Files
diffusers/src/diffusers/hooks/_common.py
Alan Ponnachan 430c557b6a Add support for Magcache (#12744)
* add magcache

* formatting

* add magcache support with calibration mode

* add imports

* improvements

* Apply style fixes

* fix kandinsky errors

* add tests and documentation

* Apply style fixes

* improvements

* Apply style fixes

* make fix-copies.

* minor fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-04 13:45:12 +05:30

63 lines
2.1 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from ..models.attention import AttentionModuleMixin, FeedForward, LuminaFeedForward
from ..models.attention_processor import Attention, MochiAttention
_ATTENTION_CLASSES = (Attention, MochiAttention, AttentionModuleMixin)
_FEEDFORWARD_CLASSES = (FeedForward, LuminaFeedForward)
_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS = (
"blocks",
"transformer_blocks",
"single_transformer_blocks",
"layers",
"visual_transformer_blocks",
)
_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS = ("temporal_transformer_blocks",)
_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "layers")
_ALL_TRANSFORMER_BLOCK_IDENTIFIERS = tuple(
{
*_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS,
*_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS,
*_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS,
}
)
# Layers supported for group offloading and layerwise casting
_GO_LC_SUPPORTED_PYTORCH_LAYERS = (
torch.nn.Conv1d,
torch.nn.Conv2d,
torch.nn.Conv3d,
torch.nn.ConvTranspose1d,
torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d,
torch.nn.Linear,
# TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
# because of double invocation of the same norm layer in CogVideoXLayerNorm
)
def _get_submodule_from_fqn(module: torch.nn.Module, fqn: str) -> Optional[torch.nn.Module]:
for submodule_name, submodule in module.named_modules():
if submodule_name == fqn:
return submodule
return None