Files
vllm-anthropic/vllm/model_executor/layers/fused_moe/trtllm_moe.py

137 lines
4.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEConfig,
FusedMoEQuantConfig,
)
from vllm.model_executor.layers.fused_moe.topk_weight_and_reduce import (
TopKWeightAndReduceNoOP,
)
class TrtLlmGenExperts(mk.FusedMoEPermuteExpertsUnpermute):
def __init__(
self,
moe: FusedMoEConfig,
quant_config: FusedMoEQuantConfig,
gemm1_alpha,
gemm1_beta,
gemm1_clamp_limit,
max_capture_size,
):
super().__init__(quant_config)
self.moe = moe
self.gemm1_alpha = gemm1_alpha
self.gemm1_beta = gemm1_beta
self.gemm1_clamp_limit = gemm1_clamp_limit
self.max_capture_size = max_capture_size
@property
def activation_formats(
self,
) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
return (
mk.FusedMoEActivationFormat.Standard,
mk.FusedMoEActivationFormat.Standard,
)
def supports_chunking(self) -> bool:
return True
def supports_expert_map(self) -> bool:
return True
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
return TopKWeightAndReduceNoOP()
def workspace_shapes(
self,
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
expert_tokens_meta: mk.ExpertTokensMetadata | None,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
# The workspaces for this implementation are managed by flashinfer.
workspace1 = (0,)
workspace2 = (0,)
output = (M, K)
return (workspace1, workspace2, output)
def apply(
self,
output: torch.Tensor,
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str,
global_num_experts: int,
expert_map: torch.Tensor | None,
a1q_scale: torch.Tensor | None,
a2_scale: torch.Tensor | None,
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_tokens_meta: mk.ExpertTokensMetadata | None,
apply_router_weight_on_input: bool,
):
topk = topk_ids.size(-1)
local_num_experts = w1.size(0)
intermediate_size = w2.size(1)
local_expert_offset = self.moe.ep_rank * local_num_experts
x_quant = hidden_states
x_scale = a1q_scale
if x_scale is not None:
x_scale = x_scale.view(torch.float8_e4m3fn).reshape(*x_quant.shape[:-1], -1)
packed_tensor = (topk_ids.to(torch.int32) << 16) | topk_weights.to(
torch.bfloat16
).view(torch.int16)
assert self.w1_scale is not None
assert self.w2_scale is not None
kwargs = {
"topk_ids": packed_tensor,
"routing_bias": None,
"hidden_states": x_quant,
"hidden_states_scale": x_scale,
"gemm1_weights": w1,
"gemm1_weights_scale": self.w1_scale,
"gemm1_bias": self.w1_bias,
"gemm1_alpha": self.gemm1_alpha,
"gemm1_beta": self.gemm1_beta,
"gemm1_clamp_limit": self.gemm1_clamp_limit,
"gemm2_weights": w2,
"gemm2_weights_scale": self.w2_scale,
"gemm2_bias": self.w2_bias,
"output1_scale_scalar": None,
"output1_scale_gate_scalar": None,
"output2_scale_scalar": None,
"num_experts": global_num_experts,
"top_k": topk,
"n_group": None,
"topk_group": None,
"intermediate_size": intermediate_size,
"local_expert_offset": local_expert_offset,
"local_num_experts": local_num_experts,
"routed_scaling_factor": None,
"tile_tokens_dim": None,
"routing_method_type": 1,
"do_finalize": True,
"output": output,
"tune_max_num_tokens": self.max_capture_size,
}
from flashinfer import trtllm_fp4_block_scale_routed_moe
trtllm_fp4_block_scale_routed_moe(**kwargs)
return output