Files
diffusers/docs/source/en/api/models/autoencoder_oobleck.md
Yoach Lacombe 69e72b1dd1 Stable Audio integration (#8716)
* WIP modeling code and pipeline

* add custom attention processor + custom activation + add to init

* correct ProjectionModel forward

* add stable audio to __initèè

* add autoencoder and update pipeline and modeling code

* add half Rope

* add partial rotary v2

* add temporary modfis to scheduler

* add EDM DPM Solver

* remove TODOs

* clean GLU

* remove att.group_norm to attn processor

* revert back src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

* refactor GLU -> SwiGLU

* remove redundant args

* add channel multiples in autoencoder docstrings

* changes in docsrtings and copyright headers

* clean pipeline

* further cleaning

* remove peft and lora and fromoriginalmodel

* Delete src/diffusers/pipelines/stable_audio/diffusers.code-workspace

* make style

* dummy models

* fix copied from

* add fast oobleck tests

* add brownian tree

* oobleck autoencoder slow tests

* remove TODO

* fast stable audio pipeline tests

* add slow tests

* make style

* add first version of docs

* wrap is_torchsde_available to the scheduler

* fix slow test

* test with input waveform

* add input waveform

* remove some todos

* create stableaudio gaussian projection + make style

* add pipeline to toctree

* fix copied from

* make quality

* refactor timestep_features->time_proj

* refactor joint_attention_kwargs->cross_attention_kwargs

* remove forward_chunk

* move StableAudioDitModel to transformers folder

* correct convert + remove partial rotary embed

* apply suggestions from yiyixuxu -> removing attn.kv_heads

* remove temb

* remove cross_attention_kwargs

* further removal of cross_attention_kwargs

* remove text encoder autocast to fp16

* continue removing autocast

* make style

* refactor how text and audio are embedded

* add paper

* update example code

* make style

* unify projection model forward + fix device placement

* make style

* remove fuse qkv

* apply suggestions from review

* Update src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* make style

* smaller models in fast tests

* pass sequential offloading fast tests

* add docs for vae and autoencoder

* make style and update example

* remove useless import

* add cosine scheduler

* dummy classes

* cosine scheduler docs

* better description of scheduler

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-07-30 15:29:06 +05:30

2.0 KiB

AutoencoderOobleck

The Oobleck variational autoencoder (VAE) model with KL loss was introduced in Stability-AI/stable-audio-tools and Stable Audio Open by Stability AI. The model is used in 🤗 Diffusers to encode audio waveforms into latents and to decode latent representations into audio waveforms.

The abstract from the paper is:

Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.

AutoencoderOobleck

autodoc AutoencoderOobleck - decode - encode - all

OobleckDecoderOutput

autodoc models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput

OobleckDecoderOutput

autodoc models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput

AutoencoderOobleckOutput

autodoc models.autoencoders.autoencoder_oobleck.AutoencoderOobleckOutput