ids
|
||||
tokenizer_all_special_tokens = tokenizer.all_special_tokens
|
||||
tokenizer_vocab = tokenizer.get_vocab()
|
||||
tokenizer_len = len(tokenizer)
|
||||
|
||||
max_token_id = max(tokenizer_vocab.values())
|
||||
# Some tokenizers (e.g., QwenTokenizer) have special tokens that
|
||||
# are added and included in the implementation of the vocab_size
|
||||
# property, but not in get_vocab(); if there is an implementation
|
||||
# of vocab size, we should take the greater value.
|
||||
if hasattr(tokenizer, "vocab_size"):
|
||||
with contextlib.suppress(NotImplementedError):
|
||||
max_token_id = max(max_token_id, tokenizer.vocab_size)
|
||||
|
||||
class CachedTokenizer(tokenizer.__class__): # type: ignore
|
||||
@property
|
||||
def all_special_ids(self) -> list[int]:
|
||||
return tokenizer_all_special_ids
|
||||
|
||||
@property
|
||||
def all_special_tokens(self) -> list[str]:
|
||||
return tokenizer_all_special_tokens
|
||||
|
||||
@property
|
||||
def max_token_id(self) -> int:
|
||||
return max_token_id
|
||||
|
||||
def get_vocab(self) -> dict[str, int]:
|
||||
return tokenizer_vocab
|
||||
|
||||
def __len__(self) -> int:
|
||||
return tokenizer_len
|
||||
|
||||
def __reduce__(self):
|
||||
return get_cached_tokenizer, (tokenizer,)
|
||||
|
||||
CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
|
||||
|
||||
cached_tokenizer.__class__ = CachedTokenizer
|
||||
return cached_tokenizer # type: ignore
|
||||
|
||||
|
||||
class HfTokenizer(TokenizerLike):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
path_or_repo_id: str | Path,
|
||||
*args,
|
||||
trust_remote_code: bool = False,
|
||||
revision: str | None = None,
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> "TokenizerLike":
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
path_or_repo_id,
|
||||
*args,
|
||||
trust_remote_code=trust_remote_code,
|
||||
revision=revision,
|
||||
cache_dir=download_dir,
|
||||
**kwargs,
|
||||
)
|
||||
except ValueError as e:
|
||||
# If the error pertains to the tokenizer class not existing or not
|
||||
# currently being imported,
|
||||
# suggest using the --trust-remote-code flag.
|
||||
if not trust_remote_code and (
|
||||
"does not exist or is not currently imported." in str(e)
|
||||
or "requires you to execute the tokenizer file" in str(e)
|
||||
):
|
||||
err_msg = (
|
||||
"Failed to load the tokenizer. If the tokenizer "
|
||||
"is a custom tokenizer not yet available in the "
|
||||
"HuggingFace transformers library, consider "
|
||||
"setting `trust_remote_code=True` in LLM or using "
|
||||
"the `--trust-remote-code` flag in the CLI."
