mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 21:44:27 +08:00
2410 lines
106 KiB
Python
2410 lines
106 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import gc
|
|
import glob
|
|
import inspect
|
|
import json
|
|
import os
|
|
import re
|
|
import tempfile
|
|
import traceback
|
|
import unittest
|
|
import unittest.mock as mock
|
|
import uuid
|
|
import warnings
|
|
from collections import defaultdict
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import requests_mock
|
|
import safetensors.torch
|
|
import torch
|
|
import torch.nn as nn
|
|
from accelerate.utils.modeling import _get_proper_dtype, compute_module_sizes, dtype_byte_size
|
|
from huggingface_hub import ModelCard, delete_repo, snapshot_download, try_to_load_from_cache
|
|
from huggingface_hub.utils import is_jinja_available
|
|
from parameterized import parameterized
|
|
from requests.exceptions import HTTPError
|
|
|
|
from diffusers.models import FluxTransformer2DModel, SD3Transformer2DModel, UNet2DConditionModel
|
|
from diffusers.models.attention_processor import (
|
|
AttnProcessor,
|
|
AttnProcessor2_0,
|
|
AttnProcessorNPU,
|
|
XFormersAttnProcessor,
|
|
)
|
|
from diffusers.models.auto_model import AutoModel
|
|
from diffusers.training_utils import EMAModel
|
|
from diffusers.utils import (
|
|
SAFE_WEIGHTS_INDEX_NAME,
|
|
WEIGHTS_INDEX_NAME,
|
|
is_peft_available,
|
|
is_torch_npu_available,
|
|
is_xformers_available,
|
|
logging,
|
|
)
|
|
from diffusers.utils.hub_utils import _add_variant
|
|
from diffusers.utils.testing_utils import (
|
|
CaptureLogger,
|
|
_check_safetensors_serialization,
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
backend_synchronize,
|
|
check_if_dicts_are_equal,
|
|
get_python_version,
|
|
is_torch_compile,
|
|
numpy_cosine_similarity_distance,
|
|
require_peft_backend,
|
|
require_peft_version_greater,
|
|
require_torch_2,
|
|
require_torch_accelerator,
|
|
require_torch_accelerator_with_training,
|
|
require_torch_multi_accelerator,
|
|
require_torch_version_greater,
|
|
run_test_in_subprocess,
|
|
slow,
|
|
torch_all_close,
|
|
torch_device,
|
|
)
|
|
from diffusers.utils.torch_utils import get_torch_cuda_device_capability
|
|
|
|
from ..others.test_utils import TOKEN, USER, is_staging_test
|
|
|
|
|
|
if is_peft_available():
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
|
|
def caculate_expected_num_shards(index_map_path):
|
|
with open(index_map_path) as f:
|
|
weight_map_dict = json.load(f)["weight_map"]
|
|
first_key = list(weight_map_dict.keys())[0]
|
|
weight_loc = weight_map_dict[first_key] # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
|
|
expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
|
|
return expected_num_shards
|
|
|
|
|
|
def check_if_lora_correctly_set(model) -> bool:
|
|
"""
|
|
Checks if the LoRA layers are correctly set with peft
|
|
"""
|
|
for module in model.modules():
|
|
if isinstance(module, BaseTunerLayer):
|
|
return True
|
|
return False
|
|
|
|
|
|
# Will be run via run_test_in_subprocess
|
|
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
|
|
error = None
|
|
try:
|
|
init_dict, model_class = in_queue.get(timeout=timeout)
|
|
|
|
model = model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model = torch.compile(model)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
|
|
assert new_model.__class__ == model_class
|
|
except Exception:
|
|
error = f"{traceback.format_exc()}"
|
|
|
|
results = {"error": error}
|
|
out_queue.put(results, timeout=timeout)
|
|
out_queue.join()
|
|
|
|
|
|
def named_persistent_module_tensors(
|
|
module: nn.Module,
|
|
recurse: bool = False,
|
|
):
|
|
"""
|
|
A helper function that gathers all the tensors (parameters + persistent buffers) of a given module.
|
|
|
|
Args:
|
|
module (`torch.nn.Module`):
|
|
The module we want the tensors on.
|
|
recurse (`bool`, *optional`, defaults to `False`):
|
|
Whether or not to go look in every submodule or just return the direct parameters and buffers.
