Files
vllm-anthropic/vllm/model_executor/layers/fused_moe/fused_moe.py
2025-10-16 21:40:25 +00:00

2146 lines
72 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Fused MoE Triton kernels."""
import functools
import json
import os
from collections.abc import Callable
from typing import Any
import torch
import torch.nn.functional as F
import vllm.envs as envs
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.batch_invariant import (
vllm_is_batch_invariant,
)
from vllm.model_executor.layers.fused_moe.config import (
FUSED_MOE_UNQUANTIZED_CONFIG,
FusedMoEQuantConfig,
_get_config_dtype_str,
)
from vllm.model_executor.layers.fused_moe.cutlass_moe import (
_valid_cutlass_block_scaled_grouped_gemm,
run_cutlass_block_scaled_fused_experts,
)
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_valid_deep_gemm,
deep_gemm_moe_fp8,
)
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size,
)
from vllm.model_executor.layers.fused_moe.prepare_finalize import (
MoEPrepareAndFinalizeNoEP,
)
from vllm.model_executor.layers.fused_moe.topk_weight_and_reduce import (
TopKWeightAndReduceNoOP,
)
from vllm.model_executor.layers.fused_moe.utils import (
_resize_cache,
activation_without_mul,
disable_inplace,
moe_kernel_quantize_input,
)
from vllm.model_executor.layers.quantization.utils.mxfp4_utils import dequant_mxfp4
from vllm.model_executor.layers.quantization.utils.mxfp6_utils import dequant_mxfp6
from vllm.model_executor.layers.quantization.utils.ocp_mx_utils import OCP_MX_Scheme
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
from vllm.utils import direct_register_custom_op, is_torch_equal_or_newer
from vllm.utils.deep_gemm import is_deep_gemm_e8m0_used
from .rocm_aiter_fused_moe import is_rocm_aiter_moe_enabled
logger = init_logger(__name__)
@triton.jit
def write_zeros_to_output(
c_ptr,
stride_cm,
stride_cn,
pid_n,
N,
offs_token,
token_mask,
BLOCK_SIZE_M,
BLOCK_SIZE_N,
compute_type,
):
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=compute_type)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@triton.jit
def fused_moe_kernel_gptq_awq(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
b_scale_ptr,
b_zp_ptr,
topk_weights_ptr,
sorted_token_ids_ptr,
expert_ids_ptr,
num_tokens_post_padded_ptr,
# Matrix dimensions
N: tl.constexpr,
K: tl.constexpr,
EM,
num_valid_tokens,
# The stride variables represent how much to increase the ptr by when
# moving by 1 element in a particular dimension. E.g. `stride_am` is
# how much to increase `a_ptr` by to get the element one row down
# (A has M rows).
stride_am,
stride_ak,
stride_be,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_bse,
stride_bsk,
stride_bsn,
stride_bze,
stride_bzk,
stride_bzn,
block_k_diviable: tl.constexpr,
group_size: tl.constexpr,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
MUL_ROUTED_WEIGHT: tl.constexpr,
top_k: tl.constexpr,
compute_type: tl.constexpr,
has_zp: tl.constexpr,
use_int4_w4a16: tl.constexpr,
use_int8_w8a16: tl.constexpr,
):
"""
Implements the fused computation for a Mixture of Experts (MOE) using
token and expert matrices.
Key Parameters:
- A: The input tensor representing tokens with shape (*, K), where '*' can
be any shape representing batches and K is the feature dimension of
each token.
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
the number of experts, K is the input feature dimension, and N is
the output feature dimension.
- C: The output cache tensor with shape (M, topk, N), where M is the
total number of tokens post padding, topk is the number of times
each token is repeated, and N is the output feature dimension.
- sorted_token_ids: A tensor containing the sorted indices of tokens,
repeated topk times and arranged by the expert index they are
assigned to.
- expert_ids: A tensor containing the indices of the expert for each
block. It determines which expert matrix from B should be used for
each block in A.
This kernel performs the multiplication of a token by its corresponding
expert matrix as determined by `expert_ids`. The sorting of
`sorted_token_ids` by expert index and padding ensures divisibility by
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
multiplication across different blocks processed by the same expert.
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
if off_experts == -1:
# -----------------------------------------------------------
# Write back zeros to the output when the expert is not
# in the current expert parallel rank.
write_zeros_to_output(
c_ptr,
stride_cm,
stride_cn,
pid_n,
N,
offs_token,
token_mask,
BLOCK_SIZE_M,
BLOCK_SIZE_N,
compute_type,
)
return
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
)
if use_int4_w4a16:
b_ptrs = (
b_ptr
+ off_experts * stride_be
+ (offs_k[:, None] // 2) * stride_bk
+ offs_bn[None, :] * stride_bn
)
b_shifter = (offs_k[:, None] % 2) * 4
elif use_int8_w8a16:
b_ptrs = (
b_ptr
+ off_experts * stride_be
+ offs_k[:, None] * stride_bk
+ offs_bn[None, :] * stride_bn
)
if not has_zp and use_int4_w4a16:
b_zp_num = 8
if not has_zp and use_int8_w8a16:
b_zp_num = 128
elif has_zp and use_int4_w4a16:
b_zp_shifter = (offs_bn[None, :] % 2) * 4
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the
# K dimension.
if not block_k_diviable:
k_mask = offs_k[:, None] < K - k * BLOCK_SIZE_K
k_other = 0.0
else:
k_mask = None
k_other = None
a = tl.load(
a_ptrs,
mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
other=0.0,
)
b = tl.load(b_ptrs)
if use_int4_w4a16:
b = (b >> b_shifter) & 0xF
b_scale_ptrs = (
b_scale_ptr
+ off_experts * stride_bse
+ offs_bn[None, :] * stride_bsn
+ ((offs_k[:, None] + BLOCK_SIZE_K * k) // group_size) * stride_bsk
)
b_scale = tl.load(b_scale_ptrs, mask=k_mask, other=k_other)
b_scale = b_scale.to(tl.float32)
if has_zp and use_int4_w4a16:
offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
b_zp_ptrs = (
b_zp_ptr
+ off_experts * stride_bze
+ (offs_bn[None, :] // 2) * stride_bzn
+ offs_k_true * stride_bzk
)
b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
b_zp = (b_zp >> b_zp_shifter) & 0xF
b_zp = b_zp.to(tl.float32)
elif has_zp and use_int8_w8a16:
offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
b_zp_ptrs = (
b_zp_ptr
+ off_experts * stride_bze
+ offs_bn[None, :] * stride_bzn
+ offs_k_true * stride_bzk
)
b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
b_zp = b_zp.to(tl.float32)
