mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 21:44:27 +08:00
1307 lines
56 KiB
Python
1307 lines
56 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2023 Custom Diffusion authors and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import argparse
|
|
import hashlib
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import shutil
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
import transformers
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import ProjectConfiguration, set_seed
|
|
from huggingface_hub import HfApi, create_repo
|
|
from packaging import version
|
|
from PIL import Image
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import AutoTokenizer, PretrainedConfig
|
|
|
|
import diffusers
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
DiffusionPipeline,
|
|
DPMSolverMultistepScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.loaders import AttnProcsLayers
|
|
from diffusers.models.attention_processor import CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.utils import check_min_version, is_wandb_available
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.19.0")
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def freeze_params(params):
|
|
for param in params:
|
|
param.requires_grad = False
|
|
|
|
|
|
def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None):
|
|
img_str = ""
|
|
for i, image in enumerate(images):
|
|
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
|
img_str += f"\n"
|
|
|
|
yaml = f"""
|
|
---
|
|
license: creativeml-openrail-m
|
|
base_model: {base_model}
|
|
instance_prompt: {prompt}
|
|
tags:
|
|
- stable-diffusion
|
|
- stable-diffusion-diffusers
|
|
- text-to-image
|
|
- diffusers
|
|
- custom-diffusion
|
|
inference: true
|
|
---
|
|
"""
|
|
model_card = f"""
|
|
# Custom Diffusion - {repo_id}
|
|
|
|
These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n
|
|
{img_str}
|
|
|
|
\nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
|
|
"""
|
|
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
|
f.write(yaml + model_card)
|
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
|
text_encoder_config = PretrainedConfig.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="text_encoder",
|
|
revision=revision,
|
|
)
|
|
model_class = text_encoder_config.architectures[0]
|
|
|
|
if model_class == "CLIPTextModel":
|
|
from transformers import CLIPTextModel
|
|
|
|
return CLIPTextModel
|
|
elif model_class == "RobertaSeriesModelWithTransformation":
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
|
|
|
return RobertaSeriesModelWithTransformation
|
|
else:
|
|
raise ValueError(f"{model_class} is not supported.")
|
|
|
|
|
|
def collate_fn(examples, with_prior_preservation):
|
|
input_ids = [example["instance_prompt_ids"] for example in examples]
|
|
pixel_values = [example["instance_images"] for example in examples]
|
|
mask = [example["mask"] for example in examples]
|
|
# Concat class and instance examples for prior preservation.
|
|
# We do this to avoid doing two forward passes.
|
|
if with_prior_preservation:
|
|
input_ids += [example["class_prompt_ids"] for example in examples]
|
|
pixel_values += [example["class_images"] for example in examples]
|
|
mask += [example["class_mask"] for example in examples]
|
|
|
|
input_ids = torch.cat(input_ids, dim=0)
|
|
pixel_values = torch.stack(pixel_values)
|
|
mask = torch.stack(mask)
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
mask = mask.to(memory_format=torch.contiguous_format).float()
|
|
|
|
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)}
|
|
return batch
|
|
|
|
|
|
class PromptDataset(Dataset):
|
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
|
|
|
def __init__(self, prompt, num_samples):
|
|
self.prompt = prompt
|
|
self.num_samples = num_samples
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def __getitem__(self, index):
|
|
example = {}
|
|
example["prompt"] = self.prompt
|
|
example["index"] = index
|
|
return example
|
|
|
|
|
|
class CustomDiffusionDataset(Dataset):
|
|
"""
|
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
|
It pre-processes the images and the tokenizes prompts.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
concepts_list,
|
|
tokenizer,
|
|
size=512,
|
|
mask_size=64,
|
|