|
|
"""
|
|
yield from module.named_parameters(recurse=recurse)
|
|
|
|
for named_buffer in module.named_buffers(recurse=recurse):
|
|
name, _ = named_buffer
|
|
# Get parent by splitting on dots and traversing the model
|
|
parent = module
|
|
if "." in name:
|
|
parent_name = name.rsplit(".", 1)[0]
|
|
for part in parent_name.split("."):
|
|
parent = getattr(parent, part)
|
|
name = name.split(".")[-1]
|
|
if name not in parent._non_persistent_buffers_set:
|
|
yield named_buffer
|
|
|
|
|
|
def compute_module_persistent_sizes(
|
|
model: nn.Module,
|
|
dtype: Optional[Union[str, torch.device]] = None,
|
|
special_dtypes: Optional[Dict[str, Union[str, torch.device]]] = None,
|
|
):
|
|
"""
|
|
Compute the size of each submodule of a given model (parameters + persistent buffers).
|
|
"""
|
|
if dtype is not None:
|
|
dtype = _get_proper_dtype(dtype)
|
|
dtype_size = dtype_byte_size(dtype)
|
|
if special_dtypes is not None:
|
|
special_dtypes = {key: _get_proper_dtype(dtyp) for key, dtyp in special_dtypes.items()}
|
|
special_dtypes_size = {key: dtype_byte_size(dtyp) for key, dtyp in special_dtypes.items()}
|
|
module_sizes = defaultdict(int)
|
|
|
|
module_list = []
|
|
|
|
module_list = named_persistent_module_tensors(model, recurse=True)
|
|
|
|
for name, tensor in module_list:
|
|
if special_dtypes is not None and name in special_dtypes:
|
|
size = tensor.numel() * special_dtypes_size[name]
|
|
elif dtype is None:
|
|
size = tensor.numel() * dtype_byte_size(tensor.dtype)
|
|
elif str(tensor.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
|
|
# According to the code in set_module_tensor_to_device, these types won't be converted
|
|
# so use their original size here
|
|
size = tensor.numel() * dtype_byte_size(tensor.dtype)
|
|
else:
|
|
size = tensor.numel() * min(dtype_size, dtype_byte_size(tensor.dtype))
|
|
name_parts = name.split(".")
|
|
for idx in range(len(name_parts) + 1):
|
|
module_sizes[".".join(name_parts[:idx])] += size
|
|
|
|
return module_sizes
|
|
|
|
|
|
def cast_maybe_tensor_dtype(maybe_tensor, current_dtype, target_dtype):
|
|
if torch.is_tensor(maybe_tensor):
|
|
return maybe_tensor.to(target_dtype) if maybe_tensor.dtype == current_dtype else maybe_tensor
|
|
if isinstance(maybe_tensor, dict):
|
|
return {k: cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for k, v in maybe_tensor.items()}
|
|
if isinstance(maybe_tensor, list):
|
|
return [cast_maybe_tensor_dtype(v, current_dtype, target_dtype) for v in maybe_tensor]
|
|
return maybe_tensor
|
|
|
|
|
|
class ModelUtilsTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
def test_missing_key_loading_warning_message(self):
|
|
with self.assertLogs("diffusers.models.modeling_utils", level="WARNING") as logs:
|
|
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "conv_out.bias" in " ".join(logs.output)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
|
|
("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
|
|
("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
|
|
("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
|
|
]
|
|
)
|
|
def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
|
|
def load_model(path):
|
|
kwargs = {"variant": "fp16"}
|
|
if subfolder:
|
|
kwargs["subfolder"] = subfolder
|
|
return UNet2DConditionModel.from_pretrained(path, **kwargs)
|
|
|
|
with self.assertWarns(FutureWarning) as warning:
|
|
if use_local:
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
tmpdirname = snapshot_download(repo_id=repo_id)
|
|
_ = load_model(tmpdirname)
|
|
else:
|
|
_ = load_model(repo_id)
|
|
|
|
warning_message = str(warning.warnings[0].message)
|
|
self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)
