Files
vllm-anthropic/vllm/core/block_manager_v1.py
2024-09-29 15:05:54 +00:00

744 lines
29 KiB
Python

"""A block manager that manages token blocks."""
import math
from abc import ABC, abstractmethod
from itertools import count, takewhile
from os.path import commonprefix
from typing import Dict, List, Optional
from typing import Sequence as GenericSequence
from typing import Set, Tuple
from vllm.block import BlockTable, PhysicalTokenBlock
from vllm.core.block.common import CacheMetricData
from vllm.core.block.utils import check_no_caching_or_swa_for_blockmgr_encdec
from vllm.core.evictor_v1 import EvictionPolicy, Evictor, make_evictor
from vllm.core.interfaces import AllocStatus, BlockSpaceManager
from vllm.logger import init_logger
from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
from vllm.utils import Device
logger = init_logger(__name__)
class BlockAllocatorBase(ABC):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
@abstractmethod
def __init__(self,
device: Device,
block_size: int,
num_blocks: int,
eviction_policy: EvictionPolicy = EvictionPolicy.LRU):
pass
@abstractmethod
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
pass
@abstractmethod
def free(self, block: PhysicalTokenBlock) -> None:
pass
@abstractmethod
def get_num_free_blocks(self) -> int:
pass
@abstractmethod
def get_num_total_blocks(self) -> int:
pass
@abstractmethod
def contains_block(self, block_hash: int) -> bool:
pass
@abstractmethod
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
pass
@abstractmethod
def get_prefix_cache_hit_rate(self) -> float:
"""Prefix cache hit rate. -1 means not supported or disabled."""
pass
class CachedBlockAllocator(BlockAllocatorBase):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
def __init__(self,
device: Device,
block_size: int,
num_blocks: int,
eviction_policy: EvictionPolicy = EvictionPolicy.LRU) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
self.current_num_blocks = 0
self.cached_blocks: Dict[int, PhysicalTokenBlock] = {}
self.evictor: Evictor = make_evictor(eviction_policy)
self.default_hash_ctr = count()
self.cache_metric_data = CacheMetricData()
def allocate_block(self, block_hash: int,
num_hashed_tokens: int) -> PhysicalTokenBlock:
if self.current_num_blocks == self.num_blocks:
block = self.evictor.evict()
block.block_hash = block_hash
block.num_hashed_tokens = num_hashed_tokens
return block
block = PhysicalTokenBlock(device=self.device,
block_number=self.current_num_blocks,
block_size=self.block_size,
block_hash=block_hash,
num_hashed_tokens=num_hashed_tokens)
self.current_num_blocks += 1
return block
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
if block_hash is None:
block_hash = next(self.default_hash_ctr)
if block_hash in self.evictor:
assert block_hash not in self.cached_blocks
block = self.evictor.remove(block_hash)
assert block.ref_count == 0
self.cached_blocks[block_hash] = block
if block_hash in self.cached_blocks:
self.cache_metric_data.query(hit=True)
else:
self.cache_metric_data.query(hit=False)
self.cached_blocks[block_hash] = self.allocate_block(
block_hash, num_hashed_tokens)
block = self.cached_blocks[block_hash]
assert block.block_hash == block_hash
block.ref_count += 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError(f"Double free! {block} is already freed.")
block.ref_count -= 1
if block.ref_count == 0:
assert block.block_hash not in self.evictor
self.evictor.add(block)
# Remove the block from the cached_blocks
del self.cached_blocks[block.block_hash]
def get_num_free_blocks(self) -> int:
return (self.num_blocks - self.current_num_blocks +
self.evictor.num_blocks)
def get_num_total_blocks(self) -> int:
return self.num_blocks
def contains_block(self, block_hash: int) -> bool:
return block_hash in self.cached_blocks or block_hash in self.evictor
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
# Update the hash of block and the cached_blocks dictionary.
assert not self.contains_block(block_hash)
old_hash = block.block_hash
block.block_hash = block_hash
del self.cached_blocks[old_hash]
self.cached_blocks[block_hash] = block
def get_prefix_cache_hit_rate(self) -> float:
return self.cache_metric_data.get_hit_rate()
class UncachedBlockAllocator(BlockAllocatorBase):
"""Manages free physical token blocks for a device.
