mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-10 06:24:19 +08:00
574 lines
21 KiB
Python
574 lines
21 KiB
Python
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import optax
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
import transformers
|
|
from datasets import load_dataset
|
|
from flax import jax_utils
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import shard
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
|
|
|
from diffusers import (
|
|
FlaxAutoencoderKL,
|
|
FlaxDDPMScheduler,
|
|
FlaxPNDMScheduler,
|
|
FlaxStableDiffusionPipeline,
|
|
FlaxUNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
|
|
from diffusers.utils import check_min_version
|
|
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.19.0")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that 🤗 Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the Dataset, leave as None if there's only one config.",
|
|
)
|
|
parser.add_argument(
|
|
"--train_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"A folder containing the training data. Folder contents must follow the structure described in"
|
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
|
|
)
|
|
parser.add_argument(
|
|
"--caption_column",
|
|
type=str,
|
|
default="text",
|
|
help="The column of the dataset containing a caption or a list of captions.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_samples",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="sd-model-finetuned",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop",
|
|
default=False,
|
|
action="store_true",
|
|
help=(
|
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
|
" cropped. The images will be resized to the resolution first before cropping."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--random_flip",
|
|
action="store_true",
|
|
help="whether to randomly flip images horizontally",
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=100)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="tensorboard",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
# Sanity checks
|
|
if args.dataset_name is None and args.train_data_dir is None:
|
|
raise ValueError("Need either a dataset name or a training folder.")
|
|
|
|
return args
|
|
|
|
|
|
dataset_name_mapping = {
|
|
"lambdalabs/pokemon-blip-captions": ("image", "text"),
|
|
}
|
|
|
|
|
|
def get_params_to_save(params):
|
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if jax.process_index() == 0:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
|
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
dataset = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
cache_dir=args.cache_dir,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if args.train_data_dir is not None:
|
|
data_files["train"] = os.path.join(args.train_data_dir, "**")
|
|
dataset = load_dataset(
|
|
"imagefolder",
|
|
data_files=data_files,
|
|
cache_dir=args.cache_dir,
|
|
)
|
|
# See more about loading custom images at
|
|
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
column_names = dataset["train"].column_names
|
|
|
|
# 6. Get the column names for input/target.
|
|
dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
|
|
if args.image_column is None:
|
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
|
else:
|
|
image_column = args.image_column
|
|
if image_column not in column_names:
|
|
raise ValueError(
|
|
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
if args.caption_column is None:
|
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
|
else:
|
|
caption_column = args.caption_column
|
|
if caption_column not in column_names:
|
|
raise ValueError(
|
|
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize input captions and transform the images.
|
|
def tokenize_captions(examples, is_train=True):
|
|
captions = []
|
|
for caption in examples[caption_column]:
|
|
if isinstance(caption, str):
|
|
captions.append(caption)
|
|
elif isinstance(caption, (list, np.ndarray)):
|
|
# take a random caption if there are multiple
|
|
captions.append(random.choice(caption) if is_train else caption[0])
|
|
else:
|
|
raise ValueError(
|
|
f"Caption column `{caption_column}` should contain either strings or lists of strings."
|
|
)
|
|
inputs = tokenizer(captions, max_length=tokenizer.model_max_length, padding="do_not_pad", truncation=True)
|
|
input_ids = inputs.input_ids
|
|
return input_ids
|
|
|
|
train_transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
def preprocess_train(examples):
|
|
images = [image.convert("RGB") for image in examples[image_column]]
|
|
examples["pixel_values"] = [train_transforms(image) for image in images]
|
|
examples["input_ids"] = tokenize_captions(examples)
|
|
|
|
return examples
|
|
|
|
if args.max_train_samples is not None:
|
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
|
# Set the training transforms
|
|
train_dataset = dataset["train"].with_transform(preprocess_train)
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
input_ids = [example["input_ids"] for example in examples]
|
|
|
|
padded_tokens = tokenizer.pad(
|
|
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
|
)
|
|
batch = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": padded_tokens.input_ids,
|
|
}
|
|
batch = {k: v.numpy() for k, v in batch.items()}
|
|
|
|
return batch
|
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count()