|
|
|
|
# Local tests are already covered down below.
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
|
|
]
|
|
)
|
|
def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
|
|
def load_model():
|
|
kwargs = {}
|
|
if variant:
|
|
kwargs["variant"] = variant
|
|
if subfolder:
|
|
kwargs["subfolder"] = subfolder
|
|
return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)
|
|
|
|
assert load_model()
|
|
|
|
def test_cached_files_are_used_when_no_internet(self):
|
|
# A mock response for an HTTP head request to emulate server down
|
|
response_mock = mock.Mock()
|
|
response_mock.status_code = 500
|
|
response_mock.headers = {}
|
|
response_mock.raise_for_status.side_effect = HTTPError
|
|
response_mock.json.return_value = {}
|
|
|
|
# Download this model to make sure it's in the cache.
|
|
orig_model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
|
|
)
|
|
|
|
# Under the mock environment we get a 500 error when trying to reach the model.
|
|
with mock.patch("requests.request", return_value=response_mock):
|
|
# Download this model to make sure it's in the cache.
|
|
model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
|
|
)
|
|
|
|
for p1, p2 in zip(orig_model.parameters(), model.parameters()):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
assert False, "Parameters not the same!"
|
|
|
|
def test_local_files_only_with_sharded_checkpoint(self):
|
|
repo_id = "hf-internal-testing/tiny-flux-sharded"
|
|
error_response = mock.Mock(
|
|
status_code=500,
|
|
headers={},
|
|
raise_for_status=mock.Mock(side_effect=HTTPError),
|
|
json=mock.Mock(return_value={}),
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", cache_dir=tmpdir)
|
|
|
|
with mock.patch("requests.Session.get", return_value=error_response):
|
|
# Should fail with local_files_only=False (network required)
|
|
# We would make a network call with model_info
|
|
with self.assertRaises(OSError):
|
|
FluxTransformer2DModel.from_pretrained(
|
|
repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=False
|
|
)
|
|
|
|
# Should succeed with local_files_only=True (uses cache)
|
|
# model_info call skipped
|
|
local_model = FluxTransformer2DModel.from_pretrained(
|
|
repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
|
|
)
|
|
|
|
assert all(torch.equal(p1, p2) for p1, p2 in zip(model.parameters(), local_model.parameters())), (
|
|
"Model parameters don't match!"
|
|
)
|
|
|
|
# Remove a shard file
|
|
cached_shard_file = try_to_load_from_cache(
|
|
repo_id, filename="transformer/diffusion_pytorch_model-00001-of-00002.safetensors", cache_dir=tmpdir
|
|
)
|
|
os.remove(cached_shard_file)
|
|
|
|
# Attempting to load from cache should raise an error
|
|
with self.assertRaises(OSError) as context:
|
|
FluxTransformer2DModel.from_pretrained(
|
|
repo_id, subfolder="transformer", cache_dir=tmpdir, local_files_only=True
|
|
)
|
|
|
|
# Verify error mentions the missing shard
|
|
error_msg = str(context.exception)
|
|
assert cached_shard_file in error_msg or "required according to the checkpoint index" in error_msg, (
|
|
f"Expected error about missing shard, got: {error_msg}"
|
|
)
|
|
|
|
@unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
|
|
@unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
|
|
def test_one_request_upon_cached(self):
|
|
use_safetensors = False
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
with requests_mock.mock(real_http=True) as m:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
use_safetensors=use_safetensors,
|
|
)
|
|
|
|
download_requests = [r.method for r in m.request_history]
|
|
assert download_requests.count("HEAD") == 3, (
|
|
"3 HEAD requests one for config, one for model, and one for shard index file."
|
|
)
|
|
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"
|
|
|
|
with requests_mock.mock(real_http=True) as m:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
use_safetensors=use_safetensors,
|
|
)
|
|
|
|
cache_requests = [r.method for r in m.request_history]
|
|
assert "HEAD" == cache_requests[0] and len(cache_requests) == 2, (
|
|
"We should call only `model_info` to check for commit hash and knowing if shard index is present."
|
|
)
|
|
|
|
def test_weight_overwrite(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
in_channels=9,
|
|
)
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "Cannot load" in str(error_context.exception)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
in_channels=9,
|
|
low_cpu_mem_usage=False,
|
|
ignore_mismatched_sizes=True,
|
|
)
|
|
|
|
assert model.config.in_channels == 9
|
|
|
|
@require_torch_accelerator
|
|
def test_keep_modules_in_fp32(self):
|
|
r"""
|
|
A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32 when we load the model in fp16/bf16
|
|
Also ensures if inference works.
