Files
vllm-anthropic/vllm/model_executor/layers/quantization/modelopt.py

1770 lines
67 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Callable
from typing import TYPE_CHECKING, Any, Optional
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
import vllm.envs as envs
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEConfig,
FusedMoEQuantConfig,
fp8_w8a8_moe_quant_config,
nvfp4_moe_quant_config,
)
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
is_valid_flashinfer_cutlass_fused_moe,
)
from vllm.model_executor.layers.fused_moe.fused_marlin_moe import fused_marlin_moe
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE,
FusedMoEMethodBase,
FusedMoeWeightScaleSupported,
)
from vllm.model_executor.layers.linear import (
LinearBase,
LinearMethodBase,
UnquantizedLinearMethod,
)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
build_flashinfer_fp4_cutlass_moe_prepare_finalize,
reorder_w1w3_to_w3w1,
select_nvfp4_gemm_impl,
)
from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
FlashinferMoeBackend,
apply_flashinfer_per_tensor_scale_fp8,
build_flashinfer_fp8_cutlass_moe_prepare_finalize,
flashinfer_cutlass_moe_fp8,
get_flashinfer_moe_backend,
register_moe_scaling_factors,
rotate_flashinfer_fp8_moe_weights,
select_cutlass_fp8_gemm_impl,
swap_w13_to_w31,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
apply_fp4_marlin_linear,
is_fp4_marlin_supported,
prepare_fp4_layer_for_marlin,
prepare_moe_fp4_layer_for_marlin,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape,
cutlass_fp4_supported,
is_layer_skipped,
swizzle_blockscale,
)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp,
requantize_with_max_scale,
)
from vllm.model_executor.parameter import ModelWeightParameter, PerTensorScaleParameter
from vllm.scalar_type import scalar_types
from vllm.utils.flashinfer import (
flashinfer_scaled_fp4_mm,
has_flashinfer,
has_flashinfer_moe,
)
if TYPE_CHECKING:
from vllm.model_executor.models.utils import WeightsMapper
logger = init_logger(__name__)
QUANT_ALGOS = ["FP8", "NVFP4"]
KV_CACHE_QUANT_ALGOS = ["FP8"]
class ModelOptFp8Config(QuantizationConfig):
"""Config class for ModelOpt FP8."""
def __init__(
self,
is_checkpoint_fp8_serialized: bool = False,
kv_cache_quant_method: str | None = None,
exclude_modules: list[str] | None = None,
) -> None:
super().__init__()
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
self.kv_cache_quant_method = kv_cache_quant_method
self.exclude_modules = exclude_modules or []
if is_checkpoint_fp8_serialized:
logger.warning(
"Detected ModelOpt fp8 checkpoint. Please note that"
" the format is experimental and could change."
)
@classmethod
def get_name(cls) -> QuantizationMethods:
return "modelopt"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 89
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["hf_quant_config.json"]
def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
if self.exclude_modules is not None:
self.exclude_modules = hf_to_vllm_mapper.apply_list(self.exclude_modules)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant
) -> QuantizationMethods | None:
"""Detect if this ModelOpt config should be used based on
quantization config."""
if hf_quant_cfg is None:
return None
# Use the community standard 'quant_method'
quant_method = hf_quant_cfg.get("quant_method", "").lower()
# Only proceed if the method is explicitly "modelopt"
if quant_method != "modelopt":
return None
# Look for ModelOpt-specific config structure
if "quantization" in hf_quant_cfg:
quant_config = hf_quant_cfg["quantization"]
if isinstance(quant_config, dict):
quant_algo = quant_config.get("quant_algo", "")
if "FP8" in quant_algo:
return "modelopt"
else:
# Check for compressed-tensors style config with specific quant_algo
quant_algo = hf_quant_cfg.get("quant_algo", "")
if isinstance(quant_algo, str) and "FP8" in quant_algo:
return "modelopt"
return None
@classmethod
def from_config(cls, config: dict[str, Any]) -> "ModelOptFp8Config":
# Handle both ModelOpt format and compressed-tensors style format
if "quantization" in config:
# ModelOpt format: {"quantization": {"quant_algo": "..."}}
quant_config = cls.get_from_keys(config, ["quantization"])
if not isinstance(quant_config, dict):
raise ValueError("Expected 'quantization' to be a dictionary in config")
quant_method = quant_config.get("quant_algo", "")
if not quant_method:
raise ValueError("Missing 'quant_algo' in quantization config")
kv_cache_quant_method = quant_config.get("kv_cache_quant_algo")
# "exclude_modules" is the key in the legacy hf_quant_config.json
exclude_modules = quant_config.get("exclude_modules")
else:
# Compressed-tensors style format:
# {"quant_algo": "...", "quant_method": "modelopt"}
quant_method = config.get("quant_algo", "")
kv_cache_quant_method = config.get("kv_cache_quant_algo")
# "ignore" is the key in config.json
exclude_modules = config.get("ignore")
if quant_method not in QUANT_ALGOS:
raise ValueError(
f"ModelOpt currently only supports: {QUANT_ALGOS} "
"quantizations in vLLM. Please check the "
"`hf_quant_config.json` file for your model's "
"quant configuration."
)
is_checkpoint_fp8_serialized = "FP8" in quant_method
return cls(is_checkpoint_fp8_serialized, kv_cache_quant_method, exclude_modules)
def is_layer_excluded(self, prefix: str) -> bool:
"""
Check if a layer should be excluded from quantization.
Handles both exact matching (for fused layers) and substring matching.
This method handles both regular models and multimodal models that use
the language_model prefix. For multimodal models, it checks if the
module name (without the language_model prefix) is in the exclude list.
