mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-24 13:24:49 +08:00
55 lines
1.5 KiB
Python
55 lines
1.5 KiB
Python
import argparse
|
|
|
|
import torch
|
|
from safetensors.torch import load_file, save_file
|
|
|
|
|
|
def convert_motion_module(original_state_dict):
|
|
converted_state_dict = {}
|
|
for k, v in original_state_dict.items():
|
|
if "pos_encoder" in k:
|
|
continue
|
|
|
|
else:
|
|
converted_state_dict[
|
|
k.replace(".norms.0", ".norm1")
|
|
.replace(".norms.1", ".norm2")
|
|
.replace(".ff_norm", ".norm3")
|
|
.replace(".attention_blocks.0", ".attn1")
|
|
.replace(".attention_blocks.1", ".attn2")
|
|
.replace(".temporal_transformer", "")
|
|
] = v
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ckpt_path", type=str, required=True)
|
|
parser.add_argument("--output_path", type=str, required=True)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
if args.ckpt_path.endswith(".safetensors"):
|
|
state_dict = load_file(args.ckpt_path)
|
|
else:
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu")
|
|
|
|
if "state_dict" in state_dict.keys():
|
|
state_dict = state_dict["state_dict"]
|
|
|
|
conv_state_dict = convert_motion_module(state_dict)
|
|
|
|
# convert to new format
|
|
output_dict = {}
|
|
for module_name, params in conv_state_dict.items():
|
|
if type(params) is not torch.Tensor:
|
|
continue
|
|
output_dict.update({f"unet.{module_name}": params})
|
|
|
|
save_file(output_dict, f"{args.output_path}/diffusion_pytorch_model.safetensors")
|