# We accumulate along the K dimension.
if has_zp:
b = ((b.to(tl.float32) - b_zp) * b_scale).to(compute_type)
else:
b = ((b.to(tl.float32) - b_zp_num) * b_scale).to(compute_type)
accumulator = tl.dot(a, b, acc=accumulator)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
if use_int4_w4a16:
b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
else:
b_ptrs += BLOCK_SIZE_K * stride_bk
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
accumulator = accumulator * moe_weight[:, None]
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
# Write back the block of the output
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@triton.jit
def fused_moe_kernel(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
b_bias_ptr,
a_scale_ptr,
b_scale_ptr,
topk_weights_ptr,
sorted_token_ids_ptr,
expert_ids_ptr,
num_tokens_post_padded_ptr,
# Matrix dimensions
N,
K,
EM,
num_valid_tokens,
# The stride variables represent how much to increase the ptr by when
# moving by 1 element in a particular dimension. E.g. `stride_am` is
# how much to increase `a_ptr` by to get the element one row down
# (A has M rows).
stride_am,
stride_ak,
stride_be,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_asm,
stride_ask,
stride_bse,
stride_bsk,
stride_bsn,
stride_bbe, # bias expert stride
stride_bbn, # bias N stride
# Block size for block-wise quantization
group_n: tl.constexpr,
group_k: tl.constexpr,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
MUL_ROUTED_WEIGHT: tl.constexpr,
top_k: tl.constexpr,
compute_type: tl.constexpr,
use_fp8_w8a8: tl.constexpr,
use_int8_w8a8: tl.constexpr,
use_int8_w8a16: tl.constexpr,
per_channel_quant: tl.constexpr,
HAS_BIAS: tl.constexpr,
):
"""
Implements the fused computation for a Mixture of Experts (MOE) using
token and expert matrices.
Key Parameters:
- A: The input tensor representing tokens with shape (*, K), where '*' can
be any shape representing batches and K is the feature dimension of
each token.
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
the number of experts, K is the input feature dimension, and N is
the output feature dimension.
- C: The output cache tensor with shape (M, topk, N), where M is the
total number of tokens post padding, topk is the number of times
each token is repeated, and N is the output feature dimension.
- sorted_token_ids: A tensor containing the sorted indices of tokens,
repeated topk times and arranged by the expert index they are
assigned to.
- expert_ids: A tensor containing the indices of the expert for each
block. It determines which expert matrix from B should be used for
each block in A.
This kernel performs the multiplication of a token by its corresponding
expert matrix as determined by `expert_ids`. The sorting of
`sorted_token_ids` by expert index and padding ensures divisibility by
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
multiplication across different blocks processed by the same expert.
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
if off_experts == -1:
# -----------------------------------------------------------
# Write back zeros to the output when the expert is not
# in the current expert parallel rank.
write_zeros_to_output(
c_ptr,
stride_cm,
stride_cn,
pid_n,
N,
offs_token,
token_mask,
BLOCK_SIZE_M,
BLOCK_SIZE_N,
compute_type,
)
return
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
)
b_ptrs = (
b_ptr
+ off_experts * stride_be
+ (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
)
if use_int8_w8a16:
b_scale_ptrs = (
b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
)
b_scale = tl.load(b_scale_ptrs)
if use_fp8_w8a8 or use_int8_w8a8:
# block-wise
if group_k > 0 and group_n > 0:
a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
offs_bsn = offs_bn // group_n
b_scale_ptrs = (
b_scale_ptr + off_experts * stride_bse + offs_bsn * stride_bsn
)
# channel-wise
elif per_channel_quant:
b_scale_ptrs = (
b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
)
b_scale = tl.load(b_scale_ptrs)
# Load per-token scale for activations
a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
a_scale = tl.load(a_scale_ptrs, mask=token_mask, other=0.0)[:, None]
# tensor-wise
else:
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr + off_experts)
if HAS_BIAS:
# bias shape: [num_experts, N]
bias_ptrs = b_bias_ptr + off_experts * stride_bbe + offs_bn * stride_bbn
bias = tl.load(bias_ptrs, mask=(offs_bn < N), other=0.0)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the
# K dimension.
a = tl.load(
a_ptrs,
mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
other=0.0,
)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
# We accumulate along the K dimension.
if use_int8_w8a16:
accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
elif use_fp8_w8a8 or use_int8_w8a8:
if group_k > 0 and group_n > 0:
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_scale = tl.load(
a_scale_ptrs + offs_ks * stride_ask, mask=token_mask, other=0.0
)
b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
accumulator += tl.dot(a, b) * a_scale[:, None] * b_scale[None, :]
else:
if use_fp8_w8a8:
# acc used to enable fp8_fast_accum
accumulator = tl.dot(a, b, acc=accumulator)
else:
accumulator += tl.dot(a, b)
else:
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if HAS_BIAS:
accumulator = accumulator + bias[None, :]
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
accumulator = accumulator * moe_weight[:, None]
if use_int8_w8a16:
accumulator = (accumulator * b_scale).to(compute_type)
elif use_fp8_w8a8 or use_int8_w8a8:
if group_k > 0 and group_n > 0:
accumulator = accumulator.to(compute_type)
else:
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
else:
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
# Write back the block of the output
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
def invoke_fused_moe_kernel(
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
A_scale: torch.Tensor | None,
B_scale: torch.Tensor | None,
B_zp: torch.Tensor | None,
topk_weights: torch.Tensor | None,
sorted_token_ids: torch.Tensor,
expert_ids: torch.Tensor,
num_tokens_post_padded: torch.Tensor,
mul_routed_weight: bool,
top_k: int,
config: dict[str, Any],
compute_type: tl.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
use_int4_w4a16: bool,
per_channel_quant: bool,
block_shape: list[int] | None = None,
B_bias: torch.Tensor | None = None,
) -> None:
assert topk_weights is not None or not mul_routed_weight
assert topk_weights is None or topk_weights.stride(1) == 1
assert sorted_token_ids.stride(0) == 1
if use_fp8_w8a8 or use_int8_w8a8:
assert B_scale is not None
assert block_shape is None or triton.cdiv(
B.size(-2), block_shape[0]
) == B_scale.size(-2)
assert block_shape is None or triton.cdiv(
B.size(-1), block_shape[1]
) == B_scale.size(-1)
elif use_int8_w8a16 or use_int4_w4a16:
assert B_scale is not None
assert block_shape is None or block_shape[0] == 0
else:
assert A_scale is None
assert B_scale is None
M = A.size(0)
num_tokens = M * top_k
EM = sorted_token_ids.size(0)
if A.size(0) < config["BLOCK_SIZE_M"]:
