Files
vllm-anthropic/vllm/model_executor/model_loader/neuronx_distributed.py
2025-09-01 12:07:53 -07:00

686 lines
30 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Utilities for selecting and loading Neuron models in
neuronx-distributed-inference framework."""
# Disabling yapf because yapf and isort have conflicts for the below imports
# yapf: disable
import copy
import hashlib
import importlib
import multiprocessing
import os
import shutil
from typing import Optional
import torch
import torch.nn as nn
from neuronx_distributed_inference.models.config import (
FusedSpecNeuronConfig, OnDeviceSamplingConfig)
from neuronx_distributed_inference.models.mllama.utils import (
create_vision_mask)
from neuronx_distributed_inference.modules.lora_serving import (
LoraServingConfig)
from neuronx_distributed_inference.utils.hf_adapter import (
load_pretrained_config)
from transformers import AutoModelForCausalLM, AutoTokenizer, PretrainedConfig
from vllm.config import (ModelConfig, ParallelConfig, SchedulerConfig,
SpeculativeConfig)
from vllm.logger import init_logger
from vllm.logprobs import Logprob
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import CompletionSequenceGroupOutput, SequenceOutput
# yapf: enable
logger = init_logger(__name__)
TORCH_DTYPE_TO_NEURON_AMP = {
"auto": "float32",
"half": "float16",
"float16": "float16",
"bfloat16": "bfloat16",
"float": "float32",
"float32": "float32",
torch.float16: "float16",
torch.bfloat16: "bfloat16",
torch.float32: "float32",
}
# Models supported by Neuronx distributed for inference.
_NEURON_SUPPORTED_MODELS: dict[str, tuple[str, str]] = {
"LlamaForCausalLM":
("neuronx_distributed_inference.models.llama.modeling_llama",
"NeuronLlamaForCausalLM"),
"MistralForCausalLM":
("neuronx_distributed_inference.models.llama.modeling_llama",
"NeuronLlamaForCausalLM"),
"DbrxForCausalLM":
("neuronx_distributed_inference.models.dbrx.modeling_dbrx",
"NeuronDbrxForCausalLM"),
"MixtralForCausalLM":
("neuronx_distributed_inference.models.mixtral.modeling_mixtral",
"NeuronMixtralForCausalLM"),
"MllamaForConditionalGeneration":
("neuronx_distributed_inference.models.mllama.modeling_mllama",
"NeuronMllamaForCausalLM"),
}
class NeuronCausalLM(nn.Module):
def __init__(
self,
config: PretrainedConfig,
) -> None:
super().__init__()
self.config = config
self.logits_processor = LogitsProcessor(config.vocab_size,
logits_as_input=True)
self.sampler = Sampler()
# Lazy initialized
self.model: nn.Module
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
input_block_ids: torch.Tensor,
sampling_params: torch.Tensor,
prev_hidden: Optional[torch.Tensor] = None,
adapter_ids: Optional[torch.Tensor] = None) -> torch.Tensor:
# sort block ids sequentially for perf/neuron support reasons
sorted_input_block_ids, sorted_indices = torch.sort(input_block_ids)
input_ids = torch.index_select(input_ids, 0, sorted_indices)
positions = torch.index_select(positions, 0, sorted_indices)
sampling_params = torch.index_select(sampling_params, 0,
sorted_indices)
output = self.model(input_ids,
attention_mask=None,
position_ids=positions,
seq_ids=sorted_input_block_ids,
sampling_params=sampling_params,
prev_hidden=prev_hidden,
adapter_ids=adapter_ids)
# on-device sampling
if self.config.neuron_config.on_device_sampling_config:
output = output.hidden_states
else:
output = output.logits[:, -1, :]
restored_indices = torch.argsort(sorted_indices)
if input_block_ids.shape[0] != 1:
output = torch.index_select(output, 0, restored_indices)
return output
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(None, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
# on-device sampling
if self.config.neuron_config.on_device_sampling_config:
batch_size = logits.shape
seq_ids = [
seq_id for sg in sampling_metadata.seq_groups
for seq_id in sg.seq_ids
]
assert len(seq_ids) == list(batch_size)[0], "batch size mismatch"