|
|
"""
|
|
fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
|
|
|
|
for torch_dtype in [torch.bfloat16, torch.float16]:
|
|
SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]
|
|
|
|
model = SD3Transformer2DModel.from_pretrained(
|
|
"hf-internal-testing/tiny-sd3-pipe", subfolder="transformer", torch_dtype=torch_dtype
|
|
).to(torch_device)
|
|
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
if name in model._keep_in_fp32_modules:
|
|
self.assertTrue(module.weight.dtype == torch.float32)
|
|
else:
|
|
self.assertTrue(module.weight.dtype == torch_dtype)
|
|
|
|
def get_dummy_inputs():
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = width = embedding_dim = 32
|
|
pooled_embedding_dim = embedding_dim * 2
|
|
sequence_length = 154
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"pooled_projections": pooled_prompt_embeds,
|
|
"timestep": timestep,
|
|
}
|
|
|
|
# test if inference works.
|
|
with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch_dtype):
|
|
input_dict_for_transformer = get_dummy_inputs()
|
|
model_inputs = {
|
|
k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
|
|
}
|
|
model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
|
|
_ = model(**model_inputs)
|
|
|
|
SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules
|
|
|
|
|
|
class UNetTesterMixin:
|
|
def test_forward_with_norm_groups(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["norm_num_groups"] = 16
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
|
|
class ModelTesterMixin:
|
|
main_input_name = None # overwrite in model specific tester class
|
|
base_precision = 1e-3
|
|
forward_requires_fresh_args = False
|
|
model_split_percents = [0.5, 0.7, 0.9]
|
|
uses_custom_attn_processor = False
|
|
|
|
def check_device_map_is_respected(self, model, device_map):
|
|
for param_name, param in model.named_parameters():
|
|
# Find device in device_map
|
|
while len(param_name) > 0 and param_name not in device_map:
|
|
param_name = ".".join(param_name.split(".")[:-1])
|
|
if param_name not in device_map:
|
|
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
|
|
|
|
param_device = device_map[param_name]
|
|
if param_device in ["cpu", "disk"]:
|
|
self.assertEqual(param.device, torch.device("meta"))
|
|
else:
|
|
self.assertEqual(param.device, torch.device(param_device))
|
|
|
|
def test_from_save_pretrained(self, expected_max_diff=5e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
if hasattr(new_model, "set_default_attn_processor"):
|
|
new_model.set_default_attn_processor()
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
image = model(**self.inputs_dict(0))
|
|
else:
|
|
image = model(**inputs_dict)
|
|
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
new_image = new_model(**self.inputs_dict(0))
|
|
else:
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
def test_getattr_is_correct(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
# save some things to test
|
|
model.dummy_attribute = 5
|
|
model.register_to_config(test_attribute=5)
|
|
|
|
logger = logging.get_logger("diffusers.models.modeling_utils")
|
|
# 30 for warning
|
|
logger.setLevel(30)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
assert hasattr(model, "dummy_attribute")
|
|
assert getattr(model, "dummy_attribute") == 5
|
|
assert model.dummy_attribute == 5
|
|
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
logger = logging.get_logger("diffusers.models.modeling_utils")
|
|
# 30 for warning
|
|
logger.setLevel(30)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
assert hasattr(model, "save_pretrained")
|
|
fn = model.save_pretrained
|
|
fn_1 = getattr(model, "save_pretrained")
|
|
|
|
assert fn == fn_1
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
# warning should be thrown
|
|
with self.assertWarns(FutureWarning):
|
|
assert model.test_attribute == 5
|
|
|
|
with self.assertWarns(FutureWarning):
|
|
assert getattr(model, "test_attribute") == 5
|
|
|
|
with self.assertRaises(AttributeError) as error:
|
|
model.does_not_exist
|
|
|
|
assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "npu" or not is_torch_npu_available(),
|
|
reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
|
|
)
|
|
def test_set_torch_npu_flash_attn_processor_determinism(self):
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output = model(**inputs_dict)[0]
|
|
|
|
model.enable_npu_flash_attention()
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessorNPU())
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_3 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_3 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
assert torch.allclose(output, output_2, atol=self.base_precision)
|
|
assert torch.allclose(output, output_3, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_3, atol=self.base_precision)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_set_xformers_attn_processor_for_determinism(self):
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
if not hasattr(model, "set_default_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output = model(**inputs_dict)[0]
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(XFormersAttnProcessor())
|
|
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_3 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_3 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
assert torch.allclose(output, output_2, atol=self.base_precision)
|
|