center_crop=False,
|
|
with_prior_preservation=False,
|
|
num_class_images=200,
|
|
hflip=False,
|
|
aug=True,
|
|
):
|
|
self.size = size
|
|
self.mask_size = mask_size
|
|
self.center_crop = center_crop
|
|
self.tokenizer = tokenizer
|
|
self.interpolation = Image.BILINEAR
|
|
self.aug = aug
|
|
|
|
self.instance_images_path = []
|
|
self.class_images_path = []
|
|
self.with_prior_preservation = with_prior_preservation
|
|
for concept in concepts_list:
|
|
inst_img_path = [
|
|
(x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file()
|
|
]
|
|
self.instance_images_path.extend(inst_img_path)
|
|
|
|
if with_prior_preservation:
|
|
class_data_root = Path(concept["class_data_dir"])
|
|
if os.path.isdir(class_data_root):
|
|
class_images_path = list(class_data_root.iterdir())
|
|
class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))]
|
|
else:
|
|
with open(class_data_root, "r") as f:
|
|
class_images_path = f.read().splitlines()
|
|
with open(concept["class_prompt"], "r") as f:
|
|
class_prompt = f.read().splitlines()
|
|
|
|
class_img_path = [(x, y) for (x, y) in zip(class_images_path, class_prompt)]
|
|
self.class_images_path.extend(class_img_path[:num_class_images])
|
|
|
|
random.shuffle(self.instance_images_path)
|
|
self.num_instance_images = len(self.instance_images_path)
|
|
self.num_class_images = len(self.class_images_path)
|
|
self._length = max(self.num_class_images, self.num_instance_images)
|
|
self.flip = transforms.RandomHorizontalFlip(0.5 * hflip)
|
|
|
|
self.image_transforms = transforms.Compose(
|
|
[
|
|
self.flip,
|
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def preprocess(self, image, scale, resample):
|
|
outer, inner = self.size, scale
|
|
factor = self.size // self.mask_size
|
|
if scale > self.size:
|
|
outer, inner = scale, self.size
|
|
top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1)
|
|
image = image.resize((scale, scale), resample=resample)
|
|
image = np.array(image).astype(np.uint8)
|
|
image = (image / 127.5 - 1.0).astype(np.float32)
|
|
instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32)
|
|
mask = np.zeros((self.size // factor, self.size // factor))
|
|
if scale > self.size:
|
|
instance_image = image[top : top + inner, left : left + inner, :]
|
|
mask = np.ones((self.size // factor, self.size // factor))
|
|
else:
|
|
instance_image[top : top + inner, left : left + inner, :] = image
|
|
mask[
|
|
top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1
|
|
] = 1.0
|
|
return instance_image, mask
|
|
|
|
def __getitem__(self, index):
|
|
example = {}
|
|
instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images]
|
|
instance_image = Image.open(instance_image)
|
|
if not instance_image.mode == "RGB":
|
|
instance_image = instance_image.convert("RGB")
|
|
instance_image = self.flip(instance_image)
|
|
|
|
# apply resize augmentation and create a valid image region mask
|
|
random_scale = self.size
|
|
if self.aug:
|
|
random_scale = (
|
|
np.random.randint(self.size // 3, self.size + 1)
|
|
if np.random.uniform() < 0.66
|
|
else np.random.randint(int(1.2 * self.size), int(1.4 * self.size))
|
|
)
|
|
instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation)
|
|
|
|
if random_scale < 0.6 * self.size:
|
|
instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt
|
|
elif random_scale > self.size:
|
|
instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt
|
|
|
|
example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1)
|
|
example["mask"] = torch.from_numpy(mask)
|
|
example["instance_prompt_ids"] = self.tokenizer(
|
|
instance_prompt,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
if self.with_prior_preservation:
|
|
class_image, class_prompt = self.class_images_path[index % self.num_class_images]
|
|
class_image = Image.open(class_image)
|
|
if not class_image.mode == "RGB":
|
|
class_image = class_image.convert("RGB")
|
|
example["class_images"] = self.image_transforms(class_image)
|
|
example["class_mask"] = torch.ones_like(example["mask"])
|
|
example["class_prompt_ids"] = self.tokenizer(
|
|
class_prompt,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
return example
|
|
|
|
|
|
def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir):
|
|
"""Saves the new token embeddings from the text encoder."""