# Organize input tensors by step instead of by sequence.
accepted_token_ids_by_step = logits.flatten()
accepted_token_ids_by_step = accepted_token_ids_by_step.tolist()
step_output_token_ids = []
for i, seq_id in enumerate(seq_ids):
token_id = accepted_token_ids_by_step[i]
step_output_token_ids.append(
CompletionSequenceGroupOutput(samples=[
SequenceOutput(parent_seq_id=seq_id,
output_token=token_id,
logprobs={token_id: Logprob(token_id)})
],
prompt_logprobs=None))
return SamplerOutput(outputs=step_output_token_ids)
else:
return self.sampler(logits, sampling_metadata)
def load_weights(self, model_name_or_path: str, **kwargs):
arch = _get_model_architecture(self.config)
neuronx_module_path, neuronx_model_cls_name = (
_NEURON_SUPPORTED_MODELS[arch])
neuronx_module = importlib.import_module(neuronx_module_path)
neuronx_model_cls = getattr(neuronx_module, neuronx_model_cls_name)
neuron_config = neuronx_model_cls.get_neuron_config_cls()(
**kwargs['neuron_config'])
self.config.neuron_config = neuron_config
config = neuronx_model_cls.get_config_cls()(
neuron_config,
load_config=load_pretrained_config(model_name_or_path))
hashed_config = hashlib.md5(config.to_json_string().encode('utf-8'),
usedforsecurity=False).hexdigest()
if os.getenv("NEURON_COMPILED_ARTIFACTS") is not None:
compiled_model_path = os.getenv("NEURON_COMPILED_ARTIFACTS")
elif os.path.exists(model_name_or_path):
compiled_model_path = os.path.join(model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
shutil.rmtree(compiled_model_path, ignore_errors=True)
else:
compiled_model_path = os.path.join("local-models",
model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
shutil.rmtree(compiled_model_path, ignore_errors=True)
try:
self.model = neuronx_model_cls(compiled_model_path)
override_neuron_config = kwargs["override_neuron_config"]
for k, v in override_neuron_config.items():
setattr(self.model.config.neuron_config, k, v)
self.model.load(compiled_model_path)
return
except (FileNotFoundError, ValueError) as e:
logger.warning("Exception: %s", e)
logger.warning("Failed to load the model from %s, Recompiling...",
compiled_model_path)
if not os.path.exists(model_name_or_path):
hf_model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
saved_path = os.path.join("local-models", model_name_or_path)
hf_model.save_pretrained(saved_path)
model_name_or_path = saved_path
self.model = neuronx_model_cls(model_name_or_path, config)
self.model.compile(compiled_model_path)
self.model.load(compiled_model_path)
class NeuronMllamaForCausalLM(nn.Module):
def __init__(self,
config: PretrainedConfig,
on_device_sampling_disabled: bool = False) -> None:
super().__init__()
# has_image is the only multimodal input that is used in
# token-generation
# This is a cache (on CPU) that saves has_image data per sequence id
# The number of entries in this cache is <= Batch-Size
self.has_image_cache: dict[int, torch.Tensor] = {}
self.config = config
self.logits_processor = LogitsProcessor(
config.get_text_config().vocab_size, logits_as_input=True)
self.on_device_sampling_disabled = on_device_sampling_disabled
if self.on_device_sampling_disabled:
# Use default sampler
self.sampler = Sampler()
# Lazy initialized
self.model: nn.Module
self.is_reorder_needed: bool = True
def read_from_has_image_cache(self, seq_ids: torch.Tensor):
has_image_list = []
for index in range(len(seq_ids)):
seq_id = seq_ids[index].item()
if seq_id in self.has_image_cache:
has_image_list.append(self.has_image_cache[seq_id])
else:
has_image_list.append(torch.tensor([0]))
return torch.tensor(has_image_list)
def write_to_has_image_cache(self, seq_ids: torch.Tensor,
has_image: torch.Tensor):
for index in range(len(seq_ids)):
seq_id = seq_ids[index].item()