The allocator maintains a list of free blocks and allocates a block when
requested. When a block is freed, its reference count is decremented. If
the reference count becomes zero, the block is added back to the free list.
"""
def __init__(
self,
device: Device,
block_size: int,
num_blocks: int,
) -> None:
self.device = device
self.block_size = block_size
self.num_blocks = num_blocks
# Initialize the free blocks.
self.free_blocks: List[PhysicalTokenBlock] = []
for i in range(num_blocks):
block = PhysicalTokenBlock(device=device,
block_number=i,
block_size=block_size,
block_hash=-1,
num_hashed_tokens=0)
self.free_blocks.append(block)
def allocate(self,
block_hash: Optional[int] = None,
num_hashed_tokens: int = 0) -> PhysicalTokenBlock:
if not self.free_blocks:
raise ValueError("Out of memory! No free blocks are available.")
block = self.free_blocks.pop()
block.ref_count = 1
return block
def free(self, block: PhysicalTokenBlock) -> None:
if block.ref_count == 0:
raise ValueError(f"Double free! {block} is already freed.")
block.ref_count -= 1
if block.ref_count == 0:
self.free_blocks.append(block)
def get_num_free_blocks(self) -> int:
return len(self.free_blocks)
def get_num_total_blocks(self) -> int:
return self.num_blocks
def contains_block(self, block_hash: int) -> bool:
raise NotImplementedError(
"Invalid codepath for uncached block allocator.")
def update_hash(self, block_hash: int, block: PhysicalTokenBlock):
raise NotImplementedError(
"Invalid codepath for uncached block allocator.")
def get_prefix_cache_hit_rate(self) -> float:
return -1
class BlockSpaceManagerV1(BlockSpaceManager):
"""Manages the mapping between logical and physical token blocks."""
def __init__(
self,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
watermark: float = 0.01,
sliding_window: Optional[int] = None,
enable_caching: bool = False,
) -> None:
self.block_size = block_size
self.num_total_gpu_blocks = num_gpu_blocks
self.num_total_cpu_blocks = num_cpu_blocks
if enable_caching and sliding_window is not None:
raise NotImplementedError(
"Sliding window is not allowed with prefix caching enabled!")
self.block_sliding_window = None
if sliding_window is not None:
# Round up to nearest block size to regularize sliding window
# allocation sizes.
self.block_sliding_window = math.ceil(sliding_window / block_size)
self.watermark = watermark
assert watermark >= 0.0
self.enable_caching = enable_caching
self.watermark_blocks = int(watermark * num_gpu_blocks)
if self.enable_caching:
logger.info("Automatic prefix caching is enabled.")
self.gpu_allocator: BlockAllocatorBase = CachedBlockAllocator(
Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator: BlockAllocatorBase = CachedBlockAllocator(
Device.CPU, block_size, num_cpu_blocks)
else:
self.gpu_allocator = UncachedBlockAllocator(
Device.GPU, block_size, num_gpu_blocks)
self.cpu_allocator = UncachedBlockAllocator(
Device.CPU, block_size, num_cpu_blocks)
# Mapping: seq_id -> BlockTable.
self.block_tables: Dict[int, BlockTable] = {}
# Mapping: req_id -> BlockTable
# Note that each SequenceGroup has a unique
# request ID
self.cross_block_tables: Dict[str, BlockTable] = {}
def _get_seq_num_required_blocks(self, seq: Optional[Sequence]) -> int:
return 0 if seq is None else seq.n_blocks
def can_allocate(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> AllocStatus:
# FIXME(woosuk): Here we assume that all sequences in the group share
# the same prompt. This may not be true for preempted sequences.
assert (num_lookahead_slots == 0
), "lookahead allocation not supported in BlockSpaceManagerV1"
check_no_caching_or_swa_for_blockmgr_encdec(self, seq_group)
self_num_required_blocks = self._get_seq_num_required_blocks(
seq_group.get_seqs(status=SequenceStatus.WAITING)[0])
cross_num_required_blocks = self._get_seq_num_required_blocks(
seq_group.get_encoder_seq())
num_required_blocks = self_num_required_blocks + \
cross_num_required_blocks
if self.block_sliding_window is not None:
num_required_blocks = min(num_required_blocks,
self.block_sliding_window)
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
# Use watermark to avoid frequent cache eviction.
if (self.num_total_gpu_blocks - num_required_blocks <
self.watermark_blocks):
return AllocStatus.NEVER
if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def _allocate_sequence(self, \
seq: Optional[Sequence], \
ref_count: int, \
is_encoder_decoder: bool = True) -> BlockTable:
# Allocate new physical token blocks that will store the prompt tokens.
num_prompt_blocks = self._get_seq_num_required_blocks(seq)
block_table: BlockTable = BlockTable()
assert seq is not None
for logical_idx in range(num_prompt_blocks):
if (self.block_sliding_window is not None
and logical_idx >= self.block_sliding_window):
block = block_table[logical_idx % self.block_sliding_window]
# Set the reference counts of the token blocks.
block.ref_count = ref_count
elif not is_encoder_decoder and self.enable_caching:
block = self.gpu_allocator.allocate(
seq.hash_of_block(logical_idx),
seq.num_hashed_tokens_of_block(logical_idx))
else:
block = self.gpu_allocator.allocate()
# Set the reference counts of the token blocks.
block.ref_count = ref_count
block_table.append(block)
return block_table
def allocate(self, seq_group: SequenceGroup) -> None:
is_encoder_decoder = seq_group.is_encoder_decoder()
check_no_caching_or_swa_for_blockmgr_encdec(self, seq_group)
# Allocate decoder sequences
#
# NOTE: Here we assume that all sequences in the group have the same
# decoder prompt.
wait_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
seq = wait_seqs[0]
block_table: BlockTable = \
self._allocate_sequence(seq,
seq_group.num_seqs(),
is_encoder_decoder)
# Assign the self-attention block tables for each sequence.
if len(wait_seqs) == 1:
self.block_tables[seq.seq_id] = block_table
else:
for seq in wait_seqs:
self.block_tables[seq.seq_id] = block_table.copy()
# Allocate encoder sequence
if is_encoder_decoder:
# A SequenceGroup has only a single encoder sequence (at most),
# thus allocate with a ref count of 1
block_table = self._allocate_sequence(seq_group.get_encoder_seq(),
1, is_encoder_decoder)
# Assign the cross-attention block table for the SequenceGroup.
self.cross_block_tables[seq_group.request_id] = block_table
def can_append_slots(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> bool:
assert (num_lookahead_slots == 0
), "lookahead allocation not supported in BlockSpaceManagerV1"
# Simple heuristic: If there is at least one free block
# for each sequence, we can append.
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)
return num_seqs <= num_free_gpu_blocks
def _promote_last_block(
self,
seq: Sequence,
last_block: PhysicalTokenBlock,
) -> PhysicalTokenBlock:
assert self.enable_caching
# Compute a new hash for the block so that it can be shared by other
# Sequences
new_hash = seq.hash_of_block(seq.n_blocks - 1)
# if new_hash is already in the cached table, then free last_block
# and return the cached version
if self.gpu_allocator.contains_block(new_hash):
self.gpu_allocator.free(last_block)
return self.gpu_allocator.allocate(new_hash)
else:
self.gpu_allocator.update_hash(new_hash, last_block)
return last_block
def _is_last_block_full(
self,
seq: Sequence,
) -> bool:
token_ids_len = seq.data.get_len()
return token_ids_len > 0 and token_ids_len % seq.block_size == 0
def _maybe_promote_last_block(
self,
seq: Sequence,
last_block: PhysicalTokenBlock,
) -> PhysicalTokenBlock:
if self._is_last_block_full(seq):
return self._promote_last_block(seq, last_block)
else:
return last_block
def _allocate_last_physical_block(
self,
seq: Sequence,
) -> PhysicalTokenBlock:
# Called before a new block is appended.
# This is in charge of allocating a new physical block (to be appended).
# None if the last block is not full. Otherwise, we set it to the
# content hash.
if not self.enable_caching:
return self.gpu_allocator.allocate()
block_hash: Optional[int] = None
n_blocks = seq.n_blocks
if (self._is_last_block_full(seq)):
block_hash = seq.hash_of_block(n_blocks - 1)
num_hashed_tokens = seq.num_hashed_tokens_of_block(n_blocks - 1)
# num_hashed_tokens is used to compute future hashes
# (e.g. in the hashing function, it is used to ask the sequence for
# prefix tokens)
new_block = self.gpu_allocator.allocate(block_hash, num_hashed_tokens)
# If the block_hash is None, then the block is not full.
# If the block is not full, then we expect it to have a refcount of 1.
if block_hash is None:
assert new_block.ref_count == 1
return new_block
def append_slots(
self,
seq: Sequence,
num_lookahead_slots: int = 0,
) -> List[Tuple[int, int]]:
"""Allocate a physical slot for a new token."""
n_blocks = seq.n_blocks
block_table = self.block_tables[seq.seq_id]
# If we need to allocate a new physical block
if len(block_table) < n_blocks:
# Currently this code only supports adding one physical block
assert len(block_table) == n_blocks - 1
if (self.block_sliding_window
and len(block_table) >= self.block_sliding_window):
# reuse a block
block_table.append(block_table[len(block_table) %
self.block_sliding_window])
else:
# The sequence hash a new logical block.
# Allocate a new physical block.
new_block = self._allocate_last_physical_block(seq)
block_table.append(new_block)
return []
# We want to append the token to the last physical block.
last_block = block_table[-1]
assert last_block.device == Device.GPU
if last_block.ref_count == 1:
# Not shared with other sequences. Appendable.
if self.enable_caching:
# If the last block is now complete, we may reuse an old block
# to save memory.
maybe_new_block = self._maybe_promote_last_block(
seq, last_block)
block_table[-1] = maybe_new_block
return []
else:
# The last block is shared with other sequences.
# Copy on Write: Allocate a new block and copy the tokens.
new_block = self._allocate_last_physical_block(seq)
block_table[-1] = new_block
self.gpu_allocator.free(last_block)
return [(last_block.block_number, new_block.block_number)]
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
# NOTE: fork does not allocate a new physical block.
# Thus, it is always safe from OOM.
if parent_seq.seq_id not in self.block_tables:
# Parent sequence has either been freed or never existed.
return
src_block_table = self.block_tables[parent_seq.seq_id]
self.block_tables[child_seq.seq_id] = src_block_table.copy()