|
|
logger.info("Saving embeddings")
|
|
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight
|
|
for x, y in zip(modifier_token_id, args.modifier_token):
|
|
learned_embeds_dict = {}
|
|
learned_embeds_dict[y] = learned_embeds[x]
|
|
torch.save(learned_embeds_dict, f"{output_dir}/{y}.bin")
|
|
|
|
|
|
def parse_args(input_args=None):
|
|
parser = argparse.ArgumentParser(description="Custom Diffusion training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help="A folder containing the training data of instance images.",
|
|
)
|
|
parser.add_argument(
|
|
"--class_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help="A folder containing the training data of class images.",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="The prompt with identifier specifying the instance",
|
|
)
|
|
parser.add_argument(
|
|
"--class_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="The prompt to specify images in the same class as provided instance images.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="A prompt that is used during validation to verify that the model is learning.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_validation_images",
|
|
type=int,
|
|
default=2,
|
|
help="Number of images that should be generated during validation with `validation_prompt`.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=50,
|
|
help=(
|
|
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
|
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--with_prior_preservation",
|
|
default=False,
|
|
action="store_true",
|
|
help="Flag to add prior preservation loss.",
|
|
)
|
|
parser.add_argument(
|
|
"--real_prior",
|
|
default=False,
|
|
action="store_true",
|
|
help="real images as prior.",
|
|
)
|
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
|
parser.add_argument(
|
|
"--num_class_images",
|
|
type=int,
|
|
default=200,
|
|
help=(
|
|
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
|
" class_data_dir, additional images will be sampled with class_prompt."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="custom-diffusion-model",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop",
|
|
default=False,
|
|
action="store_true",
|
|
help=(
|
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
|
" cropped. The images will be resized to the resolution first before cropping."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument(
|
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=250,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=("Max number of checkpoints to store."),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-5,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=2,
|
|
help=(
|
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--freeze_model",
|
|
type=str,
|
|
default="crossattn_kv",
|
|
choices=["crossattn_kv", "crossattn"],
|
|
help="crossattn to enable fine-tuning of all params in the cross attention",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="tensorboard",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--prior_generation_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp32", "fp16", "bf16"],
|
|
help=(
|
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--concepts_list",
|
|
type=str,
|
|
default=None,
|
|
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.",
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument(
|
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
|
)
|
|
parser.add_argument(
|
|
"--set_grads_to_none",
|
|
action="store_true",
|
|
help=(
|
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
|
" behaviors, so disable this argument if it causes any problems. More info:"
|
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--modifier_token",
|
|
type=str,
|
|
default=None,
|
|
help="A token to use as a modifier for the concept.",
|
|
)
|
|
parser.add_argument(
|
|
"--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word."
|
|
)
|
|
parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.")
|
|
parser.add_argument(
|
|
"--noaug",
|
|
action="store_true",
|
|
help="Dont apply augmentation during data augmentation when this flag is enabled.",
|
|
)
|
|
|
|
if input_args is not None:
|
|
args = parser.parse_args(input_args)
|
|
else:
|
|
args = parser.parse_args()
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
if args.with_prior_preservation:
|
|
if args.concepts_list is None:
|
|
if args.class_data_dir is None:
|
|
raise ValueError("You must specify a data directory for class images.")
|
|
if args.class_prompt is None:
|
|
raise ValueError("You must specify prompt for class images.")
|
|
else:
|
|
# logger is not available yet
|
|
if args.class_data_dir is not None:
|
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
|
if args.class_prompt is not None:
|
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
|
|
|
return args
|
|
|
|
|
|
def main(args):
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_config=accelerator_project_config,
|
|
)
|
|
|
|
if args.report_to == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
import wandb
|
|
|
|
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
|
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
|
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
transformers.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
accelerator.init_trackers("custom-diffusion", config=vars(args))
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
if args.concepts_list is None:
|
|
args.concepts_list = [
|
|
{
|
|
"instance_prompt": args.instance_prompt,
|
|
"class_prompt": args.class_prompt,
|
|
"instance_data_dir": args.instance_data_dir,
|
|
"class_data_dir": args.class_data_dir,
|
|
}
|
|
]
|
|
else:
|
|
with open(args.concepts_list, "r") as f:
|
|
args.concepts_list = json.load(f)
|
|
|
|
# Generate class images if prior preservation is enabled.
|
|
if args.with_prior_preservation:
|
|
for i, concept in enumerate(args.concepts_list):
|
|
class_images_dir = Path(concept["class_data_dir"])
|
|
if not class_images_dir.exists():
|
|
class_images_dir.mkdir(parents=True, exist_ok=True)
|
|
if args.real_prior:
|
|
assert (
|
|
class_images_dir / "images"
|
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}"
|
|
assert (
|
|
len(list((class_images_dir / "images").iterdir())) == args.num_class_images
|
|
), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}"
|
|
assert (
|
|
class_images_dir / "caption.txt"
|
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}"
|
|
assert (
|
|
class_images_dir / "images.txt"
|
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}"
|
|
concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt")
|
|
concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt")
|
|
args.concepts_list[i] = concept
|
|
accelerator.wait_for_everyone()
|
|
else:
|
|
cur_class_images = len(list(class_images_dir.iterdir()))
|
|
|
|
if cur_class_images < args.num_class_images:
|
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
|
if args.prior_generation_precision == "fp32":
|
|
torch_dtype = torch.float32
|
|
elif args.prior_generation_precision == "fp16":
|
|
torch_dtype = torch.float16
|
|
elif args.prior_generation_precision == "bf16":
|
|
torch_dtype = torch.bfloat16
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
torch_dtype=torch_dtype,
|
|
safety_checker=None,
|
|
revision=args.revision,
|
|
)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
num_new_images = args.num_class_images - cur_class_images
|
|
logger.info(f"Number of class images to sample: {num_new_images}.")
