mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-19 02:44:53 +08:00
* add zero123 pipeline to community * add community doc * reformat * update zero123 pipeline, including cc_projection within diffusers; add convert ckpt scripts; support diffusers weights
891 lines
44 KiB
Python
891 lines
44 KiB
Python
# A diffuser version implementation of Zero1to3 (https://github.com/cvlab-columbia/zero123), ICCV 2023
|
|
# by Xin Kong
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import kornia
|
|
import numpy as np
|
|
import PIL
|
|
import torch
|
|
from packaging import version
|
|
from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
|
|
|
|
# from ...configuration_utils import FrozenDict
|
|
# from ...models import AutoencoderKL, UNet2DConditionModel
|
|
# from ...schedulers import KarrasDiffusionSchedulers
|
|
# from ...utils import (
|
|
# deprecate,
|
|
# is_accelerate_available,
|
|
# is_accelerate_version,
|
|
# logging,
|
|
# randn_tensor,
|
|
# replace_example_docstring,
|
|
# )
|
|
# from ..pipeline_utils import DiffusionPipeline
|
|
# from . import StableDiffusionPipelineOutput
|
|
# from .safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
|
from diffusers.configuration_utils import ConfigMixin, FrozenDict
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
deprecate,
|
|
is_accelerate_available,
|
|
is_accelerate_version,
|
|
logging,
|
|
randn_tensor,
|
|
replace_example_docstring,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
# todo
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import StableDiffusionPipeline
|
|
|
|
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
|
>>> pipe = pipe.to("cuda")
|
|
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
|
>>> image = pipe(prompt).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
class CCProjection(ModelMixin, ConfigMixin):
|
|
def __init__(self, in_channel=772, out_channel=768):
|
|
super().__init__()
|
|
self.in_channel = in_channel
|
|
self.out_channel = out_channel
|
|
self.projection = torch.nn.Linear(in_channel, out_channel)
|
|
|
|
def forward(self, x):
|
|
return self.projection(x)
|
|
|
|
|
|
class Zero1to3StableDiffusionPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for single view conditioned novel view generation using Zero1to3.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
image_encoder ([`CLIPVisionModelWithProjection`]):
|
|
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
|
|
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
cc_projection ([`CCProjection`]):
|
|
Projection layer to project the concated CLIP features and pose embeddings to the original CLIP feature size.
|
|
"""
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
image_encoder: CLIPVisionModelWithProjection,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
cc_projection: CCProjection,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
|
)
|
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["clip_sample"] = False
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
|
version.parse(unet.config._diffusers_version).base_version
|
|
) < version.parse("0.9.0.dev0")
|
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
|
deprecation_message = (
|
|
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
|
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
|
" the `unet/config.json` file"
|
|
)
|
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(unet.config)
|
|
new_config["sample_size"] = 64
|
|
unet._internal_dict = FrozenDict(new_config)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
image_encoder=image_encoder,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
cc_projection=cc_projection,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
# self.model_mode = None
|
|
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding.
|
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
|
steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding.
|
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
|
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0):
|
|
r"""
|
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
|
`enable_model_cpu_offload`, but performance is lower.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
|
from accelerate import cpu_offload
|
|
else:
|
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
if self.safety_checker is not None:
|
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0):
|
|
r"""
|
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
|
from accelerate import cpu_offload_with_hook
|
|
else:
|
|
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
hook = None
|
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
|
|
|
if self.safety_checker is not None:
|
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
|
|
|
# We'll offload the last model manually.
|
|
self.final_offload_hook = hook
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
r"""
|
|
Returns the device on which the pipeline's models will be executed. After calling
|
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
|
hooks.
