mirror of
https://github.com/BerriAI/litellm.git
synced 2025-12-06 11:33:26 +08:00
* add count_input_file_usage * add count_input_file_usage * fix count_input_file_usage * _get_batch_job_input_file_usage * fixes imports * use _get_batch_job_input_file_usage * test_batch_rate_limits * add _check_and_increment_batch_counters * add get_rate_limiter_for_call_type * test_batch_rate_limit_multiple_requests * fixes for batch limits * fix linting * fix MYPY linting
336 lines
12 KiB
Python
336 lines
12 KiB
Python
import json
|
|
import time
|
|
from typing import Any, List, Literal, Optional, Tuple
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm._uuid import uuid
|
|
from litellm.types.llms.openai import Batch
|
|
from litellm.types.utils import CallTypes, ModelResponse, Usage
|
|
from litellm.utils import token_counter
|
|
|
|
|
|
async def calculate_batch_cost_and_usage(
|
|
file_content_dictionary: List[dict],
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"],
|
|
model_name: Optional[str] = None,
|
|
) -> Tuple[float, Usage, List[str]]:
|
|
"""
|
|
Calculate the cost and usage of a batch
|
|
"""
|
|
batch_cost = _batch_cost_calculator(
|
|
custom_llm_provider=custom_llm_provider,
|
|
file_content_dictionary=file_content_dictionary,
|
|
model_name=model_name,
|
|
)
|
|
batch_usage = _get_batch_job_total_usage_from_file_content(
|
|
file_content_dictionary=file_content_dictionary,
|
|
custom_llm_provider=custom_llm_provider,
|
|
model_name=model_name,
|
|
)
|
|
batch_models = _get_batch_models_from_file_content(file_content_dictionary, model_name)
|
|
|
|
return batch_cost, batch_usage, batch_models
|
|
|
|
|
|
async def _handle_completed_batch(
|
|
batch: Batch,
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"],
|
|
model_name: Optional[str] = None,
|
|
) -> Tuple[float, Usage, List[str]]:
|
|
"""Helper function to process a completed batch and handle logging"""
|
|
# Get batch results
|
|
file_content_dictionary = await _get_batch_output_file_content_as_dictionary(
|
|
batch, custom_llm_provider
|
|
)
|
|
|
|
# Calculate costs and usage
|
|
batch_cost = _batch_cost_calculator(
|
|
custom_llm_provider=custom_llm_provider,
|
|
file_content_dictionary=file_content_dictionary,
|
|
model_name=model_name,
|
|
)
|
|
batch_usage = _get_batch_job_total_usage_from_file_content(
|
|
file_content_dictionary=file_content_dictionary,
|
|
custom_llm_provider=custom_llm_provider,
|
|
model_name=model_name,
|
|
)
|
|
|
|
batch_models = _get_batch_models_from_file_content(file_content_dictionary, model_name)
|
|
|
|
return batch_cost, batch_usage, batch_models
|
|
|
|
|
|
def _get_batch_models_from_file_content(
|
|
file_content_dictionary: List[dict],
|
|
model_name: Optional[str] = None,
|
|
) -> List[str]:
|
|
"""
|
|
Get the models from the file content
|
|
"""
|
|
if model_name:
|
|
return [model_name]
|
|
batch_models = []
|
|
for _item in file_content_dictionary:
|
|
if _batch_response_was_successful(_item):
|
|
_response_body = _get_response_from_batch_job_output_file(_item)
|
|
_model = _response_body.get("model")
|
|
if _model:
|
|
batch_models.append(_model)
|
|
return batch_models
|
|
|
|
|
|
def _batch_cost_calculator(
|
|
file_content_dictionary: List[dict],
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
|
|
model_name: Optional[str] = None,
|
|
) -> float:
|
|
"""
|
|
Calculate the cost of a batch based on the output file id
|
|
"""
|
|
# Handle Vertex AI with specialized method
|
|
if custom_llm_provider == "vertex_ai" and model_name:
|
|
batch_cost, _ = calculate_vertex_ai_batch_cost_and_usage(file_content_dictionary, model_name)
|
|
verbose_logger.debug("vertex_ai_total_cost=%s", batch_cost)
|
|
return batch_cost
|
|
|
|
# For other providers, use the existing logic
|
|
total_cost = _get_batch_job_cost_from_file_content(
|
|
file_content_dictionary=file_content_dictionary,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