"""
if self.exclude_modules is None:
return False
# First check exact matching with fused layer support
if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
return True
# Then check substring matching for patterns not caught by exact match
for module in self.exclude_modules:
# Skip exact matches already handled above
if module != prefix and (
module in prefix
or (
prefix.startswith("language_model.")
and module in prefix.removeprefix("language_model.")
)
):
return True
return False
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
if self.is_layer_excluded(prefix):
return UnquantizedLinearMethod()
# Check if this is a vision model layer that should not be quantized
if "vision_tower" in prefix or "vision_model" in prefix:
return UnquantizedLinearMethod()
return ModelOptFp8LinearMethod(self)
elif isinstance(layer, Attention):
return ModelOptFp8KVCacheMethod(self)
elif isinstance(layer, FusedMoE):
return ModelOptFp8MoEMethod(self, layer)
return None
class ModelOptFp8LinearMethod(LinearMethodBase):
"""Linear method for Model Optimizer static quantization.
Supports loading FP8 checkpoints with static weight scale and
activation scale. Future support might be added for dynamic
scales.
Limitations:
1. Only support per-tensor quantization due to torch._scaled_mm support.
2. Only support float8_e4m3fn datatype
Args: quant_config: The ModelOpt quantization config.
"""
def __init__(self, quant_config: ModelOptFp8Config) -> None:
self.quant_config = quant_config
self.fp8_linear = Fp8LinearOp(
act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR
)
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
weight_dtype = (
torch.float8_e4m3fn
if self.quant_config.is_checkpoint_fp8_serialized
else params_dtype
)
weight = ModelWeightParameter(
data=torch.empty(
output_size_per_partition, input_size_per_partition, dtype=weight_dtype
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight", weight)
if self.quant_config.is_checkpoint_fp8_serialized:
# WEIGHT SCALE
weight_scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
weight_scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("weight_scale", weight_scale)
# INPUT SCALE
scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
scale[:] = torch.finfo(torch.float32).min
layer.register_parameter("input_scale", scale)
def process_weights_after_loading(self, layer: Module) -> None:
weight = layer.weight
max_w_scale = layer.weight_scale.max()
if not (layer.weight_scale == layer.weight_scale[0]).all():
max_w_scale, weight = requantize_with_max_scale(
layer.weight, layer.weight_scale, layer.logical_widths
)
layer.weight = Parameter(weight.t(), requires_grad=False)
layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
layer.input_scale = Parameter(layer.input_scale.max(), requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
return self.fp8_linear.apply(
input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
input_scale=layer.input_scale,
bias=bias,
)
class ModelOptFp8MoEMethod(FusedMoEMethodBase):
"""MoE method for ModelOpt FP8.
Supports loading FP8 checkpoints with static weight scale and
activation scale.
Args:
quant_config: The ModelOpt quantization config.
"""
def __init__(
self,
quant_config: ModelOptFp8Config,
layer: torch.nn.Module,
) -> None:
super().__init__(layer.moe_config)
self.layer = layer
self.quant_config = quant_config
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
cutlass_fp8_supported,
)
self.cutlass_fp8_supported = cutlass_fp8_supported()
self.flashinfer_moe_backend: FlashinferMoeBackend | None = None
if envs.VLLM_USE_FLASHINFER_MOE_FP8 and has_flashinfer_moe():
self.flashinfer_moe_backend = get_flashinfer_moe_backend()
logger.info_once(
f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
)
def maybe_make_prepare_finalize(
self,
) -> mk.FusedMoEPrepareAndFinalize | None:
# TRT LLM not supported with all2all yet.
if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
return None
elif self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS:
prepare_finalize = build_flashinfer_fp8_cutlass_moe_prepare_finalize(
self.moe
)
logger.debug_once("%s", prepare_finalize.__class__.__name__)
return prepare_finalize
else:
return super().maybe_make_prepare_finalize()
def select_gemm_impl(
self,
prepare_finalize: mk.FusedMoEPrepareAndFinalize,
layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
assert self.moe_quant_config is not None
experts = select_cutlass_fp8_gemm_impl(
self.moe,
self.moe_quant_config,
)
logger.debug_once("Using %s", experts.__class__.__name__)
return experts
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
# Use FP8 dtype if checkpoint is serialized
weight_dtype = (
torch.float8_e4m3fn
if self.quant_config.is_checkpoint_fp8_serialized
else params_dtype
)
weight_loader = extra_weight_attrs.get("weight_loader")
w13_weight = ModelWeightParameter(
data=torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=weight_dtype,
),
input_dim=2,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("w13_weight", w13_weight)
w2_weight = ModelWeightParameter(
data=torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=weight_dtype,
),
input_dim=2,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("w2_weight", w2_weight)
if self.quant_config.is_checkpoint_fp8_serialized:
# WEIGHT SCALES - Per-tensor scaling for ModelOpts
# Allocate 2 scales for w1 and w3 respectively.
# They will be combined to a single scale after weight loading.
w13_weight_scale = PerTensorScaleParameter(
data=torch.full(
(num_experts, 2),
1.0,
dtype=torch.float32,
),
weight_loader=weight_loader,
)
w2_weight_scale = PerTensorScaleParameter(
data=torch.full((num_experts,), 1.0, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
# Set weight loader attributes for scales
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
)
# INPUT SCALES - Per-tensor scaling for ModelOpt
w13_input_scale = PerTensorScaleParameter(
data=torch.full((num_experts,), 1.0, dtype=torch.float32),
weight_loader=weight_loader,
)
w2_input_scale = PerTensorScaleParameter(
data=torch.full((num_experts,), 1.0, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w13_input_scale", w13_input_scale)
layer.register_parameter("w2_input_scale", w2_input_scale)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
"""Process FP8 MoE weights after loading from serialized checkpoint.
Only supports pre-quantized checkpoints with FP8 weights and scales.