assert torch.allclose(output, output_3, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_3, atol=self.base_precision)
|
|
|
|
@require_torch_accelerator
|
|
def test_set_attn_processor_for_determinism(self):
|
|
if self.uses_custom_attn_processor:
|
|
return
|
|
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_1 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_1 = model(**inputs_dict)[0]
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessor2_0())
|
|
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_4 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_4 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessor())
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_5 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_5 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
# make sure that outputs match
|
|
assert torch.allclose(output_2, output_1, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_4, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_5, atol=self.base_precision)
|
|
|
|
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
|
|
if hasattr(new_model, "set_default_attn_processor"):
|
|
new_model.set_default_attn_processor()
|
|
|
|
# non-variant cannot be loaded
|
|
with self.assertRaises(OSError) as error_context:
|
|
self.model_class.from_pretrained(tmpdirname)
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)
|
|
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
image = model(**self.inputs_dict(0))
|
|
else:
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
new_image = new_model(**self.inputs_dict(0))
|
|
else:
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
@is_torch_compile
|
|
@require_torch_2
|
|
@unittest.skipIf(
|
|
get_python_version == (3, 12),
|
|
reason="Torch Dynamo isn't yet supported for Python 3.12.",
|
|
)
|
|
def test_from_save_pretrained_dynamo(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
inputs = [init_dict, self.model_class]
|
|
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
|
|
|
|
def test_from_save_pretrained_dtype(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
|
if torch_device == "mps" and dtype == torch.bfloat16:
|
|
continue
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.to(dtype)
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
|
|
assert new_model.dtype == dtype
|
|
if (
|
|
hasattr(self.model_class, "_keep_in_fp32_modules")
|
|
and self.model_class._keep_in_fp32_modules is None
|
|
):
|
|
new_model = self.model_class.from_pretrained(
|
|
tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype
|
|
)
|
|
assert new_model.dtype == dtype
|
|
|
|
def test_determinism(self, expected_max_diff=1e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
first = model(**self.inputs_dict(0))
|
|
else:
|
|
first = model(**inputs_dict)
|
|
if isinstance(first, dict):
|
|
first = first.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
second = model(**self.inputs_dict(0))
|
|
else:
|
|
second = model(**inputs_dict)
|
|
if isinstance(second, dict):
|
|
second = second.to_tuple()[0]
|
|
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, expected_max_diff)
|
|
|
|
def test_output(self, expected_output_shape=None):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
|
|
# input & output have to have the same shape
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
|
|
if expected_output_shape is None:
|
|
expected_shape = input_tensor.shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
else:
|
|
self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_from_pretrained(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# test if the model can be loaded from the config
|
|
# and has all the expected shape
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
new_model.eval()
|
|
|
|
# check if all parameters shape are the same
|
|
for param_name in model.state_dict().keys():
|
|
param_1 = model.state_dict()[param_name]
|
|
param_2 = new_model.state_dict()[param_name]
|
|
self.assertEqual(param_1.shape, param_2.shape)
|
|
|
|
with torch.no_grad():
|
|
output_1 = model(**inputs_dict)
|
|
|
|
if isinstance(output_1, dict):
|
|
output_1 = output_1.to_tuple()[0]
|
|
|
|
output_2 = new_model(**inputs_dict)
|
|
|
|
if isinstance(output_2, dict):
|
|
output_2 = output_2.to_tuple()[0]
|
|
|
|
self.assertEqual(output_1.shape, output_2.shape)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_ema_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
ema_model = EMAModel(model.parameters())
|
|
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
ema_model.step(model.parameters())
|
|
|
|
def test_outputs_equivalence(self):
|
|
def set_nan_tensor_to_zero(t):
|
|
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
|
|
# Track progress in https://github.com/pytorch/pytorch/issues/77764
|
|
device = t.device
|
|
if device.type == "mps":
|
|
t = t.to("cpu")
|
|
t[t != t] = 0
|
|
return t.to(device)
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
outputs_dict = model(**self.inputs_dict(0))
|
|
outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
|
|
else:
|
|
outputs_dict = model(**inputs_dict)
|
|
outputs_tuple = model(**inputs_dict, return_dict=False)
|
|
|
|
recursive_check(outputs_tuple, outputs_dict)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_enable_disable_gradient_checkpointing(self):
|
|
# Skip test if model does not support gradient checkpointing
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
pytest.skip("Gradient checkpointing is not supported.")