# optimize for small batch_size.
# We assume that top_ids of each token is unique,
# so num_valid_experts <= batch_size <= BLOCK_SIZE_M,
# and we can skip some invalid blocks.
EM = min(sorted_token_ids.size(0), A.size(0) * top_k * config["BLOCK_SIZE_M"])
grid = lambda META: (
triton.cdiv(EM, META["BLOCK_SIZE_M"])
* triton.cdiv(B.size(1), META["BLOCK_SIZE_N"]),
)
HAS_BIAS = B_bias is not None
if (
(use_int8_w8a16 or use_int4_w4a16)
and block_shape is not None
and block_shape[1] > 0
):
assert B_scale is not None and B_scale.ndim == 3
assert B_zp is None or B_zp.ndim == 3
use_moe_wna16_cuda = should_moe_wna16_use_cuda(
num_valid_tokens=num_tokens,
group_size=block_shape[1],
num_experts=B.size(0),
bit=4 if use_int4_w4a16 else 8,
)
config = config.copy()
config.update(
get_moe_wna16_block_config(
config=config,
use_moe_wna16_cuda=use_moe_wna16_cuda,
num_valid_tokens=num_tokens,
size_k=A.size(1),
size_n=B.size(1),
num_experts=B.size(1),
group_size=block_shape[1],
real_top_k=top_k,
block_size_m=config["BLOCK_SIZE_M"],
)
)
if use_moe_wna16_cuda:
bit = 4 if use_int4_w4a16 else 8
ops.moe_wna16_gemm(
A,
C,
B,
B_scale,
B_zp,
topk_weights if mul_routed_weight else None,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
top_k,
config["BLOCK_SIZE_M"],
config["BLOCK_SIZE_N"],
config["BLOCK_SIZE_K"],
bit,
)
return
fused_moe_kernel_gptq_awq[grid](
A,
B,
C,
B_scale,
B_zp,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
B.size(1),
A.size(1),
EM,
num_tokens,
A.stride(0),
A.stride(1),
B.stride(0),
B.stride(2),
B.stride(1),
C.stride(1),
C.stride(2),
B_scale.stride(0),
B_scale.stride(2),
B_scale.stride(1),
B_zp.stride(0) if B_zp is not None else 0,
B_zp.stride(2) if B_zp is not None else 0,
B_zp.stride(1) if B_zp is not None else 0,
block_k_diviable=A.size(1) % config["BLOCK_SIZE_K"] == 0,
group_size=block_shape[1],
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
has_zp=B_zp is not None,
use_int4_w4a16=use_int4_w4a16,
use_int8_w8a16=use_int8_w8a16,
**config,
)
else:
config = config.copy()
BLOCK_SIZE_K = config.pop("BLOCK_SIZE_K")
if block_shape is not None:
BLOCK_SIZE_K = min(BLOCK_SIZE_K, min(block_shape[0], block_shape[1]))
fused_moe_kernel[grid](
A,
B,
C,
B_bias,
A_scale,
B_scale,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
B.size(1),
B.size(2),
EM,
num_tokens,
A.stride(0),
A.stride(1),
B.stride(0),
B.stride(2),
B.stride(1),
C.stride(1),
C.stride(2),
A_scale.stride(0) if A_scale is not None and A_scale.ndim == 2 else 0,
A_scale.stride(1) if A_scale is not None and A_scale.ndim == 2 else 0,
B_scale.stride(0) if B_scale is not None and B_scale.ndim >= 2 else 0,
B_scale.stride(2) if B_scale is not None and B_scale.ndim == 3 else 0,
B_scale.stride(1) if B_scale is not None and B_scale.ndim >= 2 else 0,
B_bias.stride(0) if B_bias is not None else 0,
B_bias.stride(1) if B_bias is not None else 0,
0 if block_shape is None else block_shape[0],
0 if block_shape is None else block_shape[1],
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
per_channel_quant=per_channel_quant,
HAS_BIAS=HAS_BIAS,
BLOCK_SIZE_K=BLOCK_SIZE_K,
**config,
)
@triton.jit
def compute_identity_kernel(
top_k: int,
hidden_states_ptr: tl.tensor,
expert_scales_ptr: tl.tensor,
num_tokens: int,
output_ptr: tl.tensor,
hidden_dim: int,
scales_stride: int,
BLOCK_SIZE: tl.constexpr,
) -> None:
pid = tl.program_id(0)
batch_id = pid // (hidden_dim // BLOCK_SIZE)
dim_offset = pid % (hidden_dim // BLOCK_SIZE) * BLOCK_SIZE
if batch_id >= num_tokens or dim_offset >= hidden_dim:
return
h = tl.load(
hidden_states_ptr
+ batch_id * hidden_dim
+ dim_offset
+ tl.arange(0, BLOCK_SIZE),
mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
)
result = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for i in range(top_k):
scale = tl.load(expert_scales_ptr + batch_id * scales_stride + i)
result += h * scale
tl.store(
output_ptr + batch_id * hidden_dim + dim_offset + tl.arange(0, BLOCK_SIZE),
result,
mask=(dim_offset + tl.arange(0, BLOCK_SIZE)) < hidden_dim,
)
def zero_experts_compute_triton(
expert_indices: torch.Tensor,
expert_scales: torch.Tensor,
num_experts: int,
zero_expert_type: str,
hidden_states: torch.Tensor,
) -> torch.Tensor:
N = expert_indices.numel()
top_k = expert_indices.size(-1)
grid = lambda meta: (triton.cdiv(N, meta["BLOCK_SIZE"]),)
if zero_expert_type == "identity":
zero_expert_mask = expert_indices < num_experts
zero_expert_scales = expert_scales.clone()
zero_expert_scales[zero_expert_mask] = 0.0
normal_expert_mask = expert_indices >= num_experts
expert_indices[normal_expert_mask] = 0
expert_scales[normal_expert_mask] = 0.0
output = torch.zeros_like(hidden_states).to(hidden_states.device)
hidden_dim = hidden_states.size(-1)
num_tokens = hidden_states.size(0)
grid = lambda meta: (num_tokens * (hidden_dim // meta["BLOCK_SIZE"]),)
compute_identity_kernel[grid](
top_k,
hidden_states,
zero_expert_scales,
num_tokens,
output,
hidden_dim,
zero_expert_scales.stride(0),
BLOCK_SIZE=256,
)
return output
# Adapted from: https://github.com/sgl-project/sglang/pull/2628
def get_config_file_name(
E: int, N: int, dtype: str | None, block_shape: list[int] | None = None
) -> str:
device_name = current_platform.get_device_name().replace(" ", "_")
dtype_selector = "" if not dtype else f",dtype={dtype}"
block_shape_selector = (
"" if not block_shape or not all(block_shape) else f",block_shape={block_shape}"
).replace(" ", "")
return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json" # noqa: E501
# Adapted from: https://github.com/sgl-project/sglang/pull/2628
@functools.lru_cache
def get_moe_configs(
E: int,
N: int,
dtype: str | None,
block_n: int | None = None,
block_k: int | None = None,
) -> dict[int, Any] | None:
"""
Return optimized configurations for the fused MoE kernel.