if index < len(has_image):
self.has_image_cache[seq_id] = has_image[index]
else:
self.has_image_cache[seq_id] = torch.zeros(1)
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor,
seq_ids: torch.Tensor, pixel_values: torch.Tensor,
aspect_ratios: torch.Tensor, num_chunks: torch.Tensor,
has_image: torch.Tensor, sampling_params) -> torch.Tensor:
# We update the has_image cache during prefill
# and read the has_image cache during decode
if input_ids.shape[-1] > 1: # prefill
self.write_to_has_image_cache(seq_ids, has_image)
else:
has_image = self.read_from_has_image_cache(seq_ids)
bs = input_ids.shape[0]
num_chunks = torch.zeros((bs, 1))
aspect_ratios = torch.zeros((bs, 1, 2))
input_block_ids = seq_ids
origin_input_block_ids = seq_ids
if self.is_reorder_needed:
# sort block ids sequentially for perf/neuron support reasons
input_block_ids, sorted_indices = torch.sort(input_block_ids)
input_ids = torch.index_select(input_ids, 0, sorted_indices)
positions = torch.index_select(positions, 0, sorted_indices)
sampling_params = torch.index_select(sampling_params, 0,
sorted_indices)
pixel_values = torch.index_select(pixel_values, 0, sorted_indices)
aspect_ratios = torch.index_select(aspect_ratios, 0,
sorted_indices)
num_chunks = torch.index_select(num_chunks, 0, sorted_indices)
has_image = torch.index_select(has_image, 0, sorted_indices)
self.vision_mask = create_vision_mask(input_ids, self.vision_token_id)
output = self.model(
input_ids.to(torch.int32),
attention_mask=None,
position_ids=positions.to(torch.int32),
seq_ids=seq_ids.flatten().to(torch.int32),
pixel_values=pixel_values.to(
self.config.vision_config.torch_dtype),
aspect_ratios=aspect_ratios.to(torch.int32),
vision_mask=self.vision_mask.to(torch.int32),
sampling_params=sampling_params,
num_chunks=num_chunks.to(torch.int32),
has_image=has_image.to(torch.int32),
)
if self.config.neuron_config.on_device_sampling_config:
output = output.hidden_states
else:
output = output.logits[:, -1, :]
if self.is_reorder_needed and origin_input_block_ids.shape[0] != 1:
restored_indices = torch.argsort(sorted_indices)
output = torch.index_select(output, 0, restored_indices)
return output
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(None, hidden_states, sampling_metadata)
return logits
def sample(self, hidden_states, sampling_metadata):
if not self.on_device_sampling_disabled:
with torch.profiler.record_function("sample"):
hidden_states = hidden_states.flatten()
res = []
sample_idx = 0
for seq_group in sampling_metadata.seq_groups:
seq_ids = seq_group.seq_ids
samples = []
for seq_id in seq_ids:
token_id = hidden_states[sample_idx].item()
samples.append(
SequenceOutput(
parent_seq_id=seq_id,
output_token=token_id,
logprobs={token_id: Logprob(token_id)}))
sample_idx += 1
res.append(
CompletionSequenceGroupOutput(samples=samples,
prompt_logprobs=None))
next_tokens = SamplerOutput(outputs=res)
else:
next_tokens = self.sampler(None, hidden_states, sampling_metadata)
return next_tokens
def load_weights(self, model_name_or_path: str, **kwargs):
arch = _get_model_architecture(self.config)
neuronx_module_path, neuronx_model_cls_name = (
_NEURON_SUPPORTED_MODELS[arch])
neuronx_module = importlib.import_module(neuronx_module_path)
neuronx_model_cls = getattr(neuronx_module, neuronx_model_cls_name)
neuron_config = neuronx_model_cls.get_neuron_config_cls()(
**kwargs['neuron_config'])
self.config.neuron_config = neuron_config
logger.info("neuron_config buckets: %s",
self.config.neuron_config.buckets)
config = neuronx_model_cls.get_config_cls()(
neuron_config,
load_config=load_pretrained_config(model_name_or_path))
hashed_config = hashlib.md5(config.to_json_string().encode('utf-8'),
usedforsecurity=False).hexdigest()