"""
layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False)
layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)
from vllm._custom_ops import scaled_fp8_quant
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
per_tensor_dequantize,
)
# Handle scale parameters
if hasattr(layer, "w13_weight_scale") and layer.w13_weight_scale is not None:
# Fp8 moe kernel needs single weight scale for w13 per expert.
# We take the max of the w1 and w3 scales
# then dequant and requant each expert.
if layer.w13_weight_scale.dim() == 2:
# Get the maximum scale across w1 and w3 for each expert
max_w13_scales = layer.w13_weight_scale.max(dim=1).values
# Requantize each expert's weights using the combined scale
# w13_weight (num_experts, 2 * intermediate_size, hidden_size)
# where the first intermediate_size rows are w1, the next are w3
intermediate_size = layer.w13_weight.shape[1] // 2
for expert_id in range(layer.w13_weight.shape[0]):
start = 0
for shard_id in range(2): # w1 and w3
# Dequantize using the original scale for this shard
dq_weight = per_tensor_dequantize(
layer.w13_weight[expert_id][
start : start + intermediate_size, :
],
layer.w13_weight_scale[expert_id][shard_id],
)
# Requantize using the combined max scale
(
layer.w13_weight[expert_id][
start : start + intermediate_size, :
],
_,
) = scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
start += intermediate_size
# Update the scale parameter to be per-expert
layer.w13_weight_scale = Parameter(max_w13_scales, requires_grad=False)
else:
layer.w13_weight_scale = Parameter(
layer.w13_weight_scale.data, requires_grad=False
)
if hasattr(layer, "w2_weight_scale") and layer.w2_weight_scale is not None:
layer.w2_weight_scale = Parameter(
layer.w2_weight_scale.data, requires_grad=False
)
# Input scales must be equal for each expert in fp8 MoE layers.
if hasattr(layer, "w13_input_scale") and layer.w13_input_scale is not None:
layer.w13_input_scale = Parameter(
layer.w13_input_scale.max(), requires_grad=False
)
if hasattr(layer, "w2_input_scale") and layer.w2_input_scale is not None:
layer.w2_input_scale = Parameter(
layer.w2_input_scale.max(), requires_grad=False
)
if self.flashinfer_moe_backend is not None:
layer.w13_weight.data = swap_w13_to_w31(layer.w13_weight.data)
register_moe_scaling_factors(layer)
if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
rotate_flashinfer_fp8_moe_weights(layer.w13_weight, layer.w2_weight)
def get_fused_moe_quant_config(
self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
return None
return fp8_w8a8_moe_quant_config(
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
per_act_token_quant=False,
)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: int | None = None,
num_expert_group: int | None = None,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
custom_routing_function: Callable | None = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: torch.Tensor | None = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: torch.Tensor | None = None,
logical_to_physical_map: torch.Tensor | None = None,
logical_replica_count: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `ModelOptFp8MoEMethod` yet."
)
if self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM:
assert self.fused_experts is None
assert activation == "silu", (
f"Expected 'silu' activation but got {activation}"
)
assert not renormalize
return apply_flashinfer_per_tensor_scale_fp8(
layer=layer,
hidden_states=x,
router_logits=router_logits,
routing_bias=e_score_correction_bias,
global_num_experts=global_num_experts,
top_k=top_k,
num_expert_group=num_expert_group,
topk_group=topk_group,
apply_router_weight_on_input=apply_router_weight_on_input,
)
# Expert selection
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype,
)
#
# Note: the order here is important. self.fused_experts can override
# cutlass or fused_experts.
#
if self.fused_experts is not None:
return self.fused_experts(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights,
topk_ids,
inplace=False,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
elif self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS:
assert not renormalize
assert activation == "silu", (
f"Expected 'silu' activation but got {activation}"
)
return flashinfer_cutlass_moe_fp8(
x,
layer,
topk_weights,
topk_ids,
inplace=False,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
else:
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts
assert self.moe_quant_config is not None
return fused_experts(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
quant_config=self.moe_quant_config,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
class ModelOptNvFp4Config(QuantizationConfig):
"""Config class for ModelOpt FP4."""
def __init__(
self,
is_checkpoint_nvfp4_serialized: bool,
kv_cache_quant_algo: str | None,
exclude_modules: list[str],
group_size: int = 16,
) -> None:
super().__init__()
self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
if is_checkpoint_nvfp4_serialized:
logger.warning(
"Detected ModelOpt NVFP4 checkpoint. Please note that"
" the format is experimental and could change in future."
)
self.group_size = group_size
self.kv_cache_quant_algo = kv_cache_quant_algo
self.exclude_modules = exclude_modules
@classmethod
def get_name(cls) -> QuantizationMethods:
return "modelopt_fp4"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half, torch.float8_e4m3fn]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["hf_quant_config.json"]
def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
if self.exclude_modules is not None:
self.exclude_modules = hf_to_vllm_mapper.apply_list(self.exclude_modules)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant
) -> QuantizationMethods | None:
"""Detect if this ModelOpt FP4 config should be used based on
quantization config."""
