Files
diffusers/docs/source/ko/using-diffusers/inpaint.md
Seongsu Park 0c775544dd [Docs] Korean translation update (#4684)
* Docs kr update 3

controlnet, reproducibility 업로드

generator 그대로 사용
seamless multi-GPU 그대로 사용

create_dataset 번역 1차

stable_diffusion_jax

new translation

Add coreml, tome

kr docs minor fix

translate training/instructpix2pix

fix training/instructpix2pix.mdx

using-diffusers/weighting_prompts 번역 1차

add SDXL docs

Translate using-diffuers/loading_overview.md

translate using-diffusers/textual_inversion_inference.md

Conditional image generation (#37)

* stable_diffusion_jax

* index_update

* index_update

* condition_image_generation

---------

Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

jihwan/stable_diffusion.mdx

custom_diffusion 작업 완료

quicktour 작업 완료

distributed inference & control brightness (#40)

* distributed_inference.mdx

* control_brightness

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

using_safetensors (#41)

* distributed_inference.mdx

* control_brightness

* using_safetensors.mdx

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

delete safetensor short

* Repace mdx to md

* toctree update

* Add controlling_generation

* toctree fix

* colab link, minor fix

* docs name typo fix

* frontmatter fix

* translation fix
2023-09-01 09:23:45 -07:00

3.5 KiB

Text-guided 이미지 인페인팅(inpainting)

open-in-colab

[StableDiffusionInpaintPipeline]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 runwayml/stable-diffusion-inpainting과 같은 Stable Diffusion 버전을 사용합니다.

먼저 [StableDiffusionInpaintPipeline] 인스턴스를 불러옵니다:

import PIL
import requests
import torch
from io import BytesIO

from diffusers import StableDiffusionInpaintPipeline

pipeline = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    torch_dtype=torch.float16,
)
pipeline = pipeline.to("cuda")

나중에 교체할 강아지 이미지와 마스크를 다운로드하세요:

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

이제 마스크를 다른 것으로 교체하라는 프롬프트를 만들 수 있습니다:

prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
image mask_image prompt output
drawing drawing Face of a yellow cat, high resolution, sitting on a park bench drawing

이전의 실험적인 인페인팅 구현에서는 품질이 낮은 다른 프로세스를 사용했습니다. 이전 버전과의 호환성을 보장하기 위해 새 모델이 포함되지 않은 사전학습된 파이프라인을 불러오면 이전 인페인팅 방법이 계속 적용됩니다.

아래 Space에서 이미지 인페인팅을 직접 해보세요!