if os.getenv("NEURON_COMPILED_ARTIFACTS") is not None:
compiled_model_path = os.getenv("NEURON_COMPILED_ARTIFACTS")
elif os.path.exists(model_name_or_path):
compiled_model_path = os.path.join(model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
else:
compiled_model_path = os.path.join("local-models",
model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
try:
self.model = neuronx_model_cls(compiled_model_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
self.vision_token_id = tokenizer(
"<|image|>", add_special_tokens=False).input_ids[0]
self.model.load(compiled_model_path)
return
except (FileNotFoundError, ValueError):
logger.warning("Failed to load the model from %s, Recompiling...",
compiled_model_path)
if not os.path.exists(model_name_or_path):
hf_model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
saved_path = os.path.join("local-models", model_name_or_path)
hf_model.save_pretrained(saved_path)
model_name_or_path = saved_path
self.model = neuronx_model_cls(model_name_or_path, config)
logger.info("\nCompiling and saving model to %s", model_name_or_path)
p = multiprocessing.Process(target=compile_model,
args=(self, compiled_model_path))
p.start()
p.join()
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
tokenizer.save_pretrained(compiled_model_path)
logger.info("Successfully compiled and saved the model in %s",
compiled_model_path)
# Read "<|image|>" token_id from the tokenizer
self.vision_token_id = tokenizer("<|image|>",
add_special_tokens=False).input_ids[0]
logger.info("\nLoading model from compiled checkpoint...")
self.model.load(compiled_model_path)
def compile_model(neuron_model, traced_model_path):
neuron_model.model.compile(traced_model_path)
class NeuronSpeculationCausalLM(nn.Module):
"""A Neuron-optimized causal language model with speculative decoding."""
def __init__(
self,
config: PretrainedConfig,
) -> None:
super().__init__()
self.config = config
self.logits_processor = LogitsProcessor(config.vocab_size,
logits_as_input=True)
# Lazy initialized
self.model: nn.Module
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
input_block_ids: torch.Tensor,
sampling_params: torch.Tensor,
) -> torch.Tensor:
# sort block ids sequentially for perf/neuron support reasons
sorted_input_block_ids, sorted_indices = torch.sort(input_block_ids)
input_ids = torch.index_select(input_ids, 0, sorted_indices)
positions = torch.index_select(positions, 0, sorted_indices)
sampling_params = torch.index_select(sampling_params, 0,
sorted_indices)
output = self.model(input_ids,
attention_mask=None,
position_ids=positions,
seq_ids=sorted_input_block_ids,
sampling_params=sampling_params)
restored_indices = torch.argsort(sorted_indices)
# CTX encoding
if (positions[:, 0]).sum().item() == 0:
output = output.fused_outputs[0][:, 0:1]
if input_block_ids.shape[0] != 1:
output = torch.index_select(output, 0, restored_indices)
return output
# Fused Spec (Generation)
accepted_tokens_with_padding = output.fused_outputs[0]
next_pos_ids = output.fused_outputs[-1]
generated_token_counts = next_pos_ids - positions
assert torch.any(generated_token_counts == 0).item() is False, \
"NxDI model generated no output for one or more sequences."
batch_size, steps = accepted_tokens_with_padding.shape
mask = torch.arange(steps).expand(batch_size,
-1) >= generated_token_counts
accepted_tokens_with_padding[mask] = -1
if input_block_ids.shape[0] != 1:
accepted_tokens_with_padding = torch.index_select(
accepted_tokens_with_padding, 0, restored_indices)
return accepted_tokens_with_padding
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[list[SamplerOutput]]:
batch_size, num_steps = logits.shape
seq_ids = [
seq_id for sg in sampling_metadata.seq_groups
for seq_id in sg.seq_ids
]