if hf_quant_cfg is None:
return None
# Use the community standard 'quant_method'
quant_method = hf_quant_cfg.get("quant_method", "").lower()
# Only proceed if the method is explicitly "modelopt"
if quant_method != "modelopt":
return None
# Look for ModelOpt-specific config structure
if "quantization" in hf_quant_cfg:
quant_config = hf_quant_cfg["quantization"]
if isinstance(quant_config, dict):
quant_algo = quant_config.get("quant_algo", "")
if "NVFP4" in quant_algo:
return "modelopt_fp4"
else:
# Check for compressed-tensors style config with specific
# quant_algo field
quant_algo = hf_quant_cfg.get("quant_algo", "")
if isinstance(quant_algo, str) and "FP4" in quant_algo.upper():
return "modelopt_fp4"
return None
@classmethod
def from_config(cls, config: dict[str, Any]) -> "ModelOptNvFp4Config":
# Handle both traditional ModelOpt format and compressed-tensors
# style format
if "quantization" in config:
# Traditional ModelOpt format:
# {"quantization": {"quant_algo": "..."}}
quant_config = cls.get_from_keys(config, ["quantization"])
if not isinstance(quant_config, dict):
raise ValueError("Expected 'quantization' to be a dictionary in config")
quant_method = quant_config.get("quant_algo", "")
if not quant_method:
raise ValueError("Missing 'quant_algo' in quantization config")
# Handle kv_cache_quant_algo with proper type validation
kv_cache_quant_algo_raw = quant_config.get("kv_cache_quant_algo")
if kv_cache_quant_algo_raw is None:
# No KV cache quantization by default
kv_cache_quant_algo = None
elif isinstance(kv_cache_quant_algo_raw, str):
kv_cache_quant_algo = kv_cache_quant_algo_raw
else:
raise ValueError(
f"kv_cache_quant_algo must be a string, got "
f"{type(kv_cache_quant_algo_raw)}"
)
# Handle group_size with proper type validation
group_size_raw = quant_config.get("group_size")
if group_size_raw is None:
group_size = 16 # Default value
elif isinstance(group_size_raw, int):
group_size = group_size_raw
else:
try:
group_size = int(group_size_raw)
except (ValueError, TypeError):
raise ValueError(
f"group_size must be an integer, got {type(group_size_raw)}"
) from None
# "exclude_modules" is the key in the legacy hf_quant_config.json
exclude_modules = quant_config.get("exclude_modules", [])
if not isinstance(exclude_modules, list):
raise ValueError(
f"exclude_modules must be a list, got {type(exclude_modules)}"
)
else:
# Compressed-tensors style format:
# {"quant_algo": "...", "quant_method": "modelopt"}
quant_method = config.get("quant_algo", "")
# Handle kv_cache_quant_algo with proper type validation
kv_cache_quant_algo_raw = config.get("kv_cache_quant_algo")
if kv_cache_quant_algo_raw is None:
# No KV cache quantization by default
kv_cache_quant_algo = None
elif isinstance(kv_cache_quant_algo_raw, str):
kv_cache_quant_algo = kv_cache_quant_algo_raw
else:
raise ValueError(
f"kv_cache_quant_algo must be a string, got "
f"{type(kv_cache_quant_algo_raw)}"
)
# Handle group_size with proper type validation
group_size_raw = config.get("group_size")
if group_size_raw is None:
group_size = 16 # Default value
elif isinstance(group_size_raw, int):
group_size = group_size_raw
else:
try:
group_size = int(group_size_raw)
except (ValueError, TypeError):
raise ValueError(
f"group_size must be an integer, got {type(group_size_raw)}"
) from None
# "ignore" is the key in config.json
exclude_modules = config.get("ignore", [])
if not isinstance(exclude_modules, list):
raise ValueError(
f"exclude_modules must be a list, got {type(exclude_modules)}"
)
if quant_method not in QUANT_ALGOS:
raise ValueError(
f"ModelOpt currently only supports: {QUANT_ALGOS} "
"quantizations in vLLM. Please check the "
"`hf_quant_config.json` file for your model's "
"quant configuration."
)
is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method
# For FP4, these fields are required
if is_checkpoint_nvfp4_serialized and "quantization" in config:
# Check if required fields are present in the quantization config
quant_config = config["quantization"]
required_fields = ["group_size", "kv_cache_quant_algo", "exclude_modules"]
missing_fields = [
field for field in required_fields if field not in quant_config
]
if missing_fields:
raise ValueError(
f"NVFP4 quantization requires the following fields in "
f"hf_quant_config.json: {missing_fields}"
)
return cls(
is_checkpoint_nvfp4_serialized,
kv_cache_quant_algo,
exclude_modules,
group_size,
)
def is_layer_excluded(self, prefix: str) -> bool:
"""
Check if a layer should be excluded from quantization.
Handles both exact matching (for fused layers) and pattern matching.
"""
# First check exact matching with fused layer support
if is_layer_skipped(prefix, self.exclude_modules, self.packed_modules_mapping):
return True
# Check regex pattern matching for patterns not caught by exact match
import regex as re
for pattern in self.exclude_modules:
# Skip patterns that would be caught by exact matching
if "*" in pattern or "." in pattern:
regex_str = pattern.replace(".", r"\.").replace("*", r".*")
if re.fullmatch(regex_str, prefix):
return True
return False
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
skip_layer = self.is_layer_excluded(prefix)
if isinstance(layer, LinearBase):
if skip_layer:
return UnquantizedLinearMethod()
# Check if this is a vision model layer that should not be quantized
if "vision_tower" in prefix or "vision_model" in prefix:
return UnquantizedLinearMethod()
return ModelOptNvFp4LinearMethod(self)
elif isinstance(layer, Attention):
return ModelOptFp8KVCacheMethod(self)
elif isinstance(layer, FusedMoE):
if skip_layer:
return None
return ModelOptNvFp4FusedMoE(self, layer.moe_config, layer)
return None
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
"""
Supports loading kv-cache scaling factors from FP8 checkpoints.
"""
def __init__(self, quant_config: ModelOptFp8Config | ModelOptNvFp4Config):
super().__init__(quant_config)
class ModelOptNvFp4LinearMethod(LinearMethodBase):
"""Linear method for Model Optimizer NVFP4.
