Files
diffusers/docs/source/en/api/quantization.md
Dhruv Nair e24941b2a7 [Single File] Add GGUF support (#9964)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update src/diffusers/quantizers/gguf/utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update docs/source/en/quantization/gguf.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-17 16:09:37 +05:30

1.4 KiB

Quantization

Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Diffusers supports 8-bit and 4-bit quantization with bitsandbytes.

Quantization techniques that aren't supported in Transformers can be added with the [DiffusersQuantizer] class.

Learn how to quantize models in the Quantization guide.

BitsAndBytesConfig

autodoc BitsAndBytesConfig

GGUFQuantizationConfig

autodoc GGUFQuantizationConfig

TorchAoConfig

autodoc TorchAoConfig

DiffusersQuantizer

autodoc quantizers.base.DiffusersQuantizer