Files
diffusers/docs/source/ko/using-diffusers/unconditional_image_generation.md
Seongsu Park 0c775544dd [Docs] Korean translation update (#4684)
* Docs kr update 3

controlnet, reproducibility 업로드

generator 그대로 사용
seamless multi-GPU 그대로 사용

create_dataset 번역 1차

stable_diffusion_jax

new translation

Add coreml, tome

kr docs minor fix

translate training/instructpix2pix

fix training/instructpix2pix.mdx

using-diffusers/weighting_prompts 번역 1차

add SDXL docs

Translate using-diffuers/loading_overview.md

translate using-diffusers/textual_inversion_inference.md

Conditional image generation (#37)

* stable_diffusion_jax

* index_update

* index_update

* condition_image_generation

---------

Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

jihwan/stable_diffusion.mdx

custom_diffusion 작업 완료

quicktour 작업 완료

distributed inference & control brightness (#40)

* distributed_inference.mdx

* control_brightness

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

using_safetensors (#41)

* distributed_inference.mdx

* control_brightness

* using_safetensors.mdx

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

delete safetensor short

* Repace mdx to md

* toctree update

* Add controlling_generation

* toctree fix

* colab link, minor fix

* docs name typo fix

* frontmatter fix

* translation fix
2023-09-01 09:23:45 -07:00

2.9 KiB

Unconditional 이미지 생성

open-in-colab

Unconditional 이미지 생성은 비교적 간단한 작업입니다. 모델이 텍스트나 이미지와 같은 추가 조건 없이 이미 학습된 학습 데이터와 유사한 이미지만 생성합니다.

['DiffusionPipeline']은 추론을 위해 미리 학습된 diffusion 시스템을 사용하는 가장 쉬운 방법입니다.

먼저 ['DiffusionPipeline']의 인스턴스를 생성하고 다운로드할 파이프라인의 체크포인트를 지정합니다. 허브의 🧨 diffusion 체크포인트 중 하나를 사용할 수 있습니다(사용할 체크포인트는 나비 이미지를 생성합니다).

💡 나만의 unconditional 이미지 생성 모델을 학습시키고 싶으신가요? 학습 가이드를 살펴보고 나만의 이미지를 생성하는 방법을 알아보세요.

이 가이드에서는 unconditional 이미지 생성에 ['DiffusionPipeline']과 DDPM을 사용합니다:

```python

from diffusers import DiffusionPipeline

generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128") [diffusion 파이프라인]은 모든 모델링, 토큰화, 스케줄링 구성 요소를 다운로드하고 캐시합니다. 이 모델은 약 14억 개의 파라미터로 구성되어 있기 때문에 GPU에서 실행할 것을 강력히 권장합니다. PyTorch에서와 마찬가지로 제너레이터 객체를 GPU로 옮길 수 있습니다:python generator.to("cuda") 이제 제너레이터를 사용하여 이미지를 생성할 수 있습니다:python image = generator().images[0] ``` 출력은 기본적으로 PIL.Image 객체로 감싸집니다.

다음을 호출하여 이미지를 저장할 수 있습니다: ```python

image.save("generated_image.png") ```

아래 스페이스(데모 링크)를 이용해 보고, 추론 단계의 매개변수를 자유롭게 조절하여 이미지 품질에 어떤 영향을 미치는지 확인해 보세요!