Supports loading NVFP4 checkpoints with the following structure:
input_scale: torch.float32, scalar ,
weight: NVFP4(represented as byte) Shape: [1, X, y/2]
weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale,
weight_scale_2: torch.float32, scalar,
Args: quant_config: The ModelOpt quantization config.
"""
def __init__(self, quant_config: ModelOptNvFp4Config) -> None:
self.quant_config = quant_config
self.backend = "none"
if envs.VLLM_NVFP4_GEMM_BACKEND is None:
if has_flashinfer():
self.backend = "flashinfer-cutlass"
elif cutlass_fp4_supported():
self.backend = "cutlass"
elif is_fp4_marlin_supported():
self.backend = "marlin"
elif envs.VLLM_NVFP4_GEMM_BACKEND.startswith("flashinfer-"):
self.backend = envs.VLLM_NVFP4_GEMM_BACKEND
assert has_flashinfer(), f"FlashInfer is required for {self.backend}"
if self.backend == "none":
raise ValueError(
"No valid NVFP4 GEMM backend found. "
"Please check your platform capability."
)
logger.info_once(f"Using {self.backend} for NVFP4 GEMM")
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
if not self.quant_config.is_checkpoint_nvfp4_serialized:
raise ValueError(
"NVFP4 quantization was selected, "
" dynamic quantization is not supported."
)
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
if input_size_per_partition % 16 != 0:
raise ValueError(
"Unsupported model when in features size is not multiple of 16"
)
# The nvfp4 weight is still represented as
weight_dtype = (
torch.float8_e4m3fn
if self.quant_config.is_checkpoint_nvfp4_serialized
else params_dtype
)
# Weight
weight = ModelWeightParameter(
data=torch.empty(
# 2 fp4 items are packed in the input dimension
layer.output_size_per_partition,
layer.input_size_per_partition // 2,
dtype=torch.uint8,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight", weight)
# Input Weight Scale
input_scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("input_scale", input_scale)
# Global Weight Scale
weight_scale_2 = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale_2", weight_scale_2)
# Per Block Weight Scale
weight_scale = ModelWeightParameter(
data=torch.empty(
output_size_per_partition,
input_size_per_partition // self.quant_config.group_size,
dtype=weight_dtype,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale", weight_scale)
def process_weights_after_loading(self, layer: Module) -> None:
# global scales:
input_scale_2 = layer.input_scale.max().to(torch.float32)
layer.input_scale = Parameter(input_scale_2, requires_grad=False)
weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)
layer.alpha = Parameter(
layer.input_scale * layer.weight_scale_2, requires_grad=False
)
# Calculate `1 / input_scale` so that we don't need to do so at runtime
layer.input_scale_inv = Parameter(
(1 / layer.input_scale).to(torch.float32), requires_grad=False
)
# Swizzle the weight blockscale.
# contracting dimension is input dimension
# block_size = 16;
assert layer.weight_scale.dtype == torch.float8_e4m3fn, (
"Weight Block scale must be represented as FP8-E4M3"
)
if self.backend == "marlin":
prepare_fp4_layer_for_marlin(layer)
del layer.alpha
del layer.input_scale
elif self.backend == "flashinfer-trtllm":
# FlashInfer TRTLLM FP4 GEMM requires a different weight layout.
# FlashInfer provides nvfp4_quantize to quantize + shuffle the
# layout but we use our own quantization so we have to call
# shuffles ourselves.
from flashinfer import shuffle_matrix_a, shuffle_matrix_sf_a
weight = layer.weight.data
weight_scale = layer.weight_scale.data
epilogue_tile_m = 128
weight = shuffle_matrix_a(weight.view(torch.uint8), epilogue_tile_m)
weight_scale = (
shuffle_matrix_sf_a(weight_scale.view(torch.uint8), epilogue_tile_m)
.reshape(weight_scale.shape)
.view(torch.float8_e4m3fn)
)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
layer.weight = Parameter(weight, requires_grad=False)
else:
swizzled_weight_scale = swizzle_blockscale(layer.weight_scale)
layer.weight_scale = Parameter(swizzled_weight_scale, requires_grad=False)
layer.weight = Parameter(layer.weight.data, requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
if self.backend == "marlin":
return apply_fp4_marlin_linear(
input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
weight_scale_2=layer.weight_scale_2,
workspace=layer.workspace,
size_n=layer.output_size_per_partition,
size_k=layer.input_size_per_partition,
bias=bias,
)
output_dtype = x.dtype
output_shape = [x.shape[0], layer.weight.shape[0]]
# quantize BF16 or FP16 to (FP4 and interleaved block scale)
x_fp4, x_blockscale = scaled_fp4_quant(x, layer.input_scale_inv)
# validate dtypes of quantized input, input block scale,
# weight and weight_blockscale
assert x_fp4.dtype == torch.uint8
assert layer.weight.dtype == torch.uint8
assert x_blockscale.dtype == torch.float8_e4m3fn
assert layer.weight_scale.dtype == torch.float8_e4m3fn
assert layer.alpha.dtype == torch.float32
mm_args = (
x_fp4,
layer.weight,
x_blockscale,
layer.weight_scale,
layer.alpha,
output_dtype,
)
if self.backend.startswith("flashinfer-"):
backend_name = self.backend[len("flashinfer-") :]
out = flashinfer_scaled_fp4_mm(*mm_args, backend=backend_name)
else:
assert self.backend == "cutlass"
out = cutlass_scaled_fp4_mm(*mm_args)
if bias is not None:
out = out + bias
return out.view(*output_shape)
class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
"""
MoE Method for FP4 Quantization.