|
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader)
|
|
pipeline.to(accelerator.device)
|
|
|
|
for example in tqdm(
|
|
sample_dataloader,
|
|
desc="Generating class images",
|
|
disable=not accelerator.is_local_main_process,
|
|
):
|
|
images = pipeline(example["prompt"]).images
|
|
|
|
for i, image in enumerate(images):
|
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
|
image_filename = (
|
|
class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
|
)
|
|
image.save(image_filename)
|
|
|
|
del pipeline
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
# Load the tokenizer
|
|
if args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.tokenizer_name,
|
|
revision=args.revision,
|
|
use_fast=False,
|
|
)
|
|
elif args.pretrained_model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="tokenizer",
|
|
revision=args.revision,
|
|
use_fast=False,
|
|
)
|
|
|
|
# import correct text encoder class
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
|
|
|
# Load scheduler and models
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
|
text_encoder = text_encoder_cls.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
|
)
|
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
|
unet = UNet2DConditionModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
|
)
|
|
|
|
# Adding a modifier token which is optimized ####
|
|
# Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py
|
|
modifier_token_id = []
|
|
initializer_token_id = []
|
|
if args.modifier_token is not None:
|
|
args.modifier_token = args.modifier_token.split("+")
|
|
args.initializer_token = args.initializer_token.split("+")
|
|
if len(args.modifier_token) > len(args.initializer_token):
|
|
raise ValueError("You must specify + separated initializer token for each modifier token.")
|
|
for modifier_token, initializer_token in zip(
|
|
args.modifier_token, args.initializer_token[: len(args.modifier_token)]
|
|
):
|
|
# Add the placeholder token in tokenizer
|
|
num_added_tokens = tokenizer.add_tokens(modifier_token)
|
|
if num_added_tokens == 0:
|
|
raise ValueError(
|
|
f"The tokenizer already contains the token {modifier_token}. Please pass a different"
|
|
" `modifier_token` that is not already in the tokenizer."
|
|
)
|
|
|
|
# Convert the initializer_token, placeholder_token to ids
|
|
token_ids = tokenizer.encode([initializer_token], add_special_tokens=False)
|
|
print(token_ids)
|
|
# Check if initializer_token is a single token or a sequence of tokens
|
|
if len(token_ids) > 1:
|
|
raise ValueError("The initializer token must be a single token.")
|
|
|
|
initializer_token_id.append(token_ids[0])
|
|
modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token))
|
|
|
|
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
|
text_encoder.resize_token_embeddings(len(tokenizer))
|
|
|
|
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data
|
|
for x, y in zip(modifier_token_id, initializer_token_id):
|
|
token_embeds[x] = token_embeds[y]
|
|
|
|
# Freeze all parameters except for the token embeddings in text encoder
|
|
params_to_freeze = itertools.chain(
|
|
text_encoder.text_model.encoder.parameters(),
|
|
text_encoder.text_model.final_layer_norm.parameters(),
|
|
text_encoder.text_model.embeddings.position_embedding.parameters(),
|
|
)
|
|
freeze_params(params_to_freeze)
|
|
########################################################
|
|
########################################################
|
|
|
|
vae.requires_grad_(False)
|
|
if args.modifier_token is None:
|
|
text_encoder.requires_grad_(False)
|
|
unet.requires_grad_(False)