verbose_logger.debug("total_cost=%s", total_cost)
|
|
return total_cost
|
|
|
|
|
|
def calculate_vertex_ai_batch_cost_and_usage(
|
|
vertex_ai_batch_responses: List[dict],
|
|
model_name: Optional[str] = None,
|
|
) -> Tuple[float, Usage]:
|
|
"""
|
|
Calculate both cost and usage from Vertex AI batch responses
|
|
"""
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexGeminiConfig,
|
|
)
|
|
total_cost = 0.0
|
|
total_tokens = 0
|
|
prompt_tokens = 0
|
|
completion_tokens = 0
|
|
|
|
for response in vertex_ai_batch_responses:
|
|
if response.get("status") == "JOB_STATE_SUCCEEDED": # Check if response was successful
|
|
# Transform Vertex AI response to OpenAI format if needed
|
|
|
|
# Create required arguments for the transformation method
|
|
model_response = ModelResponse()
|
|
|
|
# Ensure model_name is not None
|
|
actual_model_name = model_name or "gemini-2.5-flash"
|
|
|
|
# Create a real LiteLLM logging object
|
|
logging_obj = Logging(
|
|
model=actual_model_name,
|
|
messages=[{"role": "user", "content": "batch_request"}],
|
|
stream=False,
|
|
call_type=CallTypes.aretrieve_batch,
|
|
start_time=time.time(),
|
|
litellm_call_id="batch_" + str(uuid.uuid4()),
|
|
function_id="batch_processing",
|
|
litellm_trace_id=str(uuid.uuid4()),
|
|
kwargs={"optional_params": {}}
|
|
)
|
|
|
|
# Add the optional_params attribute that the Vertex AI transformation expects
|
|
logging_obj.optional_params = {}
|
|
raw_response = httpx.Response(200) # Mock response object
|
|
|
|
openai_format_response = VertexGeminiConfig()._transform_google_generate_content_to_openai_model_response(
|
|
completion_response=response["response"],
|
|
model_response=model_response,
|
|
model=actual_model_name,
|
|
logging_obj=logging_obj,
|
|
raw_response=raw_response,
|
|
)
|
|
|
|
# Calculate cost using existing function
|
|
cost = litellm.completion_cost(
|
|
completion_response=openai_format_response,
|
|
custom_llm_provider="vertex_ai",
|
|
call_type=CallTypes.aretrieve_batch.value,
|
|
)
|
|
total_cost += cost
|
|
|
|
# Extract usage from the transformed response
|
|
usage_obj = getattr(openai_format_response, 'usage', None)
|
|
if usage_obj:
|
|
usage = usage_obj
|
|
else:
|
|
# Fallback: create usage from response dict
|
|
response_dict = openai_format_response.dict() if hasattr(openai_format_response, 'dict') else {}
|
|
usage = _get_batch_job_usage_from_response_body(response_dict)
|
|
|
|
total_tokens += usage.total_tokens
|
|
prompt_tokens += usage.prompt_tokens
|
|
completion_tokens += usage.completion_tokens
|
|
|
|
return total_cost, Usage(
|
|
total_tokens=total_tokens,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
)
|
|
|
|
|
|
async def _get_batch_output_file_content_as_dictionary(
|
|
batch: Batch,
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
|
|
) -> List[dict]:
|
|
"""
|
|
Get the batch output file content as a list of dictionaries
|
|
"""
|
|
from litellm.files.main import afile_content
|
|
|
|
if custom_llm_provider == "vertex_ai":
|
|
raise ValueError("Vertex AI does not support file content retrieval")
|
|
|
|
if batch.output_file_id is None:
|
|
raise ValueError("Output file id is None cannot retrieve file content")
|
|
|
|
_file_content = await afile_content(
|
|
file_id=batch.output_file_id,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
return _get_file_content_as_dictionary(_file_content.content)
|
|
|
|
|
|
def _get_file_content_as_dictionary(file_content: bytes) -> List[dict]:
|
|
"""
|
|
Get the file content as a list of dictionaries from JSON Lines format
|
|
"""
|
|
try:
|
|
_file_content_str = file_content.decode("utf-8")
|
|
# Split by newlines and parse each line as a separate JSON object
|
|
json_objects = []
|
|
for line in _file_content_str.strip().split("\n"):
|
|
if line: # Skip empty lines
|
|