Args:
quant_config: NVFP4 Quant Config
"""
def __init__(
self,
quant_config: ModelOptNvFp4Config,
moe: FusedMoEConfig,
layer: torch.nn.Module,
) -> None:
from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
detect_nvfp4_moe_support,
)
super().__init__(moe)
self.quant_config = quant_config
self.layer = layer
_nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
self.allow_flashinfer = _nvfp4.allow_flashinfer
self.use_marlin = _nvfp4.use_marlin
self.flashinfer_moe_backend = None
self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}
if self.allow_flashinfer:
self.flashinfer_moe_backend = get_flashinfer_moe_backend()
logger.info_once(
f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
" for ModelOptNvFp4FusedMoE."
)
def maybe_make_prepare_finalize(self) -> mk.FusedMoEPrepareAndFinalize | None:
if self.use_marlin or (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
):
return None
elif (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS
):
# For now, fp4 moe only works with the flashinfer dispatcher.
prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
self.moe
)
logger.debug_once("%s", prepare_finalize.__class__.__name__)
return prepare_finalize
else:
return super().maybe_make_prepare_finalize()
def select_gemm_impl(
self,
prepare_finalize: mk.FusedMoEPrepareAndFinalize,
layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
assert self.moe_quant_config is not None
experts = select_nvfp4_gemm_impl(
self.moe,
self.moe_quant_config,
allow_flashinfer=self.allow_flashinfer,
)
logger.debug_once("Using %s", experts.__class__.__name__)
return experts
def uses_weight_scale_2_pattern(self) -> bool:
"""
FP4 variants use 'weight_scale_2' pattern for per-tensor weight scales.
"""
return True
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
if not self.quant_config.is_checkpoint_nvfp4_serialized:
raise ValueError(
"NVFP4 quantization was selected, "
" dynamic quantization is not supported."
)
layer.num_experts = num_experts
layer.params_dtype = params_dtype
layer.quant_config = self.quant_config
weight_dtype = torch.uint8
weight_scale_dtype = torch.float8_e4m3fn
weight_loader = extra_weight_attrs.get("weight_loader")
# GEMM 1
w13_weight = ModelWeightParameter(
data=torch.empty(
num_experts,
2 * intermediate_size_per_partition,
# 2 fp4 items are packed in the input dimension
hidden_size // 2,
dtype=weight_dtype,
),
input_dim=1,
output_dim=2,
weight_loader=weight_loader,
)
layer.register_parameter("w13_weight", w13_weight)
# GEMM 2
w2_weight = ModelWeightParameter(
data=torch.empty(
num_experts,
hidden_size,
# 2 fp4 items are packed in the input dimension
intermediate_size_per_partition // 2,
dtype=weight_dtype,
),
input_dim=1,
output_dim=2,
weight_loader=weight_loader,
)
layer.register_parameter("w2_weight", w2_weight)
w13_weight_scale = ModelWeightParameter(
data=torch.empty(
num_experts,
2 * intermediate_size_per_partition,
# 2 fp4 items are packed in the input dimension
hidden_size // self.quant_config.group_size,
dtype=weight_scale_dtype,
),
input_dim=1,
output_dim=2,
weight_loader=weight_loader,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
w2_weight_scale = ModelWeightParameter(
data=torch.empty(
num_experts,
hidden_size,
# 2 fp4 items are packed in the input dimension
intermediate_size_per_partition // self.quant_config.group_size,
dtype=weight_scale_dtype,
),
input_dim=1,
output_dim=2,
weight_loader=weight_loader,
)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
)
w13_weight_scale_2 = PerTensorScaleParameter(
data=torch.empty(num_experts, 2, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w13_weight_scale_2", w13_weight_scale_2)
w2_weight_scale_2 = PerTensorScaleParameter(
data=torch.empty(num_experts, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w2_weight_scale_2", w2_weight_scale_2)
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
)
w13_input_scale = PerTensorScaleParameter(
data=torch.empty(num_experts, 2, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w13_input_scale", w13_input_scale)
w2_input_scale = PerTensorScaleParameter(
data=torch.empty(num_experts, dtype=torch.float32),
weight_loader=weight_loader,
)
layer.register_parameter("w2_input_scale", w2_input_scale)
def prepare_static_weights_for_trtllm_fp4_moe(
self,
# args_dequant,
# args,
gemm1_weights,
gemm2_weights,
gemm1_scales_linear_fp4_bytes,
gemm2_scales_linear_fp4_bytes,
hidden_size,
intermediate_size,
num_experts,
):
from flashinfer import nvfp4_block_scale_interleave
from flashinfer.fused_moe.core import (
_maybe_get_cached_w3_w1_permute_indices,
get_w2_permute_indices_with_cache,
)
"""Prepare quantized weights for kernel (done offline with weights)."""
