mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-11 06:54:32 +08:00
* begin transformer conversion * refactor * refactor * refactor * refactor * refactor * refactor * update * add conversion script * add pipeline * make fix-copies * remove einops * update docs * gradient checkpointing * add transformer test * update * debug * remove prints * match sigmas * add vae pt. 1 * finish CV* vae * update * update * update * update * update * update * make fix-copies * update * make fix-copies * fix * update * update * make fix-copies * update * update tests * handle device and dtype for safety checker; required in latest diffusers * remove enable_gqa and use repeat_interleave instead * enforce safety checker; use dummy checker in fast tests * add review suggestion for ONNX export Co-Authored-By: Asfiya Baig <asfiyab@nvidia.com> * fix safety_checker issues when not passed explicitly We could either do what's done in this commit, or update the Cosmos examples to explicitly pass the safety checker * use cosmos guardrail package * auto format docs * update conversion script to support 14B models * update name CosmosPipeline -> CosmosTextToWorldPipeline * update docs * fix docs * fix group offload test failing for vae --------- Co-authored-by: Asfiya Baig <asfiyab@nvidia.com>
1.2 KiB
1.2 KiB
CosmosTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in Cosmos World Foundation Model Platform for Physical AI by NVIDIA.
The model can be loaded with the following code snippet.
from diffusers import CosmosTransformer3DModel
transformer = CosmosTransformer3DModel.from_pretrained("nvidia/Cosmos-1.0-Diffusion-7B-Text2World", subfolder="transformer", torch_dtype=torch.bfloat16)
CosmosTransformer3DModel
autodoc CosmosTransformer3DModel
Transformer2DModelOutput
autodoc models.modeling_outputs.Transformer2DModelOutput