The return value will be a dictionary that maps an irregular grid of
batch sizes to configurations of the fused_moe kernel. To evaluate the
kernel on a given batch size bs, the closest batch size in the grid should
be picked and the associated configuration chosen to invoke the kernel.
"""
# Avoid optimizing for the batch invariant case. Use default config
if vllm_is_batch_invariant():
return None
# First look up if an optimized configuration is available in the configs
# directory
block_shape = [block_n, block_k] if block_n and block_k else None
json_file_name = get_config_file_name(E, N, dtype, block_shape)
config_file_paths = []
# note that we prioritize user defined config
user_defined_config_folder = envs.VLLM_TUNED_CONFIG_FOLDER
if user_defined_config_folder is not None:
user_defined_config_file_path = os.path.join(
user_defined_config_folder, json_file_name
)
config_file_paths.append(user_defined_config_file_path)
default_config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
)
config_file_paths.append(default_config_file_path)
for config_file_path in config_file_paths:
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info(
"Using configuration from %s for MoE layer.", config_file_path
)
# If a configuration has been found, return it
tuned_config = json.load(f)
# Delete triton_version from tuned_config
tuned_config.pop("triton_version", None)
return {int(key): val for key, val in tuned_config.items()}
# If no optimized configuration is available, we will use the default
# configuration
logger.warning(
(
"Using default MoE config. Performance might be sub-optimal! "
"Config file not found at %s"
),
config_file_paths,
)
return None
def get_moe_wna16_block_config(
config: dict[str, int],
use_moe_wna16_cuda: bool,
num_valid_tokens: int,
size_k: int,
size_n: int,
num_experts: int,
group_size: int,
real_top_k: int,
block_size_m: int,
):
if "BLOCK_SIZE_N" in config and "BLOCK_SIZE_K" in config:
# optimal block config is set
return {}
if not use_moe_wna16_cuda:
# triton moe wna16 kernel
if num_valid_tokens // real_top_k == 1:
# if bs=1, use a smaller BLOCK_SIZE_N
return {"BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 64}
else:
return {"BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32}
else:
# cuda moe wna16 kernel
# set default block_size 128, and increase them when num_blocks
# is too large.
block_size_n = 128
block_size_k = 128
if block_size_k <= group_size:
block_size_k = group_size
num_n_blocks = size_k // block_size_k
num_k_blocks = size_n // block_size_k
num_m_blocks = (
num_valid_tokens + block_size_m - 1
) / block_size_m + num_experts
if num_valid_tokens // real_top_k <= block_size_m:
num_m_blocks = min(num_m_blocks, num_valid_tokens)
num_blocks = num_m_blocks * num_n_blocks * num_k_blocks
if size_k % 256 == 0 and num_blocks >= 256 and block_size_k < 256:
block_size_k = 256
num_blocks = num_blocks // (256 // block_size_k)
if (
num_m_blocks <= 16
and size_k % (block_size_k * 2) == 0
and size_k % (block_size_k * 2) == 0
and block_size_k <= 512
and num_blocks >= 512
):
block_size_k = block_size_k * 2
num_blocks = num_blocks // 2
if num_blocks > 1024:
block_size_n = 256
num_n_blocks = num_n_blocks // 2
num_blocks = num_blocks // 2
if size_n <= 1024 and num_blocks >= 1024:
# The kernel performance got much better with BLOCK_SIZE_N=1024
# when num_blocks is large, event when N is small.
# Not sure why, maybe it force the CUDA SM process only one block
# at the same time.
block_size_n = 1024
return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
def should_moe_wna16_use_cuda(
num_valid_tokens: int, group_size: int, num_experts: int, bit: int
):
return (
current_platform.is_cuda()
and bit == 4
and group_size in [32, 64, 128]
and num_valid_tokens / num_experts <= 6
)
def get_default_config(
M: int,
E: int,
N: int,
K: int,
topk: int,
dtype: str | None,
block_shape: list[int] | None = None,
) -> dict[str, int]:
if vllm_is_batch_invariant():
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
}
return config
if dtype == "fp8_w8a8" and block_shape is not None:
# Block-wise quant: BLOCK_SIZE_N must be divisible by block_shape[0]
# BLOCK_SIZE_K must be divisible by block_shape[1]
# num_stages=3 can cause triton.runtime.errors.OutOfResources
# on ROCm, set it to 2 instead.
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": block_shape[0],
"BLOCK_SIZE_K": block_shape[1],
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3 if not current_platform.is_rocm() else 2,
}
elif dtype in ["int4_w4a16", "int8_w8a16"] and block_shape is not None:
# moe wna16 kernels
# only set BLOCK_SIZE_M
# BLOCK_SIZE_N and BLOCK_SIZE_K would be set later
bit = 4 if dtype == "int4_w4a16" else 8
use_moe_wna16_cuda = should_moe_wna16_use_cuda(M * topk, block_shape[1], E, bit)
if use_moe_wna16_cuda:
config = {"BLOCK_SIZE_M": min(16, M)}
elif M <= 20:
config = {"BLOCK_SIZE_M": 16, "GROUP_SIZE_M": 1}
elif M <= 40:
config = {"BLOCK_SIZE_M": 32, "GROUP_SIZE_M": 1}
else:
config = {"BLOCK_SIZE_M": 64, "GROUP_SIZE_M": 1}
elif M <= E:
config = {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
}
else:
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
}
return config
def try_get_optimal_moe_config(
w1_shape: tuple[int, ...],
w2_shape: tuple[int, ...],
top_k: int,
dtype: str | None,
M: int,
block_shape: list[int] | None = None,
) -> dict[str, int]:
from vllm.model_executor.layers.fused_moe import get_config
override_config = get_config()
if override_config:
config = override_config
else:
# First try to load optimal config from the file
E, _, N = w2_shape
if dtype == "int4_w4a16":
N = N * 2
block_n = block_shape[0] if block_shape else 0
block_k = block_shape[1] if block_shape else 0
configs = get_moe_configs(E, N, dtype, block_n, block_k)
if configs:
# If an optimal configuration map has been found, look up the
# optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Else use the default config
config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, block_shape)
return config
def vllm_topk_softmax(
topk_weights: torch.Tensor,
topk_indices: torch.Tensor,
token_expert_indices: torch.Tensor,
gating_output: torch.Tensor,
renormalize: bool,
) -> tuple[torch.Tensor, ...]:
ops.topk_softmax(
topk_weights,
topk_indices,
token_expert_indices,
gating_output,
)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_indices
def dispatch_topk_func() -> Callable[..., tuple[torch.Tensor, ...]]:
if is_rocm_aiter_moe_enabled():
from .rocm_aiter_fused_moe import rocm_aiter_topk_softmax
return rocm_aiter_topk_softmax
return vllm_topk_softmax
def fused_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
indices_type: torch.dtype | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
M, _ = hidden_states.size()
topk_weights = torch.empty(
M, topk, dtype=torch.float32, device=hidden_states.device
)
topk_ids = torch.empty(
M,
topk,
dtype=torch.int32 if indices_type is None else indices_type,
device=hidden_states.device,
)
token_expert_indices = torch.empty(
M, topk, dtype=torch.int32, device=hidden_states.device
)
gating_output_float = gating_output.float() # TODO(woosuk): Optimize this.
topk_func = dispatch_topk_func()
topk_weights, topk_ids = topk_func(
topk_weights, topk_ids, token_expert_indices, gating_output_float, renormalize
)
return topk_weights, topk_ids, token_expert_indices
def fused_topk_bias(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
e_score_correction_bias: torch.Tensor,
topk: int,
renormalize: bool,
):
n_routed_experts = gating_output.shape[-1]
scores = gating_output.softmax(dim=-1)
scores_for_choice = scores.view(
-1, n_routed_experts
) + e_score_correction_bias.unsqueeze(0)
# For batch invariance, use sorted=True to ensure deterministic expert selection
use_sorted = vllm_is_batch_invariant()
topk_indices = torch.topk(scores_for_choice, k=topk, dim=-1, sorted=use_sorted)[1]
topk_weights = scores.gather(1, topk_indices)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights.to(torch.float32), topk_indices.to(torch.int32)
# This is used by the Deepseek-V2 and Deepseek-V3 model
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if (
envs.VLLM_USE_FUSED_MOE_GROUPED_TOPK
and current_platform.is_cuda()
and num_expert_group <= 32
and topk <= 32
and e_score_correction_bias is not None
):
return fused_grouped_topk(
hidden_states=hidden_states,
gating_output=gating_output,
topk=topk,
renormalize=renormalize,
e_score_correction_bias=e_score_correction_bias,
num_expert_group=num_expert_group,
topk_group=topk_group,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
)
assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
if scoring_func == "softmax":
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
num_token = scores.size(0)
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_scores = scores
scores = scores + e_score_correction_bias.unsqueeze(0)
group_scores = (
scores.view(num_token, num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
)
else:
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
# For batch invariance, use sorted=True to ensure deterministic expert selection
use_sorted = vllm_is_batch_invariant()
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=use_sorted)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.size(-1) // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
if e_score_correction_bias is not None:
topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=use_sorted)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_scores.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(
tmp_scores, k=topk, dim=-1, sorted=use_sorted
)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
if routed_scaling_factor != 1.0:
topk_weights = topk_weights * routed_scaling_factor
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def eplb_map_to_physical_and_record(
topk_ids: torch.Tensor,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
indices_type: torch.dtype | None = None,
) -> torch.Tensor:
"""
Map the logical expert ids to physical expert ids
and record the expert load metrics.
This will select a pseudo-random replica for each logical expert.
Only used for EPLB.
Args:
topk_ids: The logical expert ids.
expert_load_view: The expert load view.
logical_to_physical_map: The logical to physical map.
logical_replica_count: The logical replica count.
indices_type: The indices type.
Returns:
The physical expert ids.
"""
# 1. Convert the logical expert ids to physical expert ids
# Directly select a random replica for each logical expert
# In case `indices_type` is not `torch.long` or `torch.int`,
# e.g. `torch.uint32` as required by dispatch/combine kernels
topk_ids_long = topk_ids.long()
# Use (token position) modulo (replica count)
# to deterministically choose a replica
replica_count = logical_replica_count[topk_ids_long]
# Flatten-position based index, reshaped back to `topk_ids` shape
pos_indices = torch.arange(
topk_ids.numel(), device=topk_ids.device, dtype=torch.long
).reshape_as(topk_ids)
# Compute pseudo-random indices by modulo
replica_indices = (pos_indices % replica_count).unsqueeze(-1)
physical_ids = (
logical_to_physical_map[topk_ids_long].gather(-1, replica_indices).squeeze(-1)
)
