Files
litellm/cookbook/veo_video_generation.py
Ishaan Jaff 23ae7170d1 [Feat] Allow using Veo Video Generation through LiteLLM Pass through routes (#14228)
* fix: add follow_redirects=True,

* test_pass_through_with_httpbin_redirect

* cook book veo video

* docs Veo Video Generation with Google AI Studio

* add veo-3.0-generate-preview cost tracking details

* track vertex_video_models
2025-09-03 18:25:43 -07:00

312 lines
12 KiB
Python

#!/usr/bin/env python3
"""
Complete example for Veo video generation through LiteLLM proxy.
This script demonstrates how to:
1. Generate videos using Google's Veo model
2. Poll for completion status
3. Download the generated video file
Requirements:
- LiteLLM proxy running with Google AI Studio pass-through configured
- Google AI Studio API key with Veo access
"""
import json
import os
import time
import requests
from typing import Optional
class VeoVideoGenerator:
"""Complete Veo video generation client using LiteLLM proxy."""
def __init__(self, base_url: str = "http://localhost:4000/gemini/v1beta",
api_key: str = "sk-1234"):
"""
Initialize the Veo video generator.
Args:
base_url: Base URL for the LiteLLM proxy with Gemini pass-through
api_key: API key for LiteLLM proxy authentication
"""
self.base_url = base_url
self.api_key = api_key
self.headers = {
"x-goog-api-key": api_key,
"Content-Type": "application/json"
}
def generate_video(self, prompt: str) -> Optional[str]:
"""
Initiate video generation with Veo.
Args:
prompt: Text description of the video to generate
Returns:
Operation name if successful, None otherwise
"""
print(f"🎬 Generating video with prompt: '{prompt}'")
url = f"{self.base_url}/models/veo-3.0-generate-preview:predictLongRunning"
payload = {
"instances": [{
"prompt": prompt
}]
}
try:
response = requests.post(url, headers=self.headers, json=payload)
response.raise_for_status()
data = response.json()
operation_name = data.get("name")
if operation_name:
print(f"✅ Video generation started: {operation_name}")
return operation_name
else:
print("❌ No operation name returned")
print(f"Response: {json.dumps(data, indent=2)}")
return None
except requests.RequestException as e:
print(f"❌ Failed to start video generation: {e}")
if hasattr(e, 'response') and e.response is not None:
try:
error_data = e.response.json()
print(f"Error details: {json.dumps(error_data, indent=2)}")
except:
print(f"Error response: {e.response.text}")
return None
def wait_for_completion(self, operation_name: str, max_wait_time: int = 600) -> Optional[str]:
"""
Poll operation status until video generation is complete.
Args:
operation_name: Name of the operation to monitor
max_wait_time: Maximum time to wait in seconds (default: 10 minutes)
Returns:
Video URI if successful, None otherwise
"""
print("⏳ Waiting for video generation to complete...")
operation_url = f"{self.base_url}/{operation_name}"
start_time = time.time()
poll_interval = 10 # Start with 10 seconds
while time.time() - start_time < max_wait_time:
try:
print(f"🔍 Polling status... ({int(time.time() - start_time)}s elapsed)")
response = requests.get(operation_url, headers=self.headers)
response.raise_for_status()
data = response.json()
# Check for errors
if "error" in data:
print("❌ Error in video generation:")
print(json.dumps(data["error"], indent=2))
return None
# Check if operation is complete
is_done = data.get("done", False)
if is_done:
print("🎉 Video generation complete!")
try:
# Extract video URI from nested response
video_uri = data["response"]["generateVideoResponse"]["generatedSamples"][0]["video"]["uri"]
print(f"📹 Video URI: {video_uri}")
return video_uri
except KeyError as e:
print(f"❌ Could not extract video URI: {e}")
print("Full response:")
print(json.dumps(data, indent=2))
return None
# Wait before next poll, with exponential backoff
time.sleep(poll_interval)
poll_interval = min(poll_interval * 1.2, 30) # Cap at 30 seconds
except requests.RequestException as e:
print(f"❌ Error polling operation status: {e}")
time.sleep(poll_interval)
print(f"⏰ Timeout after {max_wait_time} seconds")
return None
def download_video(self, video_uri: str, output_filename: str = "generated_video.mp4") -> bool:
"""
Download the generated video file.
Args:
video_uri: URI of the video to download (from Google's response)
output_filename: Local filename to save the video
Returns:
True if download successful, False otherwise
"""
print(f"⬇️ Downloading video...")
