mirror of
https://github.com/vllm-project/vllm.git
synced 2025-12-06 15:04:47 +08:00
[Compressed Tensors] Add XPU wNa16 support (#29484)
Signed-off-by: yiliu30 <yi4.liu@intel.com>
This commit is contained in:
@@ -38,6 +38,7 @@ docker run \
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 -O3 -cc.cudagraph_mode=NONE
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend ray
|
||||
python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
python3 examples/offline_inference/basic/generate.py --model Intel/Qwen2.5-0.5B-W4A16-G128-AutoRound-LLMC-TEST-ONLY --enforce-eager
|
||||
VLLM_ATTENTION_BACKEND=TRITON_ATTN python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
|
||||
@@ -30,6 +30,9 @@ from vllm.model_executor.layers.quantization.kernels.mixed_precision.MPLinearKer
|
||||
MPLinearKernel,
|
||||
MPLinearLayerConfig,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.kernels.mixed_precision.xpu import ( # noqa: E501
|
||||
XPUwNa16LinearKernel,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# in priority/performance order (when available)
|
||||
@@ -42,6 +45,7 @@ _POSSIBLE_KERNELS: list[type[MPLinearKernel]] = [
|
||||
BitBLASLinearKernel,
|
||||
ConchLinearKernel,
|
||||
ExllamaLinearKernel,
|
||||
XPUwNa16LinearKernel,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,97 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .MPLinearKernel import MPLinearKernel, MPLinearLayerConfig
|
||||
|
||||
|
||||
class XPUwNa16LinearKernel(MPLinearKernel):
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 0
|
||||
|
||||
@classmethod
|
||||
def can_implement(cls, c: MPLinearLayerConfig) -> tuple[bool, str | None]:
|
||||
if not current_platform.is_xpu():
|
||||
return False, "IPEX wNa16 only supported on XPU/CPU devices"
|
||||
|
||||
# TODO: (yiliu30) relax these restrictions in later PRs
|
||||
if c.zero_points:
|
||||
return False, "Zero points not supported for Now"
|
||||
|
||||
return True, None
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
from packaging import version
|
||||
|
||||
MIN_IPEX_VERSION = "2.6.0"
|
||||
bias = layer.bias if not layer.skip_bias_add else None
|
||||
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
if version.parse(ipex.__version__) < version.parse(MIN_IPEX_VERSION):
|
||||
raise ImportError(
|
||||
"intel_extension_for_pytorch version is "
|
||||
"wrong. Please install "
|
||||
f"intel_extension_for_pytorch>={MIN_IPEX_VERSION}."
|
||||
)
|
||||
except ImportError as err:
|
||||
raise ImportError(
|
||||
"Please install "
|
||||
f"intel_extension_for_pytorch>={MIN_IPEX_VERSION} via "
|
||||
f"`pip install intel_extension_for_pytorch>={MIN_IPEX_VERSION}`"
|
||||
" to use IPEX-AWQ linear method."
|
||||
) from err
|
||||
# Using the compute dtype (lowp_mode) as INT8 to leverage instructions
|
||||
# with better performance.
|
||||
lowp_mode = ipex.quantization.WoqLowpMode.INT8
|
||||
# The weight will be de-packed from INT4 to INT8.
|
||||
weight_dtype = ipex.quantization.WoqWeightDtype.INT4
|
||||
# The float activation will be quantized (dynamic, per-token) to INT8.
|
||||
act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH
|
||||
|
||||
qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
|
||||
weight_dtype=weight_dtype,
|
||||
lowp_mode=lowp_mode,
|
||||
act_quant_mode=act_quant_mode,
|
||||
group_size=self.config.group_size,
|
||||
weight_qscheme=ipex.quantization.WoqWeightQScheme.SYMMETRIC,
|
||||
)
|
||||
qweight = layer.weight_packed
|
||||
g_idx = layer.weight_g_idx if self.config.has_g_idx else None
|
||||
scales = layer.weight_scale
|
||||
qzeros = None
|
||||
if self.config.zero_points:
|
||||
qzeros = layer.weight_zero_point.contiguous()
|
||||
qweight = qweight.t().contiguous()
|
||||
scales = scales.t().contiguous()
|
||||
layer.ipex_output_size = self.config.partition_weight_shape[1]
|
||||
layer.ipex_qlinear = (
|
||||
ipex.llm.quantization.woq_linear.IPEXWeightOnlyQuantizedLinear.from_weight(
|
||||
qweight,
|
||||
scales,
|
||||
qzeros,
|
||||
in_features=self.config.partition_weight_shape[0],
|
||||
out_features=self.config.partition_weight_shape[1],
|
||||
qconfig=qconfig,
|
||||
g_idx=g_idx,
|
||||
bias=bias,
|
||||
group_size=self.config.group_size,
|
||||
quant_method=0, # `0` stands for the IPEX GPTQ
|
||||
)
|
||||
)
|
||||
|
||||
def apply_weights(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: torch.Tensor | None = None,
|
||||
) -> torch.Tensor:
|
||||
reshaped_x = x.reshape(-1, x.shape[-1])
|
||||
out = layer.ipex_qlinear(reshaped_x)
|
||||
return out.reshape(x.shape[:-1] + (layer.ipex_output_size,))
|
||||
Reference in New Issue
Block a user