mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-19 02:44:53 +08:00
* transformer * make style & make fix-copies * transformer * add transformer tests * 80% vae * make style * make fix-copies * fix * undo cogvideox changes * update * update * match vae * add docs * t2v pipeline working; scheduler needs to be checked * docs * add pipeline test * update * update * make fix-copies * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * update * copy t2v to i2v pipeline * update * apply review suggestions * update * make style * remove framewise encoding/decoding * pack/unpack latents * image2video * update * make fix-copies * update * update * rope scale fix * debug layerwise code * remove debug * Apply suggestions from code review Co-authored-by: YiYi Xu <yixu310@gmail.com> * propagate precision changes to i2v pipeline * remove downcast * address review comments * fix comment * address review comments * [Single File] LTX support for loading original weights (#10135) * from original file mixin for ltx * undo config mapping fn changes * update * add single file to pipelines * update docs * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py * rename classes based on ltx review * point to original repository for inference * make style * resolve conflicts correctly --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by: YiYi Xu <yixu310@gmail.com>
210 lines
7.0 KiB
Python
210 lines
7.0 KiB
Python
import argparse
|
|
from typing import Any, Dict
|
|
|
|
import torch
|
|
from safetensors.torch import load_file
|
|
from transformers import T5EncoderModel, T5Tokenizer
|
|
|
|
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
|
|
|
|
|
def remove_keys_(key: str, state_dict: Dict[str, Any]):
|
|
state_dict.pop(key)
|
|
|
|
|
|
TOKENIZER_MAX_LENGTH = 128
|
|
|
|
TRANSFORMER_KEYS_RENAME_DICT = {
|
|
"patchify_proj": "proj_in",
|
|
"adaln_single": "time_embed",
|
|
"q_norm": "norm_q",
|
|
"k_norm": "norm_k",
|
|
}
|
|
|
|
TRANSFORMER_SPECIAL_KEYS_REMAP = {}
|
|
|
|
VAE_KEYS_RENAME_DICT = {
|
|
# decoder
|
|
"up_blocks.0": "mid_block",
|
|
"up_blocks.1": "up_blocks.0",
|
|
"up_blocks.2": "up_blocks.1.upsamplers.0",
|
|
"up_blocks.3": "up_blocks.1",
|
|
"up_blocks.4": "up_blocks.2.conv_in",
|
|
"up_blocks.5": "up_blocks.2.upsamplers.0",
|
|
"up_blocks.6": "up_blocks.2",
|
|
"up_blocks.7": "up_blocks.3.conv_in",
|
|
"up_blocks.8": "up_blocks.3.upsamplers.0",
|
|
"up_blocks.9": "up_blocks.3",
|
|
# encoder
|
|
"down_blocks.0": "down_blocks.0",
|
|
"down_blocks.1": "down_blocks.0.downsamplers.0",
|
|
"down_blocks.2": "down_blocks.0.conv_out",
|
|
"down_blocks.3": "down_blocks.1",
|
|
"down_blocks.4": "down_blocks.1.downsamplers.0",
|
|
"down_blocks.5": "down_blocks.1.conv_out",
|
|
"down_blocks.6": "down_blocks.2",
|
|
"down_blocks.7": "down_blocks.2.downsamplers.0",
|
|
"down_blocks.8": "down_blocks.3",
|
|
"down_blocks.9": "mid_block",
|
|
# common
|
|
"conv_shortcut": "conv_shortcut.conv",
|
|
"res_blocks": "resnets",
|
|
"norm3.norm": "norm3",
|
|
"per_channel_statistics.mean-of-means": "latents_mean",
|
|
"per_channel_statistics.std-of-means": "latents_std",
|
|
}
|
|
|
|
VAE_SPECIAL_KEYS_REMAP = {
|
|
"per_channel_statistics.channel": remove_keys_,
|
|
"per_channel_statistics.mean-of-means": remove_keys_,
|
|
"per_channel_statistics.mean-of-stds": remove_keys_,
|
|
}
|
|
|
|
|
|
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
|
|
state_dict = saved_dict
|
|
if "model" in saved_dict.keys():
|
|
state_dict = state_dict["model"]
|
|
if "module" in saved_dict.keys():
|
|
state_dict = state_dict["module"]
|
|
if "state_dict" in saved_dict.keys():
|
|
state_dict = state_dict["state_dict"]
|
|
return state_dict
|
|
|
|
|
|