json_objects.append(json.loads(line))
|
|
verbose_logger.debug("json_objects=%s", json.dumps(json_objects, indent=4))
|
|
return json_objects
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def _get_batch_job_cost_from_file_content(
|
|
file_content_dictionary: List[dict],
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
|
|
) -> float:
|
|
"""
|
|
Get the cost of a batch job from the file content
|
|
"""
|
|
try:
|
|
total_cost: float = 0.0
|
|
# parse the file content as json
|
|
verbose_logger.debug(
|
|
"file_content_dictionary=%s", json.dumps(file_content_dictionary, indent=4)
|
|
)
|
|
for _item in file_content_dictionary:
|
|
if _batch_response_was_successful(_item):
|
|
_response_body = _get_response_from_batch_job_output_file(_item)
|
|
total_cost += litellm.completion_cost(
|
|
completion_response=_response_body,
|
|
custom_llm_provider=custom_llm_provider,
|
|
call_type=CallTypes.aretrieve_batch.value,
|
|
)
|
|
verbose_logger.debug("total_cost=%s", total_cost)
|
|
return total_cost
|
|
except Exception as e:
|
|
verbose_logger.error("error in _get_batch_job_cost_from_file_content", e)
|
|
raise e
|
|
|
|
|
|
def _get_batch_job_total_usage_from_file_content(
|
|
file_content_dictionary: List[dict],
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
|
|
model_name: Optional[str] = None,
|
|
) -> Usage:
|
|
"""
|
|
Get the tokens of a batch job from the file content
|
|
"""
|
|
# Handle Vertex AI with specialized method
|
|
if custom_llm_provider == "vertex_ai" and model_name:
|
|
_, batch_usage = calculate_vertex_ai_batch_cost_and_usage(file_content_dictionary, model_name)
|
|
return batch_usage
|
|
|
|
# For other providers, use the existing logic
|
|
total_tokens: int = 0
|
|
prompt_tokens: int = 0
|
|
completion_tokens: int = 0
|
|
for _item in file_content_dictionary:
|
|
if _batch_response_was_successful(_item):
|
|
_response_body = _get_response_from_batch_job_output_file(_item)
|
|
usage: Usage = _get_batch_job_usage_from_response_body(_response_body)
|
|
total_tokens += usage.total_tokens
|
|
prompt_tokens += usage.prompt_tokens
|
|
completion_tokens += usage.completion_tokens
|
|
return Usage(
|
|
total_tokens=total_tokens,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
)
|
|
|
|
def _get_batch_job_input_file_usage(
|
|
file_content_dictionary: List[dict],
|
|
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai",
|
|
model_name: Optional[str] = None,
|
|
) -> Usage:
|
|
"""
|
|
Count the number of tokens in the input file
|
|
|
|
Used for batch rate limiting to count the number of tokens in the input file
|
|
"""
|
|
prompt_tokens: int = 0
|
|
completion_tokens: int = 0
|
|
|
|
for _item in file_content_dictionary:
|
|
body = _item.get("body", {})
|
|
model = body.get("model", model_name or "")
|
|
messages = body.get("messages", [])
|
|
|
|
if messages:
|
|
item_tokens = token_counter(model=model, messages=messages)
|
|
prompt_tokens += item_tokens
|
|
|
|
return Usage(
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
)
|
|
|
|
def _get_batch_job_usage_from_response_body(response_body: dict) -> Usage:
|
|
"""
|
|
Get the tokens of a batch job from the response body
|
|
"""
|
|
_usage_dict = response_body.get("usage", None) or {}
|
|
usage: Usage = Usage(**_usage_dict)
|
|
return usage
|
|
|
|
|
|
def _get_response_from_batch_job_output_file(batch_job_output_file: dict) -> Any:
|
|
"""
|
|
Get the response from the batch job output file
|
|
"""
|
|
_response: dict = batch_job_output_file.get("response", None) or {}
|
|
_response_body = _response.get("body", None) or {}
|
|
return _response_body
|
|
|
|
|
|
def _batch_response_was_successful(batch_job_output_file: dict) -> bool:
|
|
"""
|
|
Check if the batch job response status == 200
|
|
"""
|
|
_response: dict = batch_job_output_file.get("response", None) or {}
|
|
return _response.get("status_code", None) == 200
|