|
|
"""
|
|
if not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
return prompt_embeds
|
|
|
|
def CLIP_preprocess(self, x):
|
|
dtype = x.dtype
|
|
# following openai's implementation
|
|
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741
|
|
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608
|
|
if isinstance(x, torch.Tensor):
|
|
if x.min() < -1.0 or x.max() > 1.0:
|
|
raise ValueError("Expected input tensor to have values in the range [-1, 1]")
|
|
x = kornia.geometry.resize(
|
|
x.to(torch.float32), (224, 224), interpolation="bicubic", align_corners=True, antialias=False
|
|
).to(dtype=dtype)
|
|
x = (x + 1.0) / 2.0
|
|
# renormalize according to clip
|
|
x = kornia.enhance.normalize(
|
|
x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), torch.Tensor([0.26862954, 0.26130258, 0.27577711])
|
|
)
|
|
return x
|
|
|
|
# from image_variation
|
|
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
# Batch single image
|
|
if image.ndim == 3:
|
|
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
|
image = image.unsqueeze(0)
|
|
|
|
assert image.ndim == 4, "Image must have 4 dimensions"
|
|
|
|
# Check image is in [-1, 1]
|
|
if image.min() < -1 or image.max() > 1:
|
|
raise ValueError("Image should be in [-1, 1] range")
|
|
else:
|
|
# preprocess image
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
image = [image]
|
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
|
image = np.concatenate(image, axis=0)
|
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
image = self.CLIP_preprocess(image)
|
|
# if not isinstance(image, torch.Tensor):
|
|
# # 0-255
|
|
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.")
|
|
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
|
|
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype)
|
|
image_embeddings = image_embeddings.unsqueeze(1)
|
|
|
|
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
|
bs_embed, seq_len, _ = image_embeddings.shape
|
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
|
|
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
|
|
|
return image_embeddings
|
|
|
|
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance):
|
|
dtype = next(self.cc_projection.parameters()).dtype
|
|
if isinstance(pose, torch.Tensor):
|
|
pose_embeddings = pose.unsqueeze(1).to(device=device, dtype=dtype)
|
|
else:
|
|
if isinstance(pose[0], list):
|
|
pose = torch.Tensor(pose)
|
|
else:
|
|
pose = torch.Tensor([pose])
|
|
x, y, z = pose[:, 0].unsqueeze(1), pose[:, 1].unsqueeze(1), pose[:, 2].unsqueeze(1)
|
|
pose_embeddings = (
|
|
torch.cat([torch.deg2rad(x), torch.sin(torch.deg2rad(y)), torch.cos(torch.deg2rad(y)), z], dim=-1)
|
|
.unsqueeze(1)
|
|
.to(device=device, dtype=dtype)
|
|
) # B, 1, 4
|
|
# duplicate pose embeddings for each generation per prompt, using mps friendly method
|
|
bs_embed, seq_len, _ = pose_embeddings.shape
|
|
pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1)
|
|
pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
if do_classifier_free_guidance:
|
|
negative_prompt_embeds = torch.zeros_like(pose_embeddings)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings])
|
|
return pose_embeddings
|
|
|
|
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance):
|
|
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False)
|
|
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False)
|
|
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1)
|
|
prompt_embeds = self.cc_projection(prompt_embeds)
|
|
# prompt_embeds = img_prompt_embeds
|
|
# follow 0123, add negative prompt, after projection
|
|
if do_classifier_free_guidance:
|
|
negative_prompt = torch.zeros_like(prompt_embeds)
|
|
prompt_embeds = torch.cat([negative_prompt, prompt_embeds])
|
|
return prompt_embeds
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
else:
|
|
has_nsfw_concept = None
|
|
return image, has_nsfw_concept
|
|
|
|
def decode_latents(self, latents):
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(self, image, height, width, callback_steps):
|
|
if (
|
|
not isinstance(image, torch.Tensor)
|
|
and not isinstance(image, PIL.Image.Image)
|
|
and not isinstance(image, list)
|
|
):
|
|
raise ValueError(
|
|
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
|
f" {type(image)}"
|
|
)
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def prepare_img_latents(self, image, batch_size, dtype, device, generator=None, do_classifier_free_guidance=False):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
# Batch single image
|
|
