mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-11 15:04:45 +08:00
* Add reference_attn & reference_adain support for sdxl with other controlnet * Update README.md * Update README.md by replacing human example with a cat one Replace human example with a cat one * Replace default human example with a cat one * Use example images from huggingface documentation-images repository --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
1363 lines
70 KiB
Python
1363 lines
70 KiB
Python
# Based on stable_diffusion_xl_reference.py and stable_diffusion_controlnet_reference.py
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
|
|
from diffusers import StableDiffusionXLControlNetPipeline
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
from diffusers.image_processor import PipelineImageInput
|
|
from diffusers.models import ControlNetModel
|
|
from diffusers.models.attention import BasicTransformerBlock
|
|
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging, replace_example_docstring
|
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> # !pip install opencv-python transformers accelerate
|
|
>>> from diffusers import ControlNetModel, AutoencoderKL
|
|
>>> from diffusers.schedulers import UniPCMultistepScheduler
|
|
>>> from diffusers.utils import load_image
|
|
>>> import numpy as np
|
|
>>> import torch
|
|
|
|
>>> import cv2
|
|
>>> from PIL import Image
|
|
|
|
>>> # download an image for the Canny controlnet
|
|
>>> canny_image = load_image(
|
|
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
|
|
... )
|
|
|
|
>>> # download an image for the Reference controlnet
|
|
>>> ref_image = load_image(
|
|
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
|
... )
|
|
|
|
>>> # initialize the models and pipeline
|
|
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
|
>>> controlnet = ControlNetModel.from_pretrained(
|
|
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
|
|
... )
|
|
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
>>> pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
|
|
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
|
... ).to("cuda:0")
|
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
>>> # get canny image
|
|
>>> image = np.array(canny_image)
|
|
>>> image = cv2.Canny(image, 100, 200)
|
|
>>> image = image[:, :, None]
|
|
>>> image = np.concatenate([image, image, image], axis=2)
|
|
>>> canny_image = Image.fromarray(image)
|
|
|
|
>>> # generate image
|
|
>>> image = pipe(
|
|
... prompt="a cat",
|
|
... num_inference_steps=20,
|
|
... controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
... image=canny_image,
|
|
... ref_image=ref_image,
|
|
... reference_attn=True,
|
|
... reference_adain=True
|
|
... style_fidelity=1.0,
|
|
... generator=torch.Generator("cuda").manual_seed(42)
|
|
... ).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
def torch_dfs(model: torch.nn.Module):
|
|
result = [model]
|
|
for child in model.children():
|
|
result += torch_dfs(child)
|
|
return result
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class StableDiffusionXLControlNetReferencePipeline(StableDiffusionXLControlNetPipeline):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
|
text_encoder ([`~transformers.CLIPTextModel`]):
|
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
|
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
|
Second frozen text-encoder
|
|
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
|
tokenizer ([`~transformers.CLIPTokenizer`]):
|
|
A `CLIPTokenizer` to tokenize text.
|
|
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
|
A `CLIPTokenizer` to tokenize text.
|
|
unet ([`UNet2DConditionModel`]):
|
|
A `UNet2DConditionModel` to denoise the encoded image latents.
|
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
|
additional conditioning.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
|
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
|
`stabilityai/stable-diffusion-xl-base-1-0`.
|
|
add_watermarker (`bool`, *optional*):
|
|
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
|
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
|
watermarker is used.