|
||||
)
|
||||
raise RuntimeError(err_msg) from e
|
||||
else:
|
||||
raise e
|
||||
|
||||
# The special_tokens in tokenizer should also be
|
||||
# controlled by do_lower_case in encoder_config
|
||||
encoder_config = get_sentence_transformer_tokenizer_config(
|
||||
path_or_repo_id, revision
|
||||
)
|
||||
if isinstance(encoder_config, dict) and encoder_config.get(
|
||||
"do_lower_case", False
|
||||
):
|
||||
special_tokens_map = {
|
||||
k: v.lower() for k, v in tokenizer.special_tokens_map.items()
|
||||
}
|
||||
tokenizer.add_special_tokens(special_tokens_map)
|
||||
|
||||
return get_cached_tokenizer(tokenizer)
|
||||
@@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, cast
|
||||
|
||||
from vllm.logger import init_logger
|
||||
@@ -12,6 +12,7 @@ if TYPE_CHECKING:
|
||||
ChatCompletionRequest as MistralChatCompletionRequest,
|
||||
)
|
||||
from mistral_common.tokens.tokenizers.tekken import Tekkenizer
|
||||
from transformers import BatchEncoding
|
||||
from transformers.tokenization_mistral_common import (
|
||||
MistralCommonTokenizer as TransformersMistralTokenizer,
|
||||
)
|
||||
@@ -165,7 +166,35 @@ def _tekken_token_to_id(tokenizer: "Tekkenizer", t: str | bytes) -> int:
|
||||
|
||||
|
||||
class MistralTokenizer(TokenizerLike):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
path_or_repo_id: str | Path,
|
||||
*args,
|
||||
trust_remote_code: bool = False,
|
||||
revision: str | None = None,
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> "MistralTokenizer":
|
||||
from mistral_common.protocol.instruct.validator import ValidationMode
|
||||
from transformers.tokenization_mistral_common import (
|
||||
MistralCommonTokenizer as TransformersMistralTokenizer,
|
||||
)
|
||||
|
||||
tokenizer = TransformersMistralTokenizer.from_pretrained(
|
||||
path_or_repo_id,
|
||||
*args,
|
||||
mode=ValidationMode.test,
|
||||
cache_dir=download_dir,
|
||||
revision="main" if revision is None else revision,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return cls(tokenizer)
|
||||
|
||||
def __init__(self, tokenizer: "TransformersMistralTokenizer") -> None:
|
||||
super().__init__()
|
||||
|
||||
from mistral_common.protocol.instruct.validator import ValidationMode
|
||||
from mistral_common.tokens.tokenizers.sentencepiece import (
|
||||
SentencePieceTokenizer,
|
||||
@@ -211,22 +240,6 @@ class MistralTokenizer(TokenizerLike):
|
||||
self._vocab = self.tokenizer._vocab
|
||||
self._max_token_id = self.vocab_size - 1
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls, path_or_repo_id: str, *, revision: str | None = None
|
||||
) -> "MistralTokenizer":
|
||||
from mistral_common.protocol.instruct.validator import ValidationMode
|
||||
from transformers.tokenization_mistral_common import (
|
||||
MistralCommonTokenizer as TransformersMistralTokenizer,
|
||||
)
|
||||
|
||||
str_revision = "main" if revision is None else revision
|
||||
return cls(
|
||||
TransformersMistralTokenizer.from_pretrained(
|
||||
path_or_repo_id, revision=str_revision, mode=ValidationMode.test
|
||||
)
|
||||
)
|
||||
|
||||
def _get_special_token_ids(self) -> list[int]:
|
||||
from mistral_common.tokens.tokenizers.sentencepiece import (
|
||||
SentencePieceTokenizer,
|
||||
@@ -271,6 +284,10 @@ class MistralTokenizer(TokenizerLike):
|
||||
def eos_token_id(self) -> int:
|
||||
return self.tokenizer.eos_id
|
||||
|
||||
@property
|
||||
def pad_token_id(self) -> int:
|
||||
return self.tokenizer.pad_id
|
||||
|
||||
@property
|
||||
def is_fast(self) -> bool:
|
||||
return True
|
||||
@@ -298,12 +315,12 @@ class MistralTokenizer(TokenizerLike):
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
text: str | list[str] | list[int],
|
||||
text: str | list[str],
|
||||
text_pair: str | None = None,
|
||||
add_special_tokens: bool = False,
|
||||
add_special_tokens: bool = True,
|
||||
truncation: bool = False,
|
||||
max_length: int | None = None,
|
||||
):
|
||||
) -> "BatchEncoding":
|
||||
if text_pair is not None:
|
||||
raise ValueError(
|
||||
"`text_pair` is not supported by `MistralTokenizer.__call__`."