# When using a sliding window, blocks will be eventually reused.
# In this case the block tables will contain repeated blocks.
# When forking, we must make sure that each block's `ref_count`
# is only incremented by one, so we deduplicate them by wrapping
# them in a set.
for block in set(src_block_table):
block.ref_count += 1
def _get_physical_blocks(
self, seq_group: SequenceGroup) -> List[PhysicalTokenBlock]:
# NOTE: Here, we assume that the physical blocks are only shared by
# the sequences in the same group.
request_id = seq_group.request_id
blocks: Set[PhysicalTokenBlock] = set()
for seq in seq_group.get_seqs():
if seq.is_finished():
continue
blocks.update(self.block_tables[seq.seq_id])
# Cross-attention blocks
if seq_group.is_encoder_decoder():
blocks.update(self.cross_block_tables[request_id])
return list(blocks)
def can_swap_in(self,
seq_group: SequenceGroup,
num_lookahead_slots: int = 0) -> AllocStatus:
assert (num_lookahead_slots == 0
), "BlockSpaceManagerV1 does not support lookahead allocation"
blocks = self._get_physical_blocks(seq_group)
num_swapped_seqs = seq_group.num_seqs(status=SequenceStatus.SWAPPED)
if seq_group.is_encoder_decoder():
num_swapped_seqs += 1
num_free_blocks = self.gpu_allocator.get_num_free_blocks()
# NOTE: Conservatively, we assume that every sequence will allocate
# at least one free block right after the swap-in.
# NOTE: This should match the logic in can_append_slot().
num_required_blocks = len(blocks) + num_swapped_seqs
if self.gpu_allocator.get_num_total_blocks() < num_required_blocks:
return AllocStatus.NEVER
elif num_free_blocks - num_required_blocks >= self.watermark_blocks:
return AllocStatus.OK
else:
return AllocStatus.LATER
def _swap_block_table(
self, block_table: BlockTable, src_allocator: BlockAllocatorBase,
dest_allocator: BlockAllocatorBase,
mapping: Dict[PhysicalTokenBlock,
PhysicalTokenBlock]) -> BlockTable:
new_block_table: BlockTable = BlockTable()
for from_block in block_table:
if from_block in mapping:
to_block = mapping[from_block]
to_block.ref_count += 1
else:
to_block = dest_allocator.allocate(
from_block.block_hash, from_block.num_hashed_tokens)
mapping[from_block] = to_block
new_block_table.append(to_block)
# Free the source block swapped in to destination.
src_allocator.free(from_block)
return new_block_table
def swap_in(self, seq_group: SequenceGroup) -> List[Tuple[int, int]]:
request_id = seq_group.request_id
# CPU block -> GPU block.
# dict is efficient in lookup `if cpu_block in mapping`
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.SWAPPED):
self.block_tables[seq.seq_id] = \
self._swap_block_table(self.block_tables[seq.seq_id],
self.cpu_allocator, self.gpu_allocator,
mapping)
if seq_group.is_encoder_decoder():
self.cross_block_tables[request_id] = \
self._swap_block_table(self.cross_block_tables[request_id],
self.cpu_allocator,
self.gpu_allocator,
mapping)
return [(cpu_block.block_number, gpu_block.block_number)
for cpu_block, gpu_block in mapping.items()]
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
blocks = self._get_physical_blocks(seq_group)
return len(blocks) <= self.cpu_allocator.get_num_free_blocks()
def swap_out(self, seq_group: SequenceGroup) -> List[Tuple[int, int]]:
request_id = seq_group.request_id
# GPU block -> CPU block.
# dict is efficient in lookup `if gpu_block in mapping`
mapping: Dict[PhysicalTokenBlock, PhysicalTokenBlock] = {}
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
self.block_tables[seq.seq_id] = \
self._swap_block_table(self.block_tables[seq.seq_id],
self.gpu_allocator, self.cpu_allocator,
mapping)
if seq_group.is_encoder_decoder():
self.cross_block_tables[request_id] = \
self._swap_block_table(self.cross_block_tables[request_id],
self.gpu_allocator,
self.cpu_allocator,
mapping)
return [(cpu_block.block_number, gpu_block.block_number)
for cpu_block, gpu_block in mapping.items()]
def _free_block_table(self, block_table: BlockTable) -> None:
# when using a sliding window, each seq will only use up
# to `self.block_sliding_window` blocks. When freeing
# the block table, we must make sure to not free blocks more
# than once. If no sliding window is used, there is no block
# reuse in the block table, so we must free all blocks.
blocks_to_free = (block_table[-self.block_sliding_window:]
if self.block_sliding_window is not None else
block_table)
for block in set(blocks_to_free):
if block.device == Device.GPU:
self.gpu_allocator.free(block)
else:
self.cpu_allocator.free(block)
def free(self, seq: Sequence) -> None:
if seq.seq_id not in self.block_tables:
# Already freed or haven't been scheduled yet.
return
block_table = self.block_tables[seq.seq_id]
self._free_block_table(block_table)
del self.block_tables[seq.seq_id]
def free_cross(self, seq_group: SequenceGroup) -> None:
if seq_group.request_id not in self.cross_block_tables:
# Already freed or hasn't ben scheduled yet.
return
block_table = self.cross_block_tables[seq_group.request_id]
self._free_block_table(block_table)
del self.cross_block_tables[seq_group.request_id]
def reset(self) -> None:
# Free decoder block tables
for block_table in self.block_tables.values():
self._free_block_table(block_table)
self.block_tables.clear()
# Free cross-attention block tables
for block_table in self.cross_block_tables.values():
self._free_block_table(block_table)
self.cross_block_tables.clear()
def get_block_table(self, seq: Sequence) -> List[int]:
return self.block_tables[seq.seq_id].ids()
def get_cross_block_table(self, seq_group: SequenceGroup) -> List[int]:
block_table = self.cross_block_tables[seq_group.request_id]
return [block.block_number for block in block_table]
def get_num_free_gpu_blocks(self) -> int:
return self.gpu_allocator.get_num_free_blocks()
def get_num_free_cpu_blocks(self) -> int:
return self.cpu_allocator.get_num_free_blocks()
def access_all_blocks_in_seq(
self,
seq: Sequence,
access_time: float,
) -> None:
if self.enable_caching:
# Update the last accessed time of all the blocks accessed
# in this step.
block_table = self.block_tables[seq.seq_id]
for block in block_table:
block.last_accessed = access_time
def compute_full_blocks_in_seq(self, seq: Sequence, token_chunk_size: int):
if seq.seq_id not in self.block_tables:
return
# When chunked prefill is enabled, the computed full blocks
# should be calculated based on the number of computed tokens.
max_computed_tokens = (seq.data.get_num_computed_tokens() +
token_chunk_size)
computed_full_blocks = max_computed_tokens // self.block_size
block_table = self.block_tables[seq.seq_id]
if computed_full_blocks == 0:
return
for i in reversed(range(computed_full_blocks)):
if block_table[i].computed:
break
block_table[i].computed = True
def get_all_computed_blocks(self, seq: Sequence) -> List[int]:
if seq.seq_id not in self.block_tables:
return []
block_table = self.block_tables[seq.seq_id]
# NOTE We exclude the last block to avoid the case where the entire
# prompt is cached. This would cause erroneous behavior in model
# runner.
return [
b.block_number
for b in takewhile(lambda b: b.computed, block_table[:-1])
]
def get_common_computed_block_ids(
self, seqs: List[Sequence]) -> GenericSequence[int]:
"""Return the block ids that are common for a given sequence group.
Used in prefill (can skip prefill of some blocks).
"""
# Can return non-empty result only with prefix caching enabled.
if not self.enable_caching:
return []
ids_list = [self.get_all_computed_blocks(seq) for seq in seqs]
return commonprefix([ids for ids in ids_list if ids != []])
def mark_blocks_as_computed(self, seq_group: SequenceGroup,
token_chunk_size: int):
if self.enable_caching:
for seq in seq_group.get_seqs():
self.compute_full_blocks_in_seq(seq, token_chunk_size)
def get_prefix_cache_hit_rate(self, device: Device) -> float:
if device == Device.GPU:
return self.gpu_allocator.get_prefix_cache_hit_rate()
if device == Device.CPU:
return self.cpu_allocator.get_prefix_cache_hit_rate()
raise ValueError(f"Invalid device: {device}")