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
|
|
state_dict[new_key] = state_dict.pop(old_key)
|
|
|
|
|
|
def convert_transformer(
|
|
ckpt_path: str,
|
|
dtype: torch.dtype,
|
|
):
|
|
PREFIX_KEY = ""
|
|
|
|
original_state_dict = get_state_dict(load_file(ckpt_path))
|
|
transformer = LTXVideoTransformer3DModel().to(dtype=dtype)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
new_key = key[len(PREFIX_KEY) :]
|
|
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
update_state_dict_inplace(original_state_dict, key, new_key)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
|
|
if special_key not in key:
|
|
continue
|
|
handler_fn_inplace(key, original_state_dict)
|
|
|
|
transformer.load_state_dict(original_state_dict, strict=True)
|
|
return transformer
|
|
|
|
|
|
def convert_vae(ckpt_path: str, dtype: torch.dtype):
|
|
original_state_dict = get_state_dict(load_file(ckpt_path))
|
|
vae = AutoencoderKLLTXVideo().to(dtype=dtype)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
new_key = key[:]
|
|
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
update_state_dict_inplace(original_state_dict, key, new_key)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
|
|
if special_key not in key:
|
|
continue
|
|
handler_fn_inplace(key, original_state_dict)
|
|
|
|
vae.load_state_dict(original_state_dict, strict=True)
|
|
return vae
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
|
|
)
|
|
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
|
|
parser.add_argument(
|
|
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
|
|
)
|
|
parser.add_argument(
|
|
"--typecast_text_encoder",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to apply fp16/bf16 precision to text_encoder",
|
|
)
|
|
parser.add_argument("--save_pipeline", action="store_true")
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
|
|
parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.")
|
|
return parser.parse_args()
|
|
|
|
|
|
DTYPE_MAPPING = {
|
|
"fp32": torch.float32,
|
|
"fp16": torch.float16,
|
|
"bf16": torch.bfloat16,
|
|
}
|
|
|
|
VARIANT_MAPPING = {
|
|
"fp32": None,
|
|
"fp16": "fp16",
|
|
"bf16": "bf16",
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
transformer = None
|
|
dtype = DTYPE_MAPPING[args.dtype]
|
|
variant = VARIANT_MAPPING[args.dtype]
|
|
|
|
if args.save_pipeline:
|
|
assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None
|
|
|
|
if args.transformer_ckpt_path is not None:
|
|
transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype)
|
|
if not args.save_pipeline:
|
|
transformer.save_pretrained(
|
|
args.output_path, safe_serialization=True, max_shard_size="5GB", variant=variant
|
|
)
|
|
|
|
if args.vae_ckpt_path is not None:
|
|
vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, dtype)
|
|
if not args.save_pipeline:
|
|
vae.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", variant=variant)
|
|
|
|
if args.save_pipeline:
|
|
text_encoder_id = "google/t5-v1_1-xxl"
|
|
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
|
|
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
|
|
|
|
if args.typecast_text_encoder:
|
|
text_encoder = text_encoder.to(dtype=dtype)
|
|
|
|
# Apparently, the conversion does not work anymore without this :shrug:
|
|
for param in text_encoder.parameters():
|
|
param.data = param.data.contiguous()
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler(
|
|
use_dynamic_shifting=True,
|
|
base_shift=0.95,
|
|
max_shift=2.05,
|
|
base_image_seq_len=1024,
|
|
max_image_seq_len=4096,
|
|
shift_terminal=0.1,
|
|
)
|
|
|
|
pipe = LTXPipeline(
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
transformer=transformer,
|
|
)
|
|
|
|
pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB")
|