|
|
"""
|
|
|
|
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
|
refimage = refimage.to(device=device)
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
|
self.upcast_vae()
|
|
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
if refimage.dtype != self.vae.dtype:
|
|
refimage = refimage.to(dtype=self.vae.dtype)
|
|
# encode the mask image into latents space so we can concatenate it to the latents
|
|
if isinstance(generator, list):
|
|
ref_image_latents = [
|
|
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
|
|
for i in range(batch_size)
|
|
]
|
|
ref_image_latents = torch.cat(ref_image_latents, dim=0)
|
|
else:
|
|
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
|
|
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
|
|
|
|
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
|
|
if ref_image_latents.shape[0] < batch_size:
|
|
if not batch_size % ref_image_latents.shape[0] == 0:
|
|
raise ValueError(
|
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
|
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
|
|
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
|
)
|
|
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
|
|
|
|
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
|
|
|
|
# aligning device to prevent device errors when concating it with the latent model input
|
|
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
|
return ref_image_latents
|
|
|
|
def prepare_ref_image(
|
|
self,
|
|
image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance=False,
|
|
guess_mode=False,
|
|
):
|
|
if not isinstance(image, torch.Tensor):
|
|
if isinstance(image, PIL.Image.Image):
|
|
image = [image]
|
|
|
|
if isinstance(image[0], PIL.Image.Image):
|
|
images = []
|
|
|
|
for image_ in image:
|
|
image_ = image_.convert("RGB")
|
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
|
image_ = np.array(image_)
|
|
image_ = image_[None, :]
|
|
images.append(image_)
|
|
|
|
image = images
|
|
|
|
image = np.concatenate(image, axis=0)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = (image - 0.5) / 0.5
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
|
|
elif isinstance(image[0], torch.Tensor):
|
|
image = torch.stack(image, dim=0)
|
|
|
|
image_batch_size = image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
repeat_by = num_images_per_prompt
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
def check_ref_inputs(
|
|
self,
|
|
ref_image,
|
|
reference_guidance_start,
|
|
reference_guidance_end,
|
|
style_fidelity,
|
|
reference_attn,
|
|
reference_adain,
|
|
):
|
|
ref_image_is_pil = isinstance(ref_image, PIL.Image.Image)
|
|
ref_image_is_tensor = isinstance(ref_image, torch.Tensor)
|
|
|
|
if not ref_image_is_pil and not ref_image_is_tensor:
|
|
raise TypeError(
|
|
f"ref image must be passed and be one of PIL image or torch tensor, but is {type(ref_image)}"
|
|
)
|
|
|
|
if not reference_attn and not reference_adain:
|
|
raise ValueError("`reference_attn` or `reference_adain` must be True.")
|
|
|
|
if style_fidelity < 0.0:
|
|
raise ValueError(f"style fidelity: {style_fidelity} can't be smaller than 0.")
|
|
if style_fidelity > 1.0:
|
|
raise ValueError(f"style fidelity: {style_fidelity} can't be larger than 1.0.")
|
|
|
|
if reference_guidance_start >= reference_guidance_end:
|
|
raise ValueError(
|
|
f"reference guidance start: {reference_guidance_start} cannot be larger or equal to reference guidance end: {reference_guidance_end}."
|
|
)
|
|
if reference_guidance_start < 0.0:
|
|
raise ValueError(f"reference guidance start: {reference_guidance_start} can't be smaller than 0.")
|
|
if reference_guidance_end > 1.0:
|
|
raise ValueError(f"reference guidance end: {reference_guidance_end} can't be larger than 1.0.")
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
image: PipelineImageInput = None,
|
|
ref_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
sigmas: List[float] = None,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
guess_mode: bool = False,
|
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
|
original_size: Tuple[int, int] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Tuple[int, int] = None,
|
|
negative_original_size: Optional[Tuple[int, int]] = None,
|
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
negative_target_size: Optional[Tuple[int, int]] = None,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|
] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
attention_auto_machine_weight: float = 1.0,
|
|
gn_auto_machine_weight: float = 1.0,
|
|
reference_guidance_start: float = 0.0,
|
|
reference_guidance_end: float = 1.0,
|
|
style_fidelity: float = 0.5,
|
|
reference_attn: bool = True,
|
|
reference_adain: bool = True,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
The call function to the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders.
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
|
images must be passed as a list such that each element of the list can be correctly batched for input
|
|
to a single ControlNet.
|
|
ref_image (`torch.Tensor`, `PIL.Image.Image`):
|
|
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
|
|
the type is specified as `Torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
|
|
also be accepted as an image.
|
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|
will be used.
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
|
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
|
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
|
not provided, pooled text embeddings are generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
|
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
|
argument.