|
|
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
|
# as these models are only used for inference, keeping weights in full precision is not required.
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
|
|
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
|
if accelerator.mixed_precision != "fp16" and args.modifier_token is not None:
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
|
unet.to(accelerator.device, dtype=weight_dtype)
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
attention_class = CustomDiffusionAttnProcessor
|
|
if args.enable_xformers_memory_efficient_attention:
|
|
if is_xformers_available():
|
|
import xformers
|
|
|
|
xformers_version = version.parse(xformers.__version__)
|
|
if xformers_version == version.parse("0.0.16"):
|
|
logger.warn(
|
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
|
)
|
|
attention_class = CustomDiffusionXFormersAttnProcessor
|
|
else:
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
|
# now we will add new Custom Diffusion weights to the attention layers
|
|
# It's important to realize here how many attention weights will be added and of which sizes
|
|
# The sizes of the attention layers consist only of two different variables:
|
|
# 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
|
|
# 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.
|
|
|
|
# Let's first see how many attention processors we will have to set.
|
|
# For Stable Diffusion, it should be equal to:
|
|
# - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
|
|
# - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
|
|
# - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
|
|
# => 32 layers
|
|
|
|
# Only train key, value projection layers if freeze_model = 'crossattn_kv' else train all params in the cross attention layer
|
|
train_kv = True
|
|
train_q_out = False if args.freeze_model == "crossattn_kv" else True
|
|
custom_diffusion_attn_procs = {}
|
|
|
|
st = unet.state_dict()
|
|
for name, _ in unet.attn_processors.items():
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
|
if name.startswith("mid_block"):
|
|
hidden_size = unet.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = unet.config.block_out_channels[block_id]
|
|
layer_name = name.split(".processor")[0]
|
|
weights = {
|
|
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"],
|
|
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"],
|
|
}
|
|
if train_q_out:
|
|
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"]
|
|
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"]
|
|
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"]
|
|
if cross_attention_dim is not None:
|
|
custom_diffusion_attn_procs[name] = attention_class(
|
|
train_kv=train_kv,
|
|
train_q_out=train_q_out,
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
).to(unet.device)
|
|
custom_diffusion_attn_procs[name].load_state_dict(weights)
|
|
else:
|
|
custom_diffusion_attn_procs[name] = attention_class(
|
|
train_kv=False,
|
|
train_q_out=False,
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
)
|
|
del st
|
|
unet.set_attn_processor(custom_diffusion_attn_procs)
|
|
custom_diffusion_layers = AttnProcsLayers(unet.attn_processors)
|
|
|
|
accelerator.register_for_checkpointing(custom_diffusion_layers)
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
if args.modifier_token is not None:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
# Enable TF32 for faster training on Ampere GPUs,
|
|
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
if args.allow_tf32:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
|
)
|
|
if args.with_prior_preservation:
|
|
args.learning_rate = args.learning_rate * 2.0
|
|
|
|
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_class = torch.optim.AdamW
|
|
|
|
# Optimizer creation
|
|
optimizer = optimizer_class(
|
|
itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters())
|
|
if args.modifier_token is not None
|
|
else custom_diffusion_layers.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
# Dataset and DataLoaders creation:
|
|
train_dataset = CustomDiffusionDataset(
|
|
concepts_list=args.concepts_list,
|
|
tokenizer=tokenizer,
|
|
with_prior_preservation=args.with_prior_preservation,
|
|
size=args.resolution,
|
|
mask_size=vae.encode(
|
|
torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device)
|
|
)
|
|
.latent_dist.sample()
|
|
.size()[-1],
|
|
center_crop=args.center_crop,
|
|
num_class_images=args.num_class_images,
|
|
hflip=args.hflip,
|
|
aug=not args.noaug,
|
|
)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset,
|
|
batch_size=args.train_batch_size,
|
|
shuffle=True,
|
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
|
num_workers=args.dataloader_num_workers,
|
|
)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
if args.modifier_token is not None:
|
|
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
else:
|
|
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# Train!
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
|
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description("Steps")
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
unet.train()
|
|
if args.modifier_token is not None:
|
|
text_encoder.train()
|
|
for step, batch in enumerate(train_dataloader):
|
|
# Skip steps until we reach the resumed step
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
|
if step % args.gradient_accumulation_steps == 0:
|
|
progress_bar.update(1)
|
|
continue
|
|
|
|
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder):
|
|
# Convert images to latent space
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
|
latents = latents * vae.config.scaling_factor
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn_like(latents)
|
|
bsz = latents.shape[0]
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
|
timesteps = timesteps.long()
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
# Get the text embedding for conditioning
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
|
|
|
# Predict the noise residual
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
# Get the target for loss depending on the prediction type
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
|
|
|
if args.with_prior_preservation:
|
|
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
|
target, target_prior = torch.chunk(target, 2, dim=0)
|
|
mask = torch.chunk(batch["mask"], 2, dim=0)[0]
|
|
# Compute instance loss
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
|
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean()
