mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-20 11:24:43 +08:00
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
|
|
from diffusers.models._modeling_parallel import ContextParallelConfig
|
|
|
|
from ...testing_utils import (
|
|
is_context_parallel,
|
|
require_torch_multi_accelerator,
|
|
)
|
|
|
|
|
|
def _context_parallel_worker(rank, world_size, model_class, init_dict, cp_dict, inputs_dict, result_queue):
|
|
try:
|
|
# Setup distributed environment
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = "12355"
|
|
|
|
torch.distributed.init_process_group(
|
|
backend="nccl",
|
|
init_method="env://",
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
torch.cuda.set_device(rank)
|
|
device = torch.device(f"cuda:{rank}")
|
|
|
|
model = model_class(**init_dict)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
inputs_on_device = {}
|
|
for key, value in inputs_dict.items():
|
|
if isinstance(value, torch.Tensor):
|
|
inputs_on_device[key] = value.to(device)
|
|
else:
|
|
inputs_on_device[key] = value
|
|
|
|
cp_config = ContextParallelConfig(**cp_dict)
|
|
model.enable_parallelism(config=cp_config)
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_on_device, return_dict=False)[0]
|
|
|
|
if rank == 0:
|
|
result_queue.put(("success", output.shape))
|
|
|
|
except Exception as e:
|
|
if rank == 0:
|
|
result_queue.put(("error", str(e)))
|
|
finally:
|
|
if torch.distributed.is_initialized():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
@is_context_parallel
|
|
@require_torch_multi_accelerator
|
|
class ContextParallelTesterMixin:
|
|
base_precision = 1e-3
|
|
|
|
@pytest.mark.parametrize("cp_type", ["ulysses_degree", "ring_degree"], ids=["ulysses", "ring"])
|
|
def test_context_parallel_inference(self, cp_type):
|
|
if not torch.distributed.is_available():
|
|
pytest.skip("torch.distributed is not available.")
|
|
|
|
if not hasattr(self.model_class, "_cp_plan") or self.model_class._cp_plan is None:
|
|
pytest.skip("Model does not have a _cp_plan defined for context parallel inference.")
|
|
|
|
world_size = 2
|
|
init_dict = self.get_init_dict()
|
|
inputs_dict = self.get_dummy_inputs()
|
|
cp_dict = {cp_type: world_size}
|
|
|
|
ctx = mp.get_context("spawn")
|
|
result_queue = ctx.Queue()
|
|
|
|
mp.spawn(
|
|
_context_parallel_worker,
|
|
args=(world_size, self.model_class, init_dict, cp_dict, inputs_dict, result_queue),
|
|
nprocs=world_size,
|
|
join=True,
|
|
)
|
|
|
|
status, result = result_queue.get(timeout=60)
|
|
assert status == "success", f"Context parallel inference failed: {result}"
|