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
# at init model should have gradient checkpointing disabled
|
|
model = self.model_class(**init_dict)
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# check enable works
|
|
model.enable_gradient_checkpointing()
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
# check disable works
|
|
model.disable_gradient_checkpointing()
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5, skip: set[str] = {}):
|
|
# Skip test if model does not support gradient checkpointing
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
pytest.skip("Gradient checkpointing is not supported.")
|
|
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
inputs_dict_copy = copy.deepcopy(inputs_dict)
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
assert not model.is_gradient_checkpointing and model.training
|
|
|
|
out = model(**inputs_dict).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model.zero_grad()
|
|
|
|
labels = torch.randn_like(out)
|
|
loss = (out - labels).mean()
|
|
loss.backward()
|
|
|
|
# re-instantiate the model now enabling gradient checkpointing
|
|
torch.manual_seed(0)
|
|
model_2 = self.model_class(**init_dict)
|
|
# clone model
|
|
model_2.load_state_dict(model.state_dict())
|
|
model_2.to(torch_device)
|
|
model_2.enable_gradient_checkpointing()
|
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training
|
|
|
|
out_2 = model_2(**inputs_dict_copy).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model_2.zero_grad()
|
|
loss_2 = (out_2 - labels).mean()
|
|
loss_2.backward()
|
|
|
|
# compare the output and parameters gradients
|
|
self.assertTrue((loss - loss_2).abs() < loss_tolerance)
|
|
named_params = dict(model.named_parameters())
|
|
named_params_2 = dict(model_2.named_parameters())
|
|
|
|
for name, param in named_params.items():
|
|
if "post_quant_conv" in name:
|
|
continue
|
|
if name in skip:
|
|
continue
|
|
# TODO(aryan): remove the below lines after looking into easyanimate transformer a little more
|
|
# It currently errors out the gradient checkpointing test because the gradients for attn2.to_out is None
|
|
if param.grad is None:
|
|
continue
|
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))
|
|
|
|
@unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
|
|
def test_gradient_checkpointing_is_applied(
|
|
self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
|
|
):
|
|
# Skip test if model does not support gradient checkpointing
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
pytest.skip("Gradient checkpointing is not supported.")
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
if attention_head_dim is not None:
|
|
init_dict["attention_head_dim"] = attention_head_dim
|
|
if num_attention_heads is not None:
|
|
init_dict["num_attention_heads"] = num_attention_heads
|
|
if block_out_channels is not None:
|
|
init_dict["block_out_channels"] = block_out_channels
|
|
|
|
model_class_copy = copy.copy(self.model_class)
|
|
model = model_class_copy(**init_dict)
|
|
model.enable_gradient_checkpointing()
|
|
|
|
modules_with_gc_enabled = {}
|
|
for submodule in model.modules():
|
|
if hasattr(submodule, "gradient_checkpointing"):
|
|
self.assertTrue(submodule.gradient_checkpointing)
|
|
modules_with_gc_enabled[submodule.__class__.__name__] = True
|
|
|
|
assert set(modules_with_gc_enabled.keys()) == expected_set
|
|
assert all(modules_with_gc_enabled.values()), "All modules should be enabled"
|
|
|
|
def test_deprecated_kwargs(self):
|
|
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
|
|
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
|
|
|
|
if has_kwarg_in_model_class and not has_deprecated_kwarg:
|
|
raise ValueError(
|
|
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
|
|
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
|
|
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
|
|
" [<deprecated_argument>]`"
|
|
)
|
|
|
|
if not has_kwarg_in_model_class and has_deprecated_kwarg:
|
|
raise ValueError(
|
|
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
|
|
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
|
|
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
|
|
" from `_deprecated_kwargs = [<deprecated_argument>]`"
|
|
)
|
|
|
|
@parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
|
|
@torch.no_grad()
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_save_load_lora_adapter(self, rank, lora_alpha, use_dora=False):
|
|
from peft import LoraConfig
|
|
from peft.utils import get_peft_model_state_dict
|
|
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
|
|
|
|
torch.manual_seed(0)
|
|
output_no_lora = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
torch.manual_seed(0)
|
|
outputs_with_lora = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_lora_adapter(tmpdir)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
|
|
model.unload_lora()
|
|