|
|
|
|
# Compute prior loss
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
|
|
|
# Add the prior loss to the instance loss.
|
|
loss = loss + args.prior_loss_weight * prior_loss
|
|
else:
|
|
mask = batch["mask"]
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
|
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean()
|
|
accelerator.backward(loss)
|
|
# Zero out the gradients for all token embeddings except the newly added
|
|
# embeddings for the concept, as we only want to optimize the concept embeddings
|
|
if args.modifier_token is not None:
|
|
if accelerator.num_processes > 1:
|
|
grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad
|
|
else:
|
|
grads_text_encoder = text_encoder.get_input_embeddings().weight.grad
|
|
# Get the index for tokens that we want to zero the grads for
|
|
index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0]
|
|
for i in range(len(modifier_token_id[1:])):
|
|
index_grads_to_zero = index_grads_to_zero & (
|
|
torch.arange(len(tokenizer)) != modifier_token_id[i]
|
|
)
|
|
grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[
|
|
index_grads_to_zero, :
|
|
].fill_(0)
|
|
|
|
if accelerator.sync_gradients:
|
|
params_to_clip = (
|
|
itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters())
|
|
if args.modifier_token is not None
|
|
else custom_diffusion_layers.parameters()
|
|
)
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if global_step % args.checkpointing_steps == 0:
|
|
if accelerator.is_main_process:
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(args.output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if accelerator.is_main_process:
|
|
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
|
|
logger.info(
|
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
|
f" {args.validation_prompt}."
|
|
)
|
|
# create pipeline
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
unet=accelerator.unwrap_model(unet),
|
|
text_encoder=accelerator.unwrap_model(text_encoder),
|
|
tokenizer=tokenizer,
|
|
revision=args.revision,
|
|
torch_dtype=weight_dtype,
|
|
)
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
|
pipeline = pipeline.to(accelerator.device)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
# run inference
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
|
images = [
|
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0]
|
|
for _ in range(args.num_validation_images)
|
|
]
|
|
|
|
for tracker in accelerator.trackers:
|
|
if tracker.name == "tensorboard":
|
|
np_images = np.stack([np.asarray(img) for img in images])
|
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
|
if tracker.name == "wandb":
|
|
tracker.log(
|
|
{
|
|
"validation": [
|
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
|
for i, image in enumerate(images)
|
|
]
|
|
}
|
|
)
|
|
|
|
del pipeline
|
|
torch.cuda.empty_cache()
|
|
|
|
# Save the custom diffusion layers
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
unet = unet.to(torch.float32)
|
|
unet.save_attn_procs(args.output_dir)
|
|
save_new_embed(text_encoder, modifier_token_id, accelerator, args, args.output_dir)
|
|
|
|
# Final inference
|
|
# Load previous pipeline
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype
|
|
)
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
|
pipeline = pipeline.to(accelerator.device)
|
|
|
|
# load attention processors
|
|
pipeline.unet.load_attn_procs(args.output_dir, weight_name="pytorch_custom_diffusion_weights.bin")
|
|
for token in args.modifier_token:
|
|
pipeline.load_textual_inversion(args.output_dir, weight_name=f"{token}.bin")
|
|
|
|
# run inference
|
|
if args.validation_prompt and args.num_validation_images > 0:
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
|
images = [
|
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0]
|
|
for _ in range(args.num_validation_images)
|
|
]
|
|
|
|
for tracker in accelerator.trackers:
|
|
if tracker.name == "tensorboard":
|
|
np_images = np.stack([np.asarray(img) for img in images])
|
|
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
|
|
if tracker.name == "wandb":
|
|
tracker.log(
|
|
{
|
|
"test": [
|
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
|
for i, image in enumerate(images)
|
|
]
|
|
}
|
|
)
|
|
|
|
if args.push_to_hub:
|
|
save_model_card(
|
|
repo_id,
|
|
images=images,
|
|
base_model=args.pretrained_model_name_or_path,
|
|
prompt=args.instance_prompt,
|
|
repo_folder=args.output_dir,
|
|
)
|
|
api = HfApi(token=args.hub_token)
|
|
api.upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|