if image.ndim == 3:
|
|
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
|
image = image.unsqueeze(0)
|
|
|
|
assert image.ndim == 4, "Image must have 4 dimensions"
|
|
|
|
# Check image is in [-1, 1]
|
|
if image.min() < -1 or image.max() > 1:
|
|
raise ValueError("Image should be in [-1, 1] range")
|
|
else:
|
|
# preprocess image
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
image = [image]
|
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
|
image = np.concatenate(image, axis=0)
|
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if isinstance(generator, list):
|
|
init_latents = [
|
|
self.vae.encode(image[i : i + 1]).latent_dist.mode(generator[i]) for i in range(batch_size) # sample
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = self.vae.encode(image).latent_dist.mode()
|
|
|
|
# init_latents = self.vae.config.scaling_factor * init_latents # todo in original zero123's inference gradio_new.py, model.encode_first_stage() is not scaled by scaling_factor
|
|
if batch_size > init_latents.shape[0]:
|
|
# init_latents = init_latents.repeat(batch_size // init_latents.shape[0], 1, 1, 1)
|
|
num_images_per_prompt = batch_size // init_latents.shape[0]
|
|
# duplicate image latents for each generation per prompt, using mps friendly method
|
|
bs_embed, emb_c, emb_h, emb_w = init_latents.shape
|
|
init_latents = init_latents.unsqueeze(1)
|
|
init_latents = init_latents.repeat(1, num_images_per_prompt, 1, 1, 1)
|
|
init_latents = init_latents.view(bs_embed * num_images_per_prompt, emb_c, emb_h, emb_w)
|
|
|
|
# init_latents = torch.cat([init_latents]*2) if do_classifier_free_guidance else init_latents # follow zero123
|
|
init_latents = (
|
|
torch.cat([torch.zeros_like(init_latents), init_latents]) if do_classifier_free_guidance else init_latents
|
|
)
|
|
|
|
init_latents = init_latents.to(device=device, dtype=dtype)
|
|
return init_latents
|
|
|
|
# def load_cc_projection(self, pretrained_weights=None):
|
|
# self.cc_projection = torch.nn.Linear(772, 768)
|
|
# torch.nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
|
|
# torch.nn.init.zeros_(list(self.cc_projection.parameters())[1])
|
|
# if pretrained_weights is not None:
|
|
# self.cc_projection.load_state_dict(pretrained_weights)
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
input_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
|
prompt_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
|
poses: Union[List[float], List[List[float]]] = None,
|
|
torch_dtype=torch.float32,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 3.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: float = 1.0,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
input_imgs (`PIL` or `List[PIL]`, *optional*):
|
|
The single input image for each 3D object
|
|
prompt_imgs (`PIL` or `List[PIL]`, *optional*):
|
|
Same as input_imgs, but will be used later as an image prompt condition, encoded by CLIP feature
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
# 0. Default height and width to unet
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
# input_image = hint_imgs
|
|
self.check_inputs(input_imgs, height, width, callback_steps)
|
|
|
|
# 2. Define call parameters
|
|
if isinstance(input_imgs, PIL.Image.Image):
|
|
batch_size = 1
|
|
elif isinstance(input_imgs, list):
|
|
batch_size = len(input_imgs)
|
|
else:
|
|
batch_size = input_imgs.shape[0]
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input image with pose as prompt
|
|
prompt_embeds = self._encode_image_with_pose(
|
|
prompt_imgs, poses, device, num_images_per_prompt, do_classifier_free_guidance
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 5. Prepare latent variables
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
4,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare image latents
|
|
img_latents = self.prepare_img_latents(
|
|
input_imgs,
|
|
batch_size * num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
do_classifier_free_guidance,
|
|
)
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
latent_model_input = torch.cat([latent_model_input, img_latents], dim=1)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
# latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
# 8. Post-processing
|
|
has_nsfw_concept = None
|
|
if output_type == "latent":
|
|
image = latents
|
|
elif output_type == "pil":
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
# 10. Convert to PIL
|
|
image = self.numpy_to_pil(image)
|
|
else:
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|