|
||||
@@ -342,13 +359,11 @@ class MistralTokenizer(TokenizerLike):
|
||||
text: str,
|
||||
truncation: bool | None = None,
|
||||
max_length: int | None = None,
|
||||
add_special_tokens: bool | None = None,
|
||||
add_special_tokens: bool = True,
|
||||
) -> list[int]:
|
||||
# TODO(juliendenize): once https://github.com/huggingface/transformers/pull/41962
|
||||
# is in, directly call self.transformers_tokenizer.encode(...).
|
||||
encoded = self.tokenizer.encode(
|
||||
text, bos=add_special_tokens is not False, eos=False
|
||||
)
|
||||
encoded = self.tokenizer.encode(text, bos=add_special_tokens, eos=False)
|
||||
|
||||
if truncation is not False and max_length is not None:
|
||||
return encoded[:max_length]
|
||||
@@ -383,7 +398,7 @@ class MistralTokenizer(TokenizerLike):
|
||||
return_dict=False,
|
||||
)
|
||||
|
||||
def decode(self, ids: list[int] | int, skip_special_tokens: bool = True) -> str:
|
||||
def decode(self, ids: list[int] | int, skip_special_tokens: bool = False) -> str:
|
||||
# TODO(juliendenize): once https://github.com/huggingface/transformers/pull/41962
|
||||
# is in, directly call self.transformers_tokenizer.decode(...).
|
||||
if isinstance(ids, int):
|
||||
@@ -455,7 +470,7 @@ class MistralTokenizer(TokenizerLike):
|
||||
def convert_ids_to_tokens(
|
||||
self,
|
||||
ids: list[int],
|
||||
skip_special_tokens: bool = True,
|
||||
skip_special_tokens: bool = False,
|
||||
) -> list[str]:
|
||||
from mistral_common.tokens.tokenizers.base import (
|
||||
SpecialTokenPolicy,
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Protocol
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import BatchEncoding
|
||||
|
||||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
||||
|
||||
|
||||
@@ -13,11 +13,13 @@ class TokenizerLike(Protocol):
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name_or_path: str,
|
||||
/,
|
||||
*,
|
||||
path_or_repo_id: str | Path,
|
||||
*args,
|
||||
trust_remote_code: bool = False,
|
||||
revision: str | None = None,
|
||||
) -> Self:
|
||||
download_dir: str | None = None,
|
||||
**kwargs,
|
||||
) -> "TokenizerLike":
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
@@ -36,6 +38,10 @@ class TokenizerLike(Protocol):
|
||||
def eos_token_id(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def pad_token_id(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def is_fast(self) -> bool:
|
||||
raise NotImplementedError
|
||||
@@ -60,12 +66,12 @@ class TokenizerLike(Protocol):
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
text: str | list[str] | list[int],
|
||||
text: str | list[str],
|
||||
text_pair: str | None = None,
|
||||
add_special_tokens: bool = False,
|
||||
add_special_tokens: bool = True,
|
||||
truncation: bool = False,
|
||||
max_length: int | None = None,
|
||||
):
|
||||
) -> "BatchEncoding":
|
||||
raise NotImplementedError
|
||||
|
||||
def get_vocab(self) -> dict[str, int]:
|
||||
@@ -79,7 +85,7 @@ class TokenizerLike(Protocol):
|
||||
text: str,
|
||||
truncation: bool | None = None,
|
||||
max_length: int | None = None,
|
||||
add_special_tokens: bool | None = None,
|
||||
add_special_tokens: bool = True,
|
||||
) -> list[int]:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -94,12 +100,12 @@ class TokenizerLike(Protocol):