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
|
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
|
the corresponding scale as a list.
|
|
guess_mode (`bool`, *optional*, defaults to `False`):
|
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
|
The percentage of total steps at which the ControlNet starts applying.
|
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The percentage of total steps at which the ControlNet stops applying.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a target image resolution. It should be as same
|
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
attention_auto_machine_weight (`float`):
|
|
Weight of using reference query for self attention's context.
|
|
If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
|
|
gn_auto_machine_weight (`float`):
|
|
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
|
|
reference_guidance_start (`float`, *optional*, defaults to 0.0):
|
|
The percentage of total steps at which the reference ControlNet starts applying.
|
|
reference_guidance_end (`float`, *optional*, defaults to 1.0):
|
|
The percentage of total steps at which the reference ControlNet stops applying.
|
|
style_fidelity (`float`):
|
|
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
|
|
elif style_fidelity=0.0, prompt more important, else balanced.
|
|
reference_attn (`bool`):
|
|
Whether to use reference query for self attention's context.
|
|
reference_adain (`bool`):
|
|
Whether to use reference adain.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
|
otherwise a `tuple` is returned containing the output images.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
|
|
|
# align format for control guidance
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
|
control_guidance_start, control_guidance_end = (
|
|
mult * [control_guidance_start],
|
|
mult * [control_guidance_end],
|
|
)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
image,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
controlnet_conditioning_scale,
|
|
control_guidance_start,
|
|
control_guidance_end,
|
|
callback_on_step_end_tensor_inputs,
|
|
)
|
|
|
|
self.check_ref_inputs(
|
|
ref_image,
|
|
reference_guidance_start,
|
|
reference_guidance_end,
|
|
style_fidelity,
|
|
reference_attn,
|
|
reference_adain,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._denoising_end = denoising_end
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
|
|
|
global_pool_conditions = (
|
|
controlnet.config.global_pool_conditions
|
|
if isinstance(controlnet, ControlNetModel)
|
|
else controlnet.nets[0].config.global_pool_conditions
|
|
)
|
|
guess_mode = guess_mode or global_pool_conditions
|
|
|
|
# 3.1 Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt,
|
|
prompt_2,
|
|
device,
|
|
num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
|
|
# 3.2 Encode ip_adapter_image
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
device,
|
|
batch_size * num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
# 4. Prepare image
|
|
if isinstance(controlnet, ControlNetModel):
|
|
image = self.prepare_image(
|
|
image=image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=controlnet.dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
guess_mode=guess_mode,
|
|
)
|
|
height, width = image.shape[-2:]
|
|
elif isinstance(controlnet, MultiControlNetModel):
|
|
images = []
|
|
|
|
for image_ in image:
|
|
image_ = self.prepare_image(
|
|
image=image_,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=controlnet.dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
guess_mode=guess_mode,
|
|
)
|
|
|
|
images.append(image_)
|
|
|
|
image = images
|
|
height, width = image[0].shape[-2:]
|
|
else:
|
|
assert False
|
|
|
|
# 5. Preprocess reference image
|
|
ref_image = self.prepare_ref_image(
|
|
image=ref_image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=prompt_embeds.dtype,
|
|
)
|
|
|
|
# 6. Prepare timesteps
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 7. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 7.5 Optionally get Guidance Scale Embedding
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
# 8. Prepare reference latent variables
|
|
ref_image_latents = self.prepare_ref_latents(
|
|
ref_image,
|
|
batch_size * num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 9.1 Create tensor stating which controlnets to keep
|
|
controlnet_keep = []
|
|
reference_keeps = []
|
|
for i in range(len(timesteps)):
|
|
keeps = [
|
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
|
for s, e in zip(control_guidance_start, control_guidance_end)
|
|
]
|
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
|
reference_keep = 1.0 - float(
|
|
i / len(timesteps) < reference_guidance_start or (i + 1) / len(timesteps) > reference_guidance_end
|
|
)
|
|
reference_keeps.append(reference_keep)
|
|
|
|
# 9.2 Modify self attention and group norm
|
|
MODE = "write"
|
|
uc_mask = (
|
|
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
|
|