epilogue_tile_m = 128 # FIXME: this depends on the kernel internals
# Convert quantized weights to proper formats
gemm1_weights_fp4 = gemm1_weights.view(torch.float8_e4m3fn).reshape(
num_experts, 2 * intermediate_size, hidden_size // 2
) # packed fp4
gemm1_scales_linear_fp4 = gemm1_scales_linear_fp4_bytes.view(
torch.float8_e4m3fn
).reshape(
num_experts, 2 * intermediate_size, hidden_size // 16
) # fp8 scaling factors
gemm2_weights_fp4 = gemm2_weights.view(torch.float8_e4m3fn).reshape(
num_experts, hidden_size, intermediate_size // 2
) # packed fp4
gemm2_scales_linear_fp4 = gemm2_scales_linear_fp4_bytes.view(
torch.float8_e4m3fn
).reshape(
num_experts, hidden_size, intermediate_size // 16
) # fp8 scaling factors
gemm1_weights_fp4_shuffled = []
gemm1_scales_fp4_shuffled = []
gemm2_weights_fp4_shuffled = []
gemm2_scales_fp4_shuffled = []
for i in range(num_experts):
# Calculate the permute indices for the following:
# 1. Reorder rows of W1 and scales for fused gated activation
# 2. Shuffle weights and scaling factors for transposed mma output
# for both w3_w1 and w2 weights and scale factors
permute_indices = _maybe_get_cached_w3_w1_permute_indices(
self._cache_permute_indices,
gemm1_weights_fp4[i].view(torch.uint8),
epilogue_tile_m,
)
gemm1_weights_fp4_shuffled.append(
gemm1_weights_fp4[i]
.view(torch.uint8)[permute_indices.to(gemm1_weights_fp4.device)]
.contiguous()
)
permute_sf_indices = _maybe_get_cached_w3_w1_permute_indices(
self._cache_permute_indices,
gemm1_scales_linear_fp4[i].view(torch.uint8),
epilogue_tile_m,
num_elts_per_sf=16,
)
gemm1_scales_fp4_shuffled.append(
nvfp4_block_scale_interleave(
gemm1_scales_linear_fp4[i]
.view(torch.uint8)[
permute_sf_indices.to(gemm1_scales_linear_fp4.device)
]
.contiguous()
)
)
permute_indices = get_w2_permute_indices_with_cache(
self._cache_permute_indices,
gemm2_weights_fp4[i].view(torch.uint8),
epilogue_tile_m,
)
gemm2_weights_fp4_shuffled.append(
gemm2_weights_fp4[i]
.view(torch.uint8)[permute_indices.to(gemm2_weights_fp4.device)]
.contiguous()
)
permute_sf_indices = get_w2_permute_indices_with_cache(
self._cache_permute_indices,
gemm2_scales_linear_fp4[i].view(torch.uint8),
epilogue_tile_m,
num_elts_per_sf=16,
)
gemm2_scales_fp4_shuffled.append(
nvfp4_block_scale_interleave(
gemm2_scales_linear_fp4[i]
.view(torch.uint8)[
permute_sf_indices.to(gemm2_scales_linear_fp4.device)
]
.contiguous()
)
)
# Stack weights for all experts
gemm1_weights_fp4_shuffled = torch.stack(gemm1_weights_fp4_shuffled)
gemm1_scales_fp4_shuffled = (
torch.stack(gemm1_scales_fp4_shuffled)
.view(torch.float8_e4m3fn)
.reshape(num_experts, 2 * intermediate_size, hidden_size // 16)
)
gemm2_weights_fp4_shuffled = torch.stack(gemm2_weights_fp4_shuffled)
gemm2_scales_fp4_shuffled = (
torch.stack(gemm2_scales_fp4_shuffled)
.view(torch.float8_e4m3fn)
.reshape(num_experts, hidden_size, intermediate_size // 16)
)
return (
gemm1_weights_fp4_shuffled,
gemm1_scales_fp4_shuffled,
gemm2_weights_fp4_shuffled,
gemm2_scales_fp4_shuffled,
)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# GEMM 1 processing
gemm1_weight = layer.w13_weight.data
gemm1_weight_scale = layer.w13_weight_scale.data
if self.allow_flashinfer:
gemm1_weight, gemm1_weight_scale = reorder_w1w3_to_w3w1(
gemm1_weight, gemm1_weight_scale, dim=-2
)
layer.w13_weight = Parameter(gemm1_weight, requires_grad=False)
layer.w13_weight_scale = Parameter(gemm1_weight_scale, requires_grad=False)
# Common processing for w13_weight_scale_2
if not torch.allclose(
layer.w13_weight_scale_2[:, 0], layer.w13_weight_scale_2[:, 1]
):
logger.warning_once(
"w1_weight_scale_2 must match w3_weight_scale_2. "
"Accuracy may be affected."
)
w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0]
layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False)
# Common processing for input scales and alphas
w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
layer.g1_alphas = Parameter(
(w13_input_scale * w13_weight_scale_2).to(torch.float32),
requires_grad=False,
)
# This is for quantization, so we need to invert it.
layer.w13_input_scale_quant = Parameter(
(1 / w13_input_scale).to(torch.float32), requires_grad=False
)
# GEMM 2 processing
layer.g2_alphas = Parameter(
(layer.w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
requires_grad=False,
)
# This is for quantization, so we need to invert it.
layer.w2_input_scale_quant = Parameter(
(1 / layer.w2_input_scale).to(torch.float32), requires_grad=False
)
# TensorRT-LLM specific processing
if (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
):
# Prepare static weights for TRT-LLM kernel
# alternate: prepare_static_weight_layouts_for_trtllm_moe
(
gemm1_weights_fp4_shuffled,
gemm1_scales_fp4_shuffled,
gemm2_weights_fp4_shuffled,
gemm2_scales_fp4_shuffled,
) = self.prepare_static_weights_for_trtllm_fp4_moe(
layer.w13_weight,
layer.w2_weight,
layer.w13_weight_scale,
layer.w2_weight_scale,
layer.w2_weight.size(-2), # hidden_size
layer.w13_weight.size(-2) // 2, # intermediate_size
layer.w13_weight.size(0), # num_experts
)
logger.debug_once("Finished shuffling weights for TRT-LLM MOE")
layer.gemm1_weights_fp4_shuffled = Parameter(
gemm1_weights_fp4_shuffled, requires_grad=False
)
layer.gemm2_weights_fp4_shuffled = Parameter(
gemm2_weights_fp4_shuffled, requires_grad=False
)
layer.gemm1_scales_fp4_shuffled = Parameter(
gemm1_scales_fp4_shuffled, requires_grad=False
)
layer.gemm2_scales_fp4_shuffled = Parameter(
gemm2_scales_fp4_shuffled, requires_grad=False
)
# Additional parameter needed for TRT-LLM
layer.g1_scale_c = Parameter(
(layer.w2_input_scale_quant * layer.g1_alphas).to(torch.float32),
requires_grad=False,
)
# Clean up weights that won't be used by TRT-LLM
del layer.w2_weight
del layer.w2_weight_scale
del layer.w13_weight
del layer.w13_weight_scale
elif self.use_marlin:
# Marlin processing
prepare_moe_fp4_layer_for_marlin(layer)
del layer.g1_alphas
del layer.g2_alphas
del layer.w13_input_scale_quant
del layer.w2_input_scale_quant
else:
# Non-TRT-LLM processing (Cutlass or non-flashinfer)
w13_blockscale_swizzled = swizzle_blockscale(layer.w13_weight_scale)
layer.w13_weight_scale = Parameter(
w13_blockscale_swizzled, requires_grad=False
)
w2_blockscale_swizzled = swizzle_blockscale(layer.w2_weight_scale)
layer.w2_weight_scale = Parameter(
w2_blockscale_swizzled, requires_grad=False
)
layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)
def get_fused_moe_quant_config(
self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
if (
self.use_marlin
or self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
):
return None
return nvfp4_moe_quant_config(
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
g1_alphas=layer.g1_alphas,
g2_alphas=layer.g2_alphas,
a1_gscale=layer.w13_input_scale_quant,
a2_gscale=layer.w2_input_scale_quant,
)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: int | None = None,
num_expert_group: int | None = None,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
custom_routing_function: Callable | None = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: torch.Tensor | None = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: torch.Tensor | None = None,
logical_to_physical_map: torch.Tensor | None = None,
logical_replica_count: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `ModelOptNvFp4FusedMoE` yet."