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=total_train_batch_size, drop_last=True
|
|
)
|
|
|
|
weight_dtype = jnp.float32
|
|
if args.mixed_precision == "fp16":
|
|
weight_dtype = jnp.float16
|
|
elif args.mixed_precision == "bf16":
|
|
weight_dtype = jnp.bfloat16
|
|
|
|
# Load models and create wrapper for stable diffusion
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path, revision=args.revision, subfolder="tokenizer"
|
|
)
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, revision=args.revision, subfolder="text_encoder", dtype=weight_dtype
|
|
)
|
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
|
args.pretrained_model_name_or_path, revision=args.revision, subfolder="vae", dtype=weight_dtype
|
|
)
|
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, revision=args.revision, subfolder="unet", dtype=weight_dtype
|
|
)
|
|
|
|
# Optimization
|
|
if args.scale_lr:
|
|
args.learning_rate = args.learning_rate * total_train_batch_size
|
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
|
|
|
adamw = optax.adamw(
|
|
learning_rate=constant_scheduler,
|
|
b1=args.adam_beta1,
|
|
b2=args.adam_beta2,
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
|
|
optimizer = optax.chain(
|
|
optax.clip_by_global_norm(args.max_grad_norm),
|
|
adamw,
|
|
)
|
|
|
|
state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
|
|
|
|
noise_scheduler = FlaxDDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
|
)
|
|
noise_scheduler_state = noise_scheduler.create_state()
|
|
|
|
# Initialize our training
|
|
rng = jax.random.PRNGKey(args.seed)
|
|
train_rngs = jax.random.split(rng, jax.local_device_count())
|
|
|
|
def train_step(state, text_encoder_params, vae_params, batch, train_rng):
|
|
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
|
|
|
|
def compute_loss(params):
|
|
# Convert images to latent space
|
|
vae_outputs = vae.apply(
|
|
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
|
|
)
|
|
latents = vae_outputs.latent_dist.sample(sample_rng)
|
|
# (NHWC) -> (NCHW)
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
|
latents = latents * vae.config.scaling_factor
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
|
noise = jax.random.normal(noise_rng, latents.shape)
|
|
# Sample a random timestep for each image
|
|
bsz = latents.shape[0]
|
|
timesteps = jax.random.randint(
|
|
timestep_rng,
|
|
(bsz,),
|
|
0,
|
|
noise_scheduler.config.num_train_timesteps,
|
|
)
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
|
|
|
|
# Get the text embedding for conditioning
|
|
encoder_hidden_states = text_encoder(
|
|
batch["input_ids"],
|
|
params=text_encoder_params,
|
|
train=False,
|
|
)[0]
|
|
|
|
# Predict the noise residual and compute loss
|
|
model_pred = unet.apply(
|
|
{"params": params}, noisy_latents, timesteps, encoder_hidden_states, train=True
|
|
).sample
|
|
|
|
# Get the target for loss depending on the prediction type
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
|
|
|
loss = (target - model_pred) ** 2
|
|
loss = loss.mean()
|
|
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(compute_loss)
|
|
loss, grad = grad_fn(state.params)
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
|
|
new_state = state.apply_gradients(grads=grad)
|
|
|
|
metrics = {"loss": loss}
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
|
|
return new_state, metrics, new_train_rng
|
|
|
|
# Create parallel version of the train step
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
|
|
|
# Replicate the train state on each device
|
|
state = jax_utils.replicate(state)
|
|
text_encoder_params = jax_utils.replicate(text_encoder.params)
|
|
vae_params = jax_utils.replicate(vae_params)
|
|
|
|
# Train!
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
|
|
global_step = 0
|
|
|
|
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
|
|
for epoch in epochs:
|
|
# ======================== Training ================================
|
|
|
|
train_metrics = []
|
|
|
|
steps_per_epoch = len(train_dataset) // total_train_batch_size
|
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
|
# train
|
|
for batch in train_dataloader:
|
|
batch = shard(batch)
|
|
state, train_metric, train_rngs = p_train_step(state, text_encoder_params, vae_params, batch, train_rngs)
|
|
train_metrics.append(train_metric)
|
|
|
|
train_step_progress_bar.update(1)
|
|
|
|
global_step += 1
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
train_metric = jax_utils.unreplicate(train_metric)
|
|
|
|
train_step_progress_bar.close()
|
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
|
|
|
# Create the pipeline using using the trained modules and save it.
|
|
if jax.process_index() == 0:
|
|
scheduler = FlaxPNDMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
|
)
|
|
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker", from_pt=True
|
|
)
|
|
pipeline = FlaxStableDiffusionPipeline(
|
|
text_encoder=text_encoder,
|
|
vae=vae,
|
|
unet=unet,
|
|
tokenizer=tokenizer,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
|
|
)
|
|
|
|
pipeline.save_pretrained(
|
|
args.output_dir,
|
|
params={
|
|
"text_encoder": get_params_to_save(text_encoder_params),
|
|
"vae": get_params_to_save(vae_params),
|
|
"unet": get_params_to_save(state.params),
|
|
"safety_checker": safety_checker.params,
|
|
},
|
|
)
|
|
|
|
if args.push_to_hub:
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|