.type_as(ref_image_latents)
|
|
.bool()
|
|
)
|
|
|
|
do_classifier_free_guidance = self.do_classifier_free_guidance
|
|
|
|
def hacked_basic_transformer_inner_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
cross_attention_kwargs: Dict[str, Any] = None,
|
|
class_labels: Optional[torch.LongTensor] = None,
|
|
):
|
|
if self.use_ada_layer_norm:
|
|
norm_hidden_states = self.norm1(hidden_states, timestep)
|
|
elif self.use_ada_layer_norm_zero:
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
|
)
|
|
else:
|
|
norm_hidden_states = self.norm1(hidden_states)
|
|
|
|
# 1. Self-Attention
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
if self.only_cross_attention:
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
else:
|
|
if MODE == "write":
|
|
self.bank.append(norm_hidden_states.detach().clone())
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
if MODE == "read":
|
|
if attention_auto_machine_weight > self.attn_weight:
|
|
attn_output_uc = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
|
|
# attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output_c = attn_output_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
attn_output_c[uc_mask] = self.attn1(
|
|
norm_hidden_states[uc_mask],
|
|
encoder_hidden_states=norm_hidden_states[uc_mask],
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
|
|
self.bank.clear()
|
|
else:
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
if self.use_ada_layer_norm_zero:
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
if self.attn2 is not None:
|
|
norm_hidden_states = (
|
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
|
)
|
|
|
|
# 2. Cross-Attention
|
|
attn_output = self.attn2(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
# 3. Feed-forward
|
|
norm_hidden_states = self.norm3(hidden_states)
|
|
|
|
if self.use_ada_layer_norm_zero:
|
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
|
if self.use_ada_layer_norm_zero:
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
|
|
hidden_states = ff_output + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
def hacked_mid_forward(self, *args, **kwargs):
|
|
eps = 1e-6
|
|
x = self.original_forward(*args, **kwargs)
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append(mean)
|
|
self.var_bank.append(var)
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
|
|
var_acc = sum(self.var_bank) / float(len(self.var_bank))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
x_uc = (((x - mean) / std) * std_acc) + mean_acc
|
|
x_c = x_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
x_c[uc_mask] = x[uc_mask]
|
|
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
return x
|
|
|
|
def hack_CrossAttnDownBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
temb: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
eps = 1e-6
|
|
|
|
# TODO(Patrick, William) - attention mask is not used
|
|
output_states = ()
|
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)[0]
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs):
|
|
eps = 1e-6
|
|
|
|
output_states = ()
|
|
|
|
for i, resnet in enumerate(self.resnets):
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
def hacked_CrossAttnUpBlock2D_forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
|
temb: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
eps = 1e-6
|
|
# TODO(Patrick, William) - attention mask is not used
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
|
# pop res hidden states
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|
|
def hacked_UpBlock2D_forward(
|
|
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, *args, **kwargs
|
|
):
|
|
eps = 1e-6
|
|
for i, resnet in enumerate(self.resnets):
|
|
# pop res hidden states
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
if MODE == "write":
|
|
if gn_auto_machine_weight >= self.gn_weight:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
self.mean_bank.append([mean])
|
|
self.var_bank.append([var])
|
|
if MODE == "read":
|
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
|
hidden_states_c = hidden_states_uc.clone()
|
|
if do_classifier_free_guidance and style_fidelity > 0:
|
|
hidden_states_c[uc_mask] = hidden_states[uc_mask]
|
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
|
|
|
if MODE == "read":
|
|
self.mean_bank = []
|
|
self.var_bank = []
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|
|
if reference_attn:
|
|
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
|
|
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
|
|
|
for i, module in enumerate(attn_modules):
|
|
module._original_inner_forward = module.forward
|
|
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
|
|
module.bank = []
|
|
module.attn_weight = float(i) / float(len(attn_modules))
|
|
|
|
if reference_adain:
|
|
gn_modules = [self.unet.mid_block]
|
|
self.unet.mid_block.gn_weight = 0
|
|
|
|
down_blocks = self.unet.down_blocks
|
|
for w, module in enumerate(down_blocks):
|
|
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