self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
|
|
state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")
|
|
|
|
for k in state_dict_loaded:
|
|
loaded_v = state_dict_loaded[k]
|
|
retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
|
|
self.assertTrue(torch.allclose(loaded_v, retrieved_v))
|
|
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
torch.manual_seed(0)
|
|
outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
|
|
self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
|
|
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_lora_wrong_adapter_name_raises_error(self):
|
|
from peft import LoraConfig
|
|
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
wrong_name = "foo"
|
|
with self.assertRaises(ValueError) as err_context:
|
|
model.save_lora_adapter(tmpdir, adapter_name=wrong_name)
|
|
|
|
self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))
|
|
|
|
@parameterized.expand([(4, 4, True), (4, 8, False), (8, 4, False)])
|
|
@torch.no_grad()
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_lora_adapter_metadata_is_loaded_correctly(self, rank, lora_alpha, use_dora):
|
|
from peft import LoraConfig
|
|
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
metadata = model.peft_config["default"].to_dict()
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_lora_adapter(tmpdir)
|
|
model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
|
|
self.assertTrue(os.path.isfile(model_file))
|
|
|
|
model.unload_lora()
|
|
self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
|
|
parsed_metadata = model.peft_config["default_0"].to_dict()
|
|
check_if_dicts_are_equal(metadata, parsed_metadata)
|
|
|
|
@torch.no_grad()
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_lora_adapter_wrong_metadata_raises_error(self):
|
|
from peft import LoraConfig
|
|
|
|
from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
pytest.skip(f"PEFT is not supported for this model ({model.__class__.__name__}).")
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_lora_adapter(tmpdir)
|
|
model_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
|
|
self.assertTrue(os.path.isfile(model_file))
|
|
|
|
# Perturb the metadata in the state dict.
|
|
loaded_state_dict = safetensors.torch.load_file(model_file)
|
|
metadata = {"format": "pt"}
|
|
lora_adapter_metadata = denoiser_lora_config.to_dict()
|
|
lora_adapter_metadata.update({"foo": 1, "bar": 2})
|
|
for key, value in lora_adapter_metadata.items():
|
|
if isinstance(value, set):
|
|
lora_adapter_metadata[key] = list(value)
|
|
metadata[LORA_ADAPTER_METADATA_KEY] = json.dumps(lora_adapter_metadata, indent=2, sort_keys=True)
|
|
safetensors.torch.save_file(loaded_state_dict, model_file, metadata=metadata)
|
|
|
|
model.unload_lora()
|
|
self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
with self.assertRaises(TypeError) as err_context:
|
|
model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
|
|
self.assertTrue("`LoraConfig` class could not be instantiated" in str(err_context.exception))
|
|
|
|
@require_torch_accelerator
|
|
def test_cpu_offload(self):
|
|
if self.model_class._no_split_modules is None:
|
|
pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, "cpu": model_size * 2}
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_accelerator
|
|
def test_disk_offload_without_safetensors(self):
|
|
if self.model_class._no_split_modules is None:
|
|
pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
# Force disk offload by setting very small CPU memory
|
|
max_memory = {0: max_size, "cpu": int(0.1 * max_size)}
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
|
|
with self.assertRaises(ValueError):
|
|
# This errors out because it's missing an offload folder
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
|
|
new_model = self.model_class.from_pretrained(
|
|
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
|
|
)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_accelerator
|
|
def test_disk_offload_with_safetensors(self):
|
|
if self.model_class._no_split_modules is None:
|
|
pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
new_model = self.model_class.from_pretrained(
|
|
tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
|
|
)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_multi_accelerator
|
|
def test_model_parallelism(self):
|
|
if self.model_class._no_split_modules is None:
|
|
pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_accelerator
|
|
def test_sharded_checkpoints(self):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_persistent_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir).eval()
|
|
new_model = new_model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_accelerator
|
|
def test_sharded_checkpoints_with_variant(self):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_persistent_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