topk_ids = physical_ids
# 2. Record expert load metrics.
# TODO(bowen): When using `FusedMoEModularKernel`, this
# can be done in a more unified way, since
# `FusedMoEPrepareAndFinalize` will return the expert
# token count, in some cases directly from the kernel.
# However, now there are many code paths not using
# the modular kernel, e.g. calling `fused_experts`,
# so we decide to keep the logic here.
#
# If later refactor moved all the MoE kernel calls
# to the modular kernel, we can move this logic there
# to achieve better efficiency.
# `expert_load_view`: (num_physical_experts,)
# `torch.bincount` is not compilable, so use `scatter_add_` instead.
topk_ids_flatten = topk_ids.flatten()
expert_load_view.scatter_add_(
dim=0,
index=topk_ids_flatten.long(),
src=torch.ones_like(topk_ids_flatten).to(expert_load_view),
)
if indices_type is not None:
topk_ids = topk_ids.to(dtype=indices_type)
return topk_ids
def fused_grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
e_score_correction_bias: torch.Tensor,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
) -> tuple[torch.Tensor, torch.Tensor]:
assert hidden_states.size(0) == gating_output.size(0), "Number of tokens mismatch"
if scoring_func == "softmax":
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
scores_with_bias = scores + e_score_correction_bias.unsqueeze(0)
topk_values, topk_indices = ops.grouped_topk(
scores,
scores_with_bias.to(scores.dtype),
num_expert_group,
topk_group,
topk,
renormalize,
routed_scaling_factor,
)
return topk_values.to(torch.float32), topk_indices.to(torch.int32)
def inplace_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
ocp_mx_scheme: str | None = None,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
w1_zp: torch.Tensor | None = None,
w2_zp: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
block_shape: list[int] | None = None,
w1_bias: torch.Tensor | None = None,
w2_bias: torch.Tensor | None = None,
) -> None:
fused_experts_impl(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
True,
activation,
apply_router_weight_on_input,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
use_int4_w4a16,
ocp_mx_scheme,
per_channel_quant,
global_num_experts,
expert_map,
w1_scale,
w2_scale,
w1_zp,
w2_zp,
a1_scale,
a2_scale,
block_shape,
w1_bias,
w2_bias,
)
def inplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
ocp_mx_scheme: str | None = None,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
w1_zp: torch.Tensor | None = None,
w2_zp: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
block_shape: list[int] | None = None,
w1_bias: torch.Tensor | None = None,
w2_bias: torch.Tensor | None = None,
) -> None:
pass
direct_register_custom_op(
op_name="inplace_fused_experts",
op_func=inplace_fused_experts,
mutates_args=["hidden_states"],
fake_impl=inplace_fused_experts_fake,
tags=(
()
if is_torch_equal_or_newer("2.7.0")
else (torch.Tag.needs_fixed_stride_order,)
),
)
def outplace_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
ocp_mx_scheme: str | None = None,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
w1_zp: torch.Tensor | None = None,
w2_zp: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
block_shape: list[int] | None = None,
w1_bias: torch.Tensor | None = None,
w2_bias: torch.Tensor | None = None,
) -> torch.Tensor:
return fused_experts_impl(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
False,
activation,
apply_router_weight_on_input,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
use_int4_w4a16,
ocp_mx_scheme,
per_channel_quant,
global_num_experts,
expert_map,
w1_scale,
w2_scale,
w1_zp,
w2_zp,
a1_scale,
a2_scale,
block_shape,
w1_bias,
w2_bias,
)
def outplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
ocp_mx_scheme: str | None = None,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
w1_zp: torch.Tensor | None = None,
w2_zp: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
block_shape: list[int] | None = None,
w1_bias: torch.Tensor | None = None,
w2_bias: torch.Tensor | None = None,
) -> torch.Tensor:
return torch.empty_like(hidden_states)
direct_register_custom_op(
op_name="outplace_fused_experts",
op_func=outplace_fused_experts,
fake_impl=outplace_fused_experts_fake,
tags=(
()
if is_torch_equal_or_newer("2.7.0")
else (torch.Tag.needs_fixed_stride_order,)
),
)
def torch_vllm_inplace_fused_experts(**kwargs) -> torch.Tensor:
torch.ops.vllm.inplace_fused_experts(**kwargs)
hidden_states = kwargs["hidden_states"]
return hidden_states
def torch_vllm_outplace_fused_experts(**kwargs) -> torch.Tensor:
return torch.ops.vllm.outplace_fused_experts(**kwargs)
def dispatch_fused_experts_func(inplace: bool) -> Callable[..., torch.Tensor]:
if inplace and not disable_inplace():
return torch_vllm_inplace_fused_experts
return torch_vllm_outplace_fused_experts
# TODO (bnell): replace this with modular op. Can get rid of inplace/outplace
# torch ops.
def fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
quant_config: FusedMoEQuantConfig | None = None,
allow_deep_gemm: bool = False,
allow_cutlass_block_scaled_grouped_gemm: bool = False,
) -> torch.Tensor:
if quant_config is None:
quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
use_fp8_w8a8 = quant_config.use_fp8_w8a8
# For now, disable DeepGemm for small N (<= 512) until better
# permute/unpermute ops are available.
# However, on B200, we use DeepGemm for all cases because they only support
# E8M0 scale, which means we requantize the weight and input to the specific
# scale. Fallen back to cutlass or triton for some cases would cause
# accuracy issue.
if (
allow_deep_gemm
and quant_config.use_fp8_w8a8
and (is_deep_gemm_e8m0_used() or _valid_deep_gemm(hidden_states, w1, w2))
):
assert quant_config is not None
assert apply_router_weight_on_input is False
return deep_gemm_moe_fp8(
hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=inplace,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=quant_config.w1_scale,
w2_scale=quant_config.w2_scale,
a1_scale=quant_config.a1_scale,
a2_scale=quant_config.a2_scale,
apply_router_weight_on_input=apply_router_weight_on_input,
)
elif (
allow_cutlass_block_scaled_grouped_gemm
and use_fp8_w8a8
and _valid_cutlass_block_scaled_grouped_gemm(
w1, w2, inplace, activation, apply_router_weight_on_input, expert_map
)
):
assert quant_config is not None
return run_cutlass_block_scaled_fused_experts(
a=hidden_states,
w1=w1,
w2=w2,
w1_scale=quant_config.w1_scale,
w2_scale=quant_config.w2_scale,
topk_weights=topk_weights,
topk_ids=topk_ids,
)
else:
return dispatch_fused_experts_func(inplace)(
hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
use_fp8_w8a8=quant_config.use_fp8_w8a8,
use_int8_w8a8=quant_config.use_int8_w8a8,
use_int8_w8a16=quant_config.use_int8_w8a16,
use_int4_w4a16=quant_config.use_int4_w4a16,
ocp_mx_scheme=quant_config.ocp_mx_scheme,
per_channel_quant=quant_config.per_act_token_quant,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=quant_config.w1_scale,
w2_scale=quant_config.w2_scale,
w1_zp=quant_config.w1_zp,
w2_zp=quant_config.w2_zp,
a1_scale=quant_config.a1_scale,
a2_scale=quant_config.a2_scale,
block_shape=quant_config.block_shape,
w1_bias=quant_config.w1_bias,
w2_bias=quant_config.w2_bias,
)
SILU_NO_MUL: str = activation_without_mul("silu")
GELU_NO_MUL: str = activation_without_mul("gelu")
def _get_config_quant_dtype(
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
ocp_mx_scheme: str | None,
) -> None | torch.dtype | str:
"""
Get the quantization type based on the quantization strategy flags.
We don't have a quant_config at this point so we need to work backwards.
A return type of None means no quantization is required because the
input is unquantized or has been quantized prior to calling
fused_experts_impl.