|
|
gn_modules.append(module)
|
|
|
|
up_blocks = self.unet.up_blocks
|
|
for w, module in enumerate(up_blocks):
|
|
module.gn_weight = float(w) / float(len(up_blocks))
|
|
gn_modules.append(module)
|
|
|
|
for i, module in enumerate(gn_modules):
|
|
if getattr(module, "original_forward", None) is None:
|
|
module.original_forward = module.forward
|
|
if i == 0:
|
|
# mid_block
|
|
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
|
|
elif isinstance(module, CrossAttnDownBlock2D):
|
|
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
|
|
elif isinstance(module, DownBlock2D):
|
|
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
|
|
elif isinstance(module, CrossAttnUpBlock2D):
|
|
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
|
|
elif isinstance(module, UpBlock2D):
|
|
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
|
|
module.mean_bank = []
|
|
module.var_bank = []
|
|
module.gn_weight *= 2
|
|
|
|
# 9.2 Prepare added time ids & embeddings
|
|
if isinstance(image, list):
|
|
original_size = original_size or image[0].shape[-2:]
|
|
else:
|
|
original_size = original_size or image.shape[-2:]
|
|
target_size = target_size or (height, width)
|
|
|
|
add_text_embeds = pooled_prompt_embeds
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
|
|
if negative_original_size is not None and negative_target_size is not None:
|
|
negative_add_time_ids = self._get_add_time_ids(
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
else:
|
|
negative_add_time_ids = add_time_ids
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
# 10. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
# 10.1 Apply denoising_end
|
|
if (
|
|
self.denoising_end is not None
|
|
and isinstance(self.denoising_end, float)
|
|
and self.denoising_end > 0
|
|
and self.denoising_end < 1
|
|
):
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
is_unet_compiled = is_compiled_module(self.unet)
|
|
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# Relevant thread:
|
|
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
|
torch._inductor.cudagraph_mark_step_begin()
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
|
|
# controlnet(s) inference
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Infer ControlNet only for the conditional batch.
|
|
control_model_input = latents
|
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
|
controlnet_added_cond_kwargs = {
|
|
"text_embeds": add_text_embeds.chunk(2)[1],
|
|
"time_ids": add_time_ids.chunk(2)[1],
|
|
}
|
|
else:
|
|
control_model_input = latent_model_input
|
|
controlnet_prompt_embeds = prompt_embeds
|
|
controlnet_added_cond_kwargs = added_cond_kwargs
|
|
|
|
if isinstance(controlnet_keep[i], list):
|
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
|
else:
|
|
controlnet_cond_scale = controlnet_conditioning_scale
|
|
if isinstance(controlnet_cond_scale, list):
|
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
control_model_input,
|
|
t,
|
|
encoder_hidden_states=controlnet_prompt_embeds,
|
|
controlnet_cond=image,
|
|
conditioning_scale=cond_scale,
|
|
guess_mode=guess_mode,
|
|
added_cond_kwargs=controlnet_added_cond_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Inferred ControlNet only for the conditional batch.
|
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
|
# add 0 to the unconditional batch to keep it unchanged.
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
added_cond_kwargs["image_embeds"] = image_embeds
|
|
|
|
# ref only part
|
|
if reference_keeps[i] > 0:
|
|
noise = randn_tensor(
|
|
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
|
|
)
|
|
ref_xt = self.scheduler.add_noise(
|
|
ref_image_latents,
|
|
noise,
|
|
t.reshape(
|
|
1,
|
|
),
|
|
)
|
|
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
|
|
|
|
MODE = "write"
|
|
self.unet(
|
|
ref_xt,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
# predict the noise residual
|
|
MODE = "read"
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
|
negative_pooled_prompt_embeds = callback_outputs.pop(
|
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
|
)
|
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
|
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if not output_type == "latent":
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
# unscale/denormalize the latents
|
|
# denormalize with the mean and std if available and not None
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
|
if has_latents_mean and has_latents_std:
|
|
latents_mean = (
|
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents_std = (
|
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
|
else:
|
|
latents = latents / self.vae.config.scaling_factor
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
# cast back to fp16 if needed
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
else:
|
|
image = latents
|
|
|
|
if not output_type == "latent":
|
|
# apply watermark if available
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|