# Organize input tensors by step instead of by sequence.
accepted_token_ids_by_step = logits.transpose(0, 1)
accepted_token_ids_by_step = accepted_token_ids_by_step.tolist()
sampler_output_list = []
for step_index in range(num_steps):
if all(token_id == -1
for token_id in accepted_token_ids_by_step[step_index]):
break
step_output_token_ids = []
for sequence_index in range(batch_size):
token_id = accepted_token_ids_by_step[step_index][
sequence_index]
step_output_token_ids.append(
CompletionSequenceGroupOutput(samples=[
SequenceOutput(parent_seq_id=seq_ids[sequence_index],
output_token=token_id,
logprobs={token_id: Logprob(token_id)})
],
prompt_logprobs=None))
sampler_output_list.append(
SamplerOutput(outputs=step_output_token_ids))
return sampler_output_list
def load_weights(self, model_name_or_path: str,
draft_model_name_or_path: str, **kwargs):
arch = _get_model_architecture(self.config)
neuronx_module_path, neuronx_model_cls_name = (
_NEURON_SUPPORTED_MODELS[arch])
neuronx_module = importlib.import_module(neuronx_module_path)
neuronx_model_cls = getattr(neuronx_module, neuronx_model_cls_name)
neuron_config = neuronx_model_cls.get_neuron_config_cls()(
**kwargs['neuron_config'])
config = neuronx_model_cls.get_config_cls()(
neuron_config,
load_config=load_pretrained_config(model_name_or_path))
draft_neuron_config = copy.deepcopy(config.neuron_config)
if not config.neuron_config.enable_eagle_speculation:
draft_neuron_config.speculation_length = 0
draft_neuron_config.trace_tokengen_model = True
draft_neuron_config.enable_fused_speculation = False
if getattr(config.neuron_config, "draft_model_modules_to_not_convert",
None):
draft_neuron_config.modules_to_not_convert = (
draft_neuron_config.draft_model_modules_to_not_convert)
if config.neuron_config.enable_eagle_speculation:
draft_neuron_config.is_eagle_draft = True
draft_neuron_config.sequence_parallel_enabled = False
draft_config = neuronx_model_cls.get_config_cls()(
draft_neuron_config,
load_config=load_pretrained_config(draft_model_name_or_path))
fused_spec_config = (FusedSpecNeuronConfig(
neuronx_model_cls._model_cls,
draft_config=draft_config,
draft_model_path=draft_model_name_or_path))
config.fused_spec_config = fused_spec_config
self.config.neuron_config = neuron_config
hashed_config = hashlib.md5(config.to_json_string().encode('utf-8'),
usedforsecurity=False).hexdigest()
if os.getenv("NEURON_COMPILED_ARTIFACTS") is not None:
compiled_model_path = os.getenv("NEURON_COMPILED_ARTIFACTS")
elif os.path.exists(model_name_or_path):
compiled_model_path = os.path.join(model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
shutil.rmtree(compiled_model_path, ignore_errors=True)
else:
compiled_model_path = os.path.join("local-models",
model_name_or_path,
"neuron-compiled-artifacts",
hashed_config)
shutil.rmtree(compiled_model_path, ignore_errors=True)
try:
self.model = neuronx_model_cls(compiled_model_path)
override_neuron_config = kwargs["override_neuron_config"]
for k, v in override_neuron_config.items():
setattr(self.model.config.neuron_config, k, v)
self.model.load(compiled_model_path)
return
except (FileNotFoundError, ValueError) as e:
logger.warning("Exception: %s", e)
logger.warning("Failed to load the model from %s Recompiling...",
compiled_model_path)
if not os.path.exists(model_name_or_path):
hf_model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
saved_path = os.path.join("local-models", model_name_or_path)
hf_model.save_pretrained(saved_path)
model_name_or_path = saved_path
if not os.path.exists(draft_model_name_or_path):
if draft_model_name_or_path != model_name_or_path:
hf_model = AutoModelForCausalLM.from_pretrained(
draft_model_name_or_path)
saved_path = os.path.join("local-models",
draft_model_name_or_path)
hf_model.save_pretrained(saved_path)
draft_model_name_or_path = saved_path
else:
draft_model_name_or_path = model_name_or_path
config.fused_spec_config.draft_model_path = draft_model_name_or_path
self.model = neuronx_model_cls(model_name_or_path, config)
self.model.compile(compiled_model_path)
self.model.load(compiled_model_path)
def _get_model_architecture(config: PretrainedConfig) -> str:
architectures = getattr(config, "architectures", [])
for arch in architectures:
if arch in _NEURON_SUPPORTED_MODELS:
return arch
raise ValueError(
f"Model architectures {architectures} are not supported on Neuron "
f"for now. Supported architectures: "
f"{list(_NEURON_SUPPORTED_MODELS.keys())}")
def _get_default_neuron_config(model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
lora_serving_config: LoraServingConfig):
"""Generate a neuron config based on vllm config args."""