"""
if use_fp8_w8a8:
return torch.float8_e4m3fn
elif use_int8_w8a8:
return torch.int8
elif ocp_mx_scheme == "w_mxfp4_a_mxfp4":
return "mxfp4"
elif ocp_mx_scheme in {"w_mxfp4_a_mxfp6_e3m2", "w_mxfp6_e3m2_a_mxfp6_e3m2"}:
return "mxfp6_e3m2"
elif ocp_mx_scheme in {"w_mxfp4_a_mxfp6_e2m3", "w_mxfp6_e2m3_a_mxfp6_e2m3"}:
return "mxfp6_e2m3"
return None
def fused_experts_impl(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
ocp_mx_scheme: str | None = None,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
w1_zp: torch.Tensor | None = None,
w2_zp: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
block_shape: list[int] | None = None,
w1_bias: torch.Tensor | None = None,
w2_bias: torch.Tensor | None = None,
) -> torch.Tensor:
# Check constraints.
if use_int4_w4a16:
assert hidden_states.size(1) // 2 == w1.size(2), "Hidden size mismatch"
elif ocp_mx_scheme is not None:
if ocp_mx_scheme in {
"w_mxfp4_a_mxfp4",
"w_mxfp4_a_mxfp6_e3m2",
"w_mxfp4_a_mxfp6_e2m3",
}:
# 16bit activation and fp4x2 packed weight
assert hidden_states.size(1) == w1.size(2) * 2, "hidden size mismatch"
elif ocp_mx_scheme in {
"w_mxfp6_e3m2_a_mxfp6_e3m2",
"w_mxfp6_e2m3_a_mxfp6_e2m3",
}:
assert hidden_states.size(1) == (w1.size(2) * 4) // 3, (
"hidden size mismatch"
)
else:
raise NotImplementedError(f"Unsupported ocp_mx_scheme={ocp_mx_scheme}")
else:
assert hidden_states.size(1) == w1.size(2), (
f"Hidden size mismatch {hidden_states.size(1)} != {w1.size(2)}"
)
assert topk_weights.size() == topk_ids.size(), "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
num_tokens = hidden_states.size(0)
E, N, _ = w1.size()
K = w2.size(1)
if global_num_experts == -1:
global_num_experts = E
top_k_num = topk_ids.size(1)
# We execute the fused_moe kernel in chunks to circumvent this issue:
# https://github.com/vllm-project/vllm/issues/5938
CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
M = min(num_tokens, CHUNK_SIZE)
config_dtype = _get_config_dtype_str(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
ocp_mx_scheme=ocp_mx_scheme,
dtype=hidden_states.dtype,
)
# Note: for use_int8_w8a16 or use_int4_w4a16, the activations are
# quantized prior to calling fused_experts.
quant_dtype = _get_config_quant_dtype(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
ocp_mx_scheme=ocp_mx_scheme,
)
get_config_func = functools.partial(
try_get_optimal_moe_config,
w1.size(),
w2.size(),
top_k_num,
config_dtype,
block_shape=block_shape,
)
config = get_config_func(M)
# We can reuse the memory between these because by the time we need
# cache3, we're done with cache1
cache13 = torch.empty(
M * top_k_num * max(N, K),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
intermediate_cache1 = cache13[: M * top_k_num * N].view(M, top_k_num, N)
intermediate_cache3 = cache13[: M * top_k_num * K].view(M, top_k_num, K)
# This needs separate memory since it's used concurrently with cache1
intermediate_cache2 = torch.empty(
(M * top_k_num, N // 2), device=hidden_states.device, dtype=hidden_states.dtype
)
if hidden_states.dtype == torch.bfloat16:
compute_type = tl.bfloat16
elif hidden_states.dtype == torch.float16:
compute_type = tl.float16
elif hidden_states.dtype == torch.float32:
compute_type = tl.float32
else:
raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
if inplace and not disable_inplace():
out_hidden_states = hidden_states
else:
out_hidden_states = torch.empty_like(hidden_states)
if ocp_mx_scheme is not None:
# TODO: On platforms for which `current_platform.supports_mx()` is True
# and for which we have a native OCP mx fused MOE kernel,
# this dequantization step should not be done.
if ocp_mx_scheme in {
OCP_MX_Scheme.w_mxfp4_a_mxfp4,
OCP_MX_Scheme.w_mxfp4_a_mxfp6_e3m2,
OCP_MX_Scheme.w_mxfp4_a_mxfp6_e2m3,
}:
# Weight has to be dequantized for mxfp4 emulation.
w1 = dequant_mxfp4(w1, w1_scale, hidden_states.dtype)
w1_scale = None
w2 = dequant_mxfp4(w2, w2_scale, hidden_states.dtype)
w2_scale = None
elif ocp_mx_scheme == OCP_MX_Scheme.w_mxfp6_e3m2_a_mxfp6_e3m2:
w1 = dequant_mxfp6(
w1, w1_scale, quant_dtype="fp6_e3m2", float_dtype=hidden_states.dtype
)
w1_scale = None
w2 = dequant_mxfp6(
w2, w2_scale, quant_dtype="fp6_e3m2", float_dtype=hidden_states.dtype
)
w2_scale = None
elif ocp_mx_scheme == OCP_MX_Scheme.w_mxfp6_e2m3_a_mxfp6_e2m3:
w1 = dequant_mxfp6(
w1, w1_scale, quant_dtype="fp6_e2m3", float_dtype=hidden_states.dtype
)
w1_scale = None
w2 = dequant_mxfp6(
w2, w2_scale, quant_dtype="fp6_e2m3", float_dtype=hidden_states.dtype
)
w2_scale = None
else:
raise NotImplementedError(f"Unsupported ocp_mx_scheme={ocp_mx_scheme}")
for chunk in range((num_tokens // CHUNK_SIZE) + 1):
begin_chunk_idx, end_chunk_idx = (
chunk * CHUNK_SIZE,
min((chunk + 1) * CHUNK_SIZE, num_tokens),
)
curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
tokens_in_chunk, _ = curr_hidden_states.size()
if tokens_in_chunk == 0:
break
if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
# Adjust the intermediate cache size and config for the last
# chunk. Note that in most cases we only have one chunk
# so the cache size and config are already set correctly and
# do not need to be adjusted.
intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
intermediate_cache2 = intermediate_cache2[
: tokens_in_chunk * topk_ids.size(1)
]
intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
config = get_config_func(tokens_in_chunk)
curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
qcurr_hidden_states, a1q_scale = moe_kernel_quantize_input(
A=curr_hidden_states,
A_scale=a1_scale,
quant_dtype=quant_dtype,
per_act_token_quant=per_channel_quant,
block_shape=block_shape,
)
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
curr_topk_ids, config["BLOCK_SIZE_M"], global_num_experts, expert_map
)
invoke_fused_moe_kernel(
qcurr_hidden_states,
w1,
intermediate_cache1,
a1q_scale,
w1_scale,
w1_zp,
curr_topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
apply_router_weight_on_input,
top_k_num,
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
block_shape=block_shape,
B_bias=w1_bias,
)
# Activation function with multiplication
if activation == "silu":
torch.ops._C.silu_and_mul(
intermediate_cache2, intermediate_cache1.view(-1, N)
)
elif activation == "gelu":
torch.ops._C.gelu_and_mul(
intermediate_cache2, intermediate_cache1.view(-1, N)
)
elif activation == "swigluoai":
# alpha = 1.702, limit = 7.0
torch.ops._C.swigluoai_and_mul(
intermediate_cache2, intermediate_cache1.view(-1, N)
)
# Activation function without multiplication
elif activation == SILU_NO_MUL:
intermediate_cache2 = F.silu(intermediate_cache1.view(-1, N))
elif activation == GELU_NO_MUL:
intermediate_cache2 = F.gelu(intermediate_cache1.view(-1, N))
else:
raise ValueError(f"Unsupported FusedMoe activation: {activation}.")
qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
A=intermediate_cache2,
A_scale=a2_scale,
quant_dtype=quant_dtype,
per_act_token_quant=per_channel_quant,
block_shape=block_shape,
)
invoke_fused_moe_kernel(
qintermediate_cache2,
w2,
intermediate_cache3,
a2q_scale,
w2_scale,
w2_zp,
curr_topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
not apply_router_weight_on_input,
1,
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
block_shape=block_shape,
B_bias=w2_bias,
)
ops.moe_sum(
intermediate_cache3.view(*intermediate_cache3.size()),
out_hidden_states[begin_chunk_idx:end_chunk_idx],
)
return out_hidden_states
class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
def __init__(
self,
quant_config: FusedMoEQuantConfig,
):
super().__init__(quant_config)
@property
def activation_formats(
self,
) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
return (
mk.FusedMoEActivationFormat.Standard,
mk.FusedMoEActivationFormat.Standard,
)
def supports_chunking(self) -> bool:
return True
def supports_expert_map(self) -> bool:
return True
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
return TopKWeightAndReduceNoOP()
def workspace_shapes(
self,
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
expert_tokens_meta: mk.ExpertTokensMetadata | None,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
workspace1 = (M, topk, max(N // 2, K))
workspace2 = (M, topk, max(N, K))
output = (M, K)
return (workspace1, workspace2, output)
def apply(
self,
output: torch.Tensor,
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str,
global_num_experts: int,
expert_map: torch.Tensor | None,
a1q_scale: torch.Tensor | None,
a2_scale: torch.Tensor | None,
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: mk.ExpertTokensMetadata | None,
apply_router_weight_on_input: bool,
):
# Check constraints.
if self.quant_config.use_int4_w4a16:
assert hidden_states.size(-1) // 2 == w1.size(2), "Hidden size mismatch"
else:
assert hidden_states.size(-1) == w1.size(2), (
f"Hidden size mismatch {hidden_states.size(-1)} != {w1.size(2)}"
)
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert hidden_states.dim() == 2
assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
assert hidden_states.dtype in [
torch.float32,
torch.float16,
torch.bfloat16,
torch.float8_e4m3fn,
]
E, num_tokens, N, K, top_k_num = self.moe_problem_size(
hidden_states, w1, w2, topk_ids
)
if global_num_experts == -1:
global_num_experts = E
config = try_get_optimal_moe_config(
w1.size(),
w2.size(),
top_k_num,
self.quant_config.config_name(hidden_states.dtype),
num_tokens,
block_shape=self.block_shape,
)
if hidden_states.dtype == torch.bfloat16:
compute_type = tl.bfloat16
elif hidden_states.dtype == torch.float16:
compute_type = tl.float16
elif hidden_states.dtype == torch.float32:
compute_type = tl.float32
elif hidden_states.dtype == torch.float8_e4m3fn:
compute_type = tl.bfloat16
else:
raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
# Note that the output tensor might be in workspace1
intermediate_cache1 = _resize_cache(workspace2, (num_tokens, top_k_num, N))
intermediate_cache2 = _resize_cache(
workspace13, (num_tokens * top_k_num, N // 2)
)
intermediate_cache3 = _resize_cache(workspace2, (num_tokens, top_k_num, K))
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
topk_ids, config["BLOCK_SIZE_M"], global_num_experts, expert_map
)
invoke_fused_moe_kernel(
hidden_states,
w1,
intermediate_cache1,
a1q_scale,
self.w1_scale,
self.w1_zp,
None, # topk_weights
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
False, # mul_routed_weights
top_k_num,
config,
compute_type=compute_type,
use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
use_int8_w8a8=self.quant_config.use_int8_w8a8,
use_int8_w8a16=self.quant_config.use_int8_w8a16,
use_int4_w4a16=self.quant_config.use_int4_w4a16,
per_channel_quant=self.per_act_token_quant,
block_shape=self.block_shape,
B_bias=self.w1_bias,
)
self.activation(
activation, intermediate_cache2, intermediate_cache1.view(-1, N)
)
a2q_scale: torch.Tensor | None = None
qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
intermediate_cache2,
a2_scale,
self.quant_dtype,
self.per_act_token_quant,
self.block_shape,
)
invoke_fused_moe_kernel(
qintermediate_cache2,
w2,
intermediate_cache3,
a2q_scale,
self.w2_scale,
self.w2_zp,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
not apply_router_weight_on_input,
1,
config,
compute_type=compute_type,
use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
use_int8_w8a8=self.quant_config.use_int8_w8a8,
use_int8_w8a16=self.quant_config.use_int8_w8a16,
use_int4_w4a16=self.quant_config.use_int4_w4a16,
per_channel_quant=self.per_act_token_quant,
block_shape=self.block_shape,
B_bias=self.w2_bias,
)
ops.moe_sum(intermediate_cache3, output)
def modular_triton_fused_moe(
quant_config: FusedMoEQuantConfig,
) -> mk.FusedMoEModularKernel:
return mk.FusedMoEModularKernel(
MoEPrepareAndFinalizeNoEP(),
TritonExperts(quant_config),
)