print(f"Original URI: {video_uri}")
# Convert Google URI to LiteLLM proxy URI
# Example: files/abc123 -> /gemini/v1beta/files/abc123:download?alt=media
if video_uri.startswith("files/"):
download_path = f"{video_uri}:download?alt=media"
else:
download_path = video_uri
litellm_download_url = f"{self.base_url}/{download_path}"
print(f"Download URL: {litellm_download_url}")
try:
# Download with streaming and redirect handling
response = requests.get(
litellm_download_url,
headers=self.headers,
stream=True,
allow_redirects=True # Handle redirects automatically
)
response.raise_for_status()
# Save video file
with open(output_filename, 'wb') as f:
downloaded_size = 0
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded_size += len(chunk)
# Progress indicator for large files
if downloaded_size % (1024 * 1024) == 0: # Every MB
print(f"📦 Downloaded {downloaded_size / (1024*1024):.1f} MB...")
# Verify file was created and has content
if os.path.exists(output_filename):
file_size = os.path.getsize(output_filename)
if file_size > 0:
print(f"✅ Video downloaded successfully!")
print(f"📁 Saved as: {output_filename}")
print(f"📏 File size: {file_size / (1024*1024):.2f} MB")
return True
else:
print("❌ Downloaded file is empty")
os.remove(output_filename)
return False
else:
print("❌ File was not created")
return False
except requests.RequestException as e:
print(f"❌ Download failed: {e}")
if hasattr(e, 'response') and e.response is not None:
print(f"Status code: {e.response.status_code}")
print(f"Response headers: {dict(e.response.headers)}")
return False
def generate_and_download(self, prompt: str, output_filename: str = None) -> bool:
"""
Complete workflow: generate video and download it.
Args:
prompt: Text description for video generation
output_filename: Output filename (auto-generated if None)
Returns:
True if successful, False otherwise
"""
# Auto-generate filename if not provided
if output_filename is None:
timestamp = int(time.time())
safe_prompt = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
output_filename = f"veo_video_{safe_prompt.replace(' ', '_')}_{timestamp}.mp4"
print("=" * 60)
print("🎬 VEO VIDEO GENERATION WORKFLOW")
print("=" * 60)
# Step 1: Generate video
operation_name = self.generate_video(prompt)
if not operation_name:
return False
# Step 2: Wait for completion
video_uri = self.wait_for_completion(operation_name)
if not video_uri:
return False
# Step 3: Download video
success = self.download_video(video_uri, output_filename)
if success:
print("=" * 60)
print("🎉 SUCCESS! Video generation complete!")
print(f"📁 Video saved as: {output_filename}")
print("=" * 60)
else:
print("=" * 60)
print("❌ FAILED! Video generation or download failed")
print("=" * 60)
return success
def main():
"""
Example usage of the VeoVideoGenerator.
Configure these environment variables:
- LITELLM_BASE_URL: Your LiteLLM proxy URL (default: http://localhost:4000/gemini/v1beta)
- LITELLM_API_KEY: Your LiteLLM API key (default: sk-1234)
"""
# Configuration from environment or defaults
base_url = os.getenv("LITELLM_BASE_URL", "http://localhost:4000/gemini/v1beta")
api_key = os.getenv("LITELLM_API_KEY", "sk-1234")
print("🚀 Starting Veo Video Generation Example")
print(f"📡 Using LiteLLM proxy at: {base_url}")
# Initialize generator
generator = VeoVideoGenerator(base_url=base_url, api_key=api_key)
# Example prompts - try different ones!
example_prompts = [
"A cat playing with a ball of yarn in a sunny garden",
"Ocean waves crashing against rocky cliffs at sunset",
"A bustling city street with people walking and cars passing by",
"A peaceful forest with sunlight filtering through the trees"
]
# Use first example or get from user
prompt = example_prompts[0]
print(f"🎬 Using prompt: '{prompt}'")
# Generate and download video
success = generator.generate_and_download(prompt)
if success:
print("\n✅ Example completed successfully!")
print("💡 Try modifying the prompt in the script for different videos!")
else:
print("\n❌ Example failed!")
print("🔧 Check your LiteLLM proxy configuration and Google AI Studio API key")
# Troubleshooting tips
print("\n🔍 Troubleshooting:")
print("1. Ensure LiteLLM proxy is running with Google AI Studio pass-through")
print("2. Verify your Google AI Studio API key has Veo access")
print("3. Check that your prompt meets Veo's content guidelines")
print("4. Review the LiteLLM proxy logs for detailed error information")
if __name__ == "__main__":
main()