)
assert activation == "silu", "Only SiLU activation is supported."
if (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
):
import flashinfer
from vllm.model_executor.models.llama4 import Llama4MoE
assert self.fused_experts is None
a1_gscale = layer.w13_input_scale_quant
(hidden_states_fp4, hidden_states_scale_linear_fp4) = (
flashinfer.fp4_quantize(
x,
a1_gscale,
is_sf_swizzled_layout=False,
)
)
use_llama4_routing = (
custom_routing_function is Llama4MoE.custom_routing_function
)
routing_method_type = flashinfer.RoutingMethodType.DeepSeekV3
if use_llama4_routing:
routing_method_type = flashinfer.RoutingMethodType.Llama4
routing_bias = e_score_correction_bias
if routing_bias is not None:
routing_bias = routing_bias.to(torch.bfloat16)
out = flashinfer.fused_moe.trtllm_fp4_block_scale_moe(
routing_logits=router_logits
if use_llama4_routing
else router_logits.to(torch.float32),
routing_bias=routing_bias,
hidden_states=hidden_states_fp4,
hidden_states_scale=hidden_states_scale_linear_fp4.view(
torch.float8_e4m3fn
).flatten(),
gemm1_weights=layer.gemm1_weights_fp4_shuffled.data,
gemm1_weights_scale=layer.gemm1_scales_fp4_shuffled.data.view(
torch.float8_e4m3fn
),
gemm1_bias=None,
gemm1_alpha=None,
gemm1_beta=None,
gemm1_clamp_limit=None,
gemm2_weights=layer.gemm2_weights_fp4_shuffled.data,
gemm2_weights_scale=layer.gemm2_scales_fp4_shuffled.data.view(
torch.float8_e4m3fn
),
gemm2_bias=None,
output1_scale_scalar=layer.g1_scale_c.data,
output1_scale_gate_scalar=layer.g1_alphas.data,
output2_scale_scalar=layer.g2_alphas.data,
num_experts=global_num_experts,
top_k=top_k,
n_group=num_expert_group if num_expert_group is not None else 0,
topk_group=topk_group if topk_group is not None else 0,
intermediate_size=layer.intermediate_size_per_partition,
local_expert_offset=layer.ep_rank * layer.local_num_experts,
local_num_experts=layer.local_num_experts,
routed_scaling_factor=None,
tile_tokens_dim=None,
routing_method_type=routing_method_type,
do_finalize=True,
)[0]
return out
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype,
)
#
# Note: the order here is important. self.fused_experts can override
# flashinfer cutlass, cutlass fp4 or fused_experts but not marlin or
# trtllm.
#
if self.use_marlin:
assert self.fused_experts is None
return fused_marlin_moe(
x,
layer.w13_weight,
layer.w2_weight,
None,
None,
layer.w13_weight_scale,
layer.w2_weight_scale,
router_logits,
topk_weights,
topk_ids,
global_scale1=layer.w13_weight_scale_2,
global_scale2=layer.w2_weight_scale_2,
quant_type_id=scalar_types.float4_e2m1f.id,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
workspace=layer.workspace,
)
elif self.fused_experts is not None:
assert (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS
)
assert is_valid_flashinfer_cutlass_fused_moe(
x, layer.w13_weight, layer.w2_weight
), "Flashinfer CUTLASS Fused MoE not applicable!"
return self.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=False, # TODO(shuw): fix later, now output is high prec
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
elif (
self.allow_flashinfer
and self.flashinfer_moe_backend == FlashinferMoeBackend.CUTLASS
):
from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
flashinfer_cutlass_moe_fp4,
)
assert self.moe_quant_config is not None
return flashinfer_cutlass_moe_fp4(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
quant_config=self.moe_quant_config,
inplace=False,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
else:
# If no modular kernel is provided, use cutlass_moe_fp4 for TP case
# only (no EP).
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
assert self.moe_quant_config is not None
return cutlass_moe_fp4(
a=x,
w1_fp4=layer.w13_weight,
w2_fp4=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
quant_config=self.moe_quant_config,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
# TODO: derive from arguments
m=x.shape[0],
n=layer.w2_weight.shape[2] * 2,
k=x.shape[1],
e=layer.w13_weight.shape[0],
)