#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Test script for the token-to-expert routing simulator. This script demonstrates how to use the routing simulator to test different routing strategies and analyze their performance, including integration tests with FusedMoE layer. """ import pytest import torch from vllm.model_executor.layers.fused_moe.routing_simulator import ( DistributionBasedRouting, RoutingSimulator, ) @pytest.fixture def device(): """Fixture to provide the appropriate device for testing.""" return torch.device("cuda" if torch.cuda.is_available() else "cpu") @pytest.mark.parametrize("num_tokens", [1, 16, 256]) @pytest.mark.parametrize("hidden_size", [64, 1024]) @pytest.mark.parametrize("num_experts", [16, 128]) @pytest.mark.parametrize("top_k", [1, 4]) def test_basic_functionality( num_tokens: int, hidden_size: int, num_experts: int, top_k: int, device, ): """Test basic functionality of the routing simulator.""" # Test each routing strategy strategies = RoutingSimulator.get_available_strategies() hidden_states = torch.randn(num_tokens, hidden_size, device=device) router_logits = torch.randn(num_tokens, num_experts, device=device) for strategy in strategies: # Simulate routing topk_weights, topk_ids = RoutingSimulator.simulate_routing( hidden_states=hidden_states, router_logits=router_logits, strategy_name=strategy, top_k=top_k, ) # Check output shapes assert topk_weights.shape == ( num_tokens, top_k, ), f"Wrong weights shape for {strategy}" assert topk_ids.shape == ( num_tokens, top_k, ), f"Wrong ids shape for {strategy}" # Check that expert IDs are valid assert topk_ids.min() >= 0, f"Invalid expert ID (negative) for {strategy}" assert topk_ids.max() < num_experts, ( f"Invalid expert ID (too large) for {strategy}" ) def test_routing_strategy_integration(monkeypatch, device): """Test that the routing strategy environment variable works with FusedMoE.""" pytest.importorskip("vllm.model_executor.layers.fused_moe.layer") import vllm.envs as envs from vllm.model_executor.layers.fused_moe.layer import FusedMoE # Test parameters num_tokens = 32 hidden_size = 16 num_experts = 4 top_k = 2 # Create test data hidden_states = torch.randn(num_tokens, hidden_size, device=device) router_logits = torch.randn(num_tokens, num_experts, device=device) # Test different routing strategies strategies = RoutingSimulator.get_available_strategies() for strategy in strategies: # Set environment variable env_name = "VLLM_MOE_ROUTING_SIMULATION_STRATEGY" monkeypatch.setenv(env_name, strategy) # Force reload of environment variable envs.environment_variables[env_name] = lambda s=strategy: s # Test the select_experts method topk_weights, topk_ids, _ = FusedMoE.select_experts( hidden_states=hidden_states, router_logits=router_logits, top_k=top_k, use_grouped_topk=False, renormalize=True, indices_type=torch.long, ) # Verify output shapes assert topk_weights.shape == (num_tokens, top_k), ( f"Wrong weights shape for {strategy}" ) assert topk_ids.shape == (num_tokens, top_k), f"Wrong ids shape for {strategy}" # Verify expert IDs are valid assert topk_ids.min() >= 0, f"Invalid expert ID (negative) for {strategy}" assert topk_ids.max() < num_experts, ( f"Invalid expert ID (too large) for {strategy}" ) def test_distribution_based_routing_with_custom_strategy(): """Test registering and using DistributionBasedRouting with custom parameters.""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Register custom distribution-based strategy custom_strategy = DistributionBasedRouting(distribution="normal", mean=2.0, std=0.5) RoutingSimulator.register_strategy("custom_normal", custom_strategy) # Test data num_tokens = 60 hidden_size = 48 num_experts = 6 top_k = 3 hidden_states = torch.randn(num_tokens, hidden_size, device=device) router_logits = torch.randn(num_tokens, num_experts, device=device) # Use the custom strategy topk_weights, topk_ids = RoutingSimulator.simulate_routing( hidden_states=hidden_states, router_logits=router_logits, strategy_name="custom_normal", top_k=top_k, ) # Check output shapes assert topk_weights.shape == (num_tokens, top_k) assert topk_ids.shape == (num_tokens, top_k) # Check that expert IDs are valid assert topk_ids.min() >= 0 assert topk_ids.max() < num_experts def test_instance_compatibility(): """Test that static methods work correctly.""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Test static method directly hidden_states = torch.randn(10, 8, device=device) router_logits = torch.randn(10, 4, device=device) topk_weights, topk_ids = RoutingSimulator.simulate_routing( hidden_states=hidden_states, router_logits=router_logits, strategy_name="uniform_random", top_k=2, ) assert topk_weights.shape == (10, 2) assert topk_ids.shape == (10, 2)