|
||||
def convert_tokens_to_string(self, tokens: list[str]) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, ids: list[int] | int, skip_special_tokens: bool = True) -> str:
|
||||
def decode(self, ids: list[int] | int, skip_special_tokens: bool = False) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
def convert_ids_to_tokens(
|
||||
self,
|
||||
ids: list[int],
|
||||
skip_special_tokens: bool = True,
|
||||
skip_special_tokens: bool = False,
|
||||
) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import contextlib
|
||||
import copy
|
||||
import importlib.util
|
||||
import os
|
||||
import warnings
|
||||
@@ -11,14 +9,17 @@ from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import huggingface_hub
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
from typing_extensions import assert_never
|
||||
|
||||
from vllm import envs
|
||||
from vllm.logger import init_logger
|
||||
from vllm.tokenizers import MistralTokenizer, TokenizerLike, TokenizerRegistry
|
||||
from vllm.tokenizers import (
|
||||
HfTokenizer,
|
||||
MistralTokenizer,
|
||||
TokenizerLike,
|
||||
TokenizerRegistry,
|
||||
)
|
||||
|
||||
from .config import get_sentence_transformer_tokenizer_config
|
||||
from .gguf_utils import get_gguf_file_path_from_hf
|
||||
from .repo_utils import list_filtered_repo_files
|
||||
from .utils import check_gguf_file, is_gguf, is_remote_gguf, split_remote_gguf
|
||||
@@ -41,6 +42,18 @@ def __getattr__(name: str):
|
||||
)
|
||||
|
||||
return TokenizerLike
|
||||
if name == "get_cached_tokenizer":
|
||||
from vllm.tokenizers.hf import get_cached_tokenizer
|
||||
|
||||
warnings.warn(
|
||||
"`vllm.transformers_utils.tokenizer.get_cached_tokenizer` "
|
||||
"has been moved to `vllm.tokenizers.hf.get_cached_tokenizer`. "
|
||||
"The old name will be removed in v0.13.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
return get_cached_tokenizer
|
||||
|
||||
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
||||
|
||||
@@ -58,10 +71,12 @@ def decode_tokens(
|
||||
`skip_special_tokens=None` means to use the backend's default
|
||||
settings.
|
||||
"""
|
||||
if skip_special_tokens is not None:
|
||||
return tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
||||
kw_args: dict[str, Any] = {}
|
||||
|
||||
return tokenizer.decode(token_ids)
|
||||
if skip_special_tokens is not None:
|
||||
kw_args["skip_special_tokens"] = skip_special_tokens
|
||||
|
||||
return tokenizer.decode(token_ids, **kw_args)
|
||||
|
||||
|
||||
def encode_tokens(
|
||||
@@ -93,56 +108,6 @@ def encode_tokens(
|
||||
return tokenizer.encode(text, **kw_args)
|
||||
|
||||
|
||||
def get_cached_tokenizer(tokenizer: TokenizerLike) -> TokenizerLike:
|
||||
"""
|
||||
By default, transformers will recompute multiple tokenizer properties
|
||||
each time they are called, leading to a significant slowdown.
|
||||
This proxy caches these properties for faster access.
|
||||
"""
|
||||
cached_tokenizer = copy.copy(tokenizer)
|
||||
|
||||
tokenizer_all_special_ids = tokenizer.all_special_ids
|
||||
tokenizer_all_special_tokens = tokenizer.all_special_tokens
|
||||
tokenizer_vocab = tokenizer.get_vocab()
|
||||
tokenizer_len = len(tokenizer)
|
||||
|
||||
max_token_id = max(tokenizer_vocab.values())