on_device_sampling_config = OnDeviceSamplingConfig(dynamic=True,
deterministic=False)
batch_size = scheduler_config.max_num_seqs
neuron_config = dict(
tp_degree=parallel_config.tensor_parallel_size,
ctx_batch_size=1,
batch_size=batch_size,
max_context_length=scheduler_config.max_model_len,
seq_len=scheduler_config.max_model_len,
enable_bucketing=True,
is_continuous_batching=True,
quantized=False,
torch_dtype=TORCH_DTYPE_TO_NEURON_AMP[model_config.dtype],
padding_side="right",
on_device_sampling_config=on_device_sampling_config,
sequence_parallel_enabled=True,
lora_serving_config=lora_serving_config)
return neuron_config
def _get_default_speculation_config(model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
speculation_config: SpeculativeConfig):
"""Generate a neuron config for speculative decoding based on vllm config
args."""
neuron_config = dict(
tp_degree=parallel_config.tensor_parallel_size,
ctx_batch_size=1,
batch_size=scheduler_config.max_num_seqs,
max_context_length=scheduler_config.max_model_len,
seq_len=scheduler_config.max_model_len,
speculation_length=speculation_config.num_speculative_tokens,
trace_tokengen_model=False,
enable_fused_speculation=True,
enable_bucketing=True,
is_continuous_batching=True,
quantized=False,
torch_dtype=TORCH_DTYPE_TO_NEURON_AMP[model_config.dtype],
on_device_sampling_config=dict(
top_k=1,
do_sample=False,
))
return neuron_config
def _get_neuron_config_after_override(default_neuron_config,
overridden_neuron_config):
"""Update default neuron config values with override args"""
overridden_neuron_config = overridden_neuron_config or {}
default_neuron_config.update(overridden_neuron_config)
return default_neuron_config
def get_neuron_model(model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
lora_serving_config: LoraServingConfig) -> nn.Module:
"""Initializes a neuron-optimized model for inference."""
model_arch = _get_model_architecture(model_config.hf_config)
if model_arch == "MllamaForConditionalGeneration":
model = NeuronMllamaForCausalLM(model_config.hf_config)
else:
model = NeuronCausalLM(model_config.hf_config)
default_neuron_config_args = _get_default_neuron_config(
model_config, parallel_config, scheduler_config, lora_serving_config)
neuron_config = _get_neuron_config_after_override(
default_neuron_config_args, model_config.override_neuron_config)
override_neuron_config = model_config.override_neuron_config
model.load_weights(model_config.model,
neuron_config=neuron_config,
override_neuron_config=override_neuron_config)
return model.eval()
def get_neuron_speculation_model(model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
speculation_config: SpeculativeConfig):
"""Initializes a neuron-optimized speculation model for inference.
This model handles speculation using both a draft model and an EAGLE draft.
"""
model = NeuronSpeculationCausalLM(model_config.hf_config)
default_neuron_config_args = _get_default_speculation_config(
model_config, parallel_config, scheduler_config, speculation_config)
neuron_config = _get_neuron_config_after_override(
default_neuron_config_args, model_config.override_neuron_config)
override_neuron_config = model_config.override_neuron_config
model.load_weights(model_config.model,
speculation_config.draft_model_config.model,
neuron_config=neuron_config,
override_neuron_config=override_neuron_config)
return model.eval()