|
||||
# Some tokenizers (e.g., QwenTokenizer) have special tokens that
|
||||
# are added and included in the implementation of the vocab_size
|
||||
# property, but not in get_vocab(); if there is an implementation
|
||||
# of vocab size, we should take the greater value.
|
||||
if hasattr(tokenizer, "vocab_size"):
|
||||
with contextlib.suppress(NotImplementedError):
|
||||
max_token_id = max(max_token_id, tokenizer.vocab_size)
|
||||
|
||||
class CachedTokenizer(tokenizer.__class__): # type: ignore
|
||||
@property
|
||||
def all_special_ids(self) -> list[int]:
|
||||
return tokenizer_all_special_ids
|
||||
|
||||
@property
|
||||
def all_special_tokens(self) -> list[str]:
|
||||
return tokenizer_all_special_tokens
|
||||
|
||||
@property
|
||||
def max_token_id(self) -> int:
|
||||
return max_token_id
|
||||
|
||||
def get_vocab(self) -> dict[str, int]:
|
||||
return tokenizer_vocab
|
||||
|
||||
def __len__(self) -> int:
|
||||
return tokenizer_len
|
||||
|
||||
def __reduce__(self):
|
||||
return get_cached_tokenizer, (tokenizer,)
|
||||
|
||||
CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
|
||||
|
||||
cached_tokenizer.__class__ = CachedTokenizer
|
||||
return cached_tokenizer
|
||||
|
||||
|
||||
def get_tokenizer(
|
||||
tokenizer_name: str | Path,
|
||||
*args,
|
||||
@@ -217,66 +182,39 @@ def get_tokenizer(
|
||||
if tokenizer_mode == "mistral":
|
||||
logger.debug_once(f"Loading MistralTokenizer from {tokenizer_name}")
|
||||
tokenizer = MistralTokenizer.from_pretrained(
|
||||
str(tokenizer_name), revision=revision
|
||||
tokenizer_name,
|
||||
*args,
|
||||
trust_remote_code=trust_remote_code,
|
||||
revision=revision,
|
||||
download_dir=download_dir,
|
||||
**kwargs,
|
||||
)
|
||||
elif tokenizer_mode == "custom":
|
||||
logger.debug_once(f"Loading CustomTokenizer from {tokenizer_name}")
|
||||
tokenizer = TokenizerRegistry.get_tokenizer(
|
||||
str(tokenizer_name),
|
||||
*args,
|
||||
trust_remote_code=trust_remote_code,
|
||||
revision=revision,
|
||||
download_dir=download_dir,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
logger.debug_once(f"Loading AutoTokenizer from {tokenizer_name}")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
logger.debug_once(f"Loading HfTokenizer from {tokenizer_name}")
|
||||
tokenizer = HfTokenizer.from_pretrained(
|
||||
tokenizer_name,
|
||||
*args,
|
||||
trust_remote_code=trust_remote_code,
|
||||
revision=revision,
|
||||
download_dir=download_dir,
|
||||
**kwargs,
|
||||
)
|
||||
except ValueError as e:
|
||||
# If the error pertains to the tokenizer class not existing or not
|
||||
# currently being imported,
|
||||
# suggest using the --trust-remote-code flag.
|
||||
if not trust_remote_code and (
|
||||
"does not exist or is not currently imported." in str(e)
|
||||
or "requires you to execute the tokenizer file" in str(e)
|
||||
):
|
||||
err_msg = (
|
||||
"Failed to load the tokenizer. If the tokenizer "
|
||||
"is a custom tokenizer not yet available in the "
|
||||
"HuggingFace transformers library, consider "
|
||||
"setting `trust_remote_code=True` in LLM or using "
|
||||
"the `--trust-remote-code` flag in the CLI."
|
||||
)
|
||||
raise RuntimeError(err_msg) from e
|
||||
else:
|
||||
raise e
|
||||
|
||||
# The special_tokens in tokenizer should also be
|
||||
# controlled by do_lower_case in encoder_config
|
||||
encoder_config = get_sentence_transformer_tokenizer_config(
|
||||
tokenizer_name, revision
|
||||
)
|
||||
if isinstance(encoder_config, dict) and encoder_config.get(
|
||||
"do_lower_case", False
|
||||
):
|
||||
assert isinstance(tokenizer, PreTrainedTokenizerBase)
|
||||
special_tokens_map = {
|
||||
k: v.lower() for k, v in tokenizer.special_tokens_map.items()
|
||||
}
|
||||
tokenizer.add_special_tokens(special_tokens_map)
|
||||
|
||||
if not tokenizer.is_fast:
|
||||
logger.warning(
|
||||
"Using a slow tokenizer. This might cause a significant "
|
||||
"slowdown. Consider using a fast tokenizer instead."
|
||||
)
|
||||
tokenizer = get_cached_tokenizer(tokenizer)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
@@ -9,8 +9,8 @@ from tokenizers.decoders import DecodeStream
|
||||
from transformers import PreTrainedTokenizerFast
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.tokenizers import TokenizerLike
|
||||
from vllm.tokenizers.detokenizer_utils import (
|
||||
TokenizerLike,
|
||||
convert_prompt_ids_to_tokens,
|
||||
detokenize_incrementally,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user