variant = "fp16"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
|
|
# testing if loading works with the variant when the checkpoint is sharded should be
|
|
# enough.
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
|
|
|
|
index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
|
|
new_model = new_model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_accelerator
|
|
def test_sharded_checkpoints_with_parallel_loading(self):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_persistent_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
# Load with parallel loading
|
|
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "yes"
|
|
new_model = self.model_class.from_pretrained(tmp_dir).eval()
|
|
new_model = new_model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
# set to no.
|
|
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "no"
|
|
|
|
@require_torch_accelerator
|
|
def test_sharded_checkpoints_device_map(self):
|
|
if self.model_class._no_split_modules is None:
|
|
pytest.skip("Test not supported for this model as `_no_split_modules` is not set.")
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_persistent_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
# This test is okay without a GPU because we're not running any execution. We're just serializing
|
|
# and check if the resultant files are following an expected format.
|
|
def test_variant_sharded_ckpt_right_format(self):
|
|
for use_safe in [True, False]:
|
|
extension = ".safetensors" if use_safe else ".bin"
|
|
config, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model_size = compute_module_persistent_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
variant = "fp16"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(
|
|
tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
|
|
)
|
|
index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
# Check if the variant is present as a substring in the checkpoints.
|
|
shard_files = [
|
|
file
|
|
for file in os.listdir(tmp_dir)
|
|
if file.endswith(extension) or ("index" in file and "json" in file)
|
|
]
|
|
assert all(variant in f for f in shard_files)
|
|
|
|
# Check if the sharded checkpoints were serialized in the right format.
|
|
shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
|
|
# Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
|
|
assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)
|
|
|
|
def test_layerwise_casting_training(self):
|
|
def test_fn(storage_dtype, compute_dtype):
|
|
if torch.device(torch_device).type == "cpu" and compute_dtype == torch.bfloat16:
|
|
pytest.skip("Skipping test because CPU doesn't go well with bfloat16.")
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model = model.to(torch_device, dtype=compute_dtype)
|
|
model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
|
|
model.train()
|
|
|
|
inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
|
|
with torch.amp.autocast(device_type=torch.device(torch_device).type):
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
|
|
noise = cast_maybe_tensor_dtype(noise, torch.float32, compute_dtype)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
|
|
loss.backward()
|
|
|
|
test_fn(torch.float16, torch.float32)
|
|
test_fn(torch.float8_e4m3fn, torch.float32)
|
|
test_fn(torch.float8_e5m2, torch.float32)
|
|
test_fn(torch.float8_e4m3fn, torch.bfloat16)
|
|
|
|
@torch.no_grad()
|
|
def test_layerwise_casting_inference(self):
|
|
from diffusers.hooks._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
|
|
from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN
|
|
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config)
|
|
model.eval()
|
|
model.to(torch_device)
|
|
base_slice = model(**inputs_dict)[0].detach().flatten().cpu().numpy()
|
|
|
|
def check_linear_dtype(module, storage_dtype, compute_dtype):
|
|
patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
|
|
if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
|
|
patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
|
|
for name, submodule in module.named_modules():
|
|
if not isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
|
|
continue
|
|
dtype_to_check = storage_dtype
|
|
if any(re.search(pattern, name) for pattern in patterns_to_check):
|
|
dtype_to_check = compute_dtype
|
|
if getattr(submodule, "weight", None) is not None:
|
|
self.assertEqual(submodule.weight.dtype, dtype_to_check)
|
|
if getattr(submodule, "bias", None) is not None:
|
|
self.assertEqual(submodule.bias.dtype, dtype_to_check)
|
|
|
|
def test_layerwise_casting(storage_dtype, compute_dtype):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device, dtype=compute_dtype)
|
|
model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
|
|
|
|
check_linear_dtype(model, storage_dtype, compute_dtype)
|
|
output = model(**inputs_dict)[0].float().flatten().detach().cpu().numpy()
|
|
|
|
# The precision test is not very important for fast tests. In most cases, the outputs will not be the same.
|
|
# We just want to make sure that the layerwise casting is working as expected.
|
|
self.assertTrue(numpy_cosine_similarity_distance(base_slice, output) < 1.0)
|
|
|
|
test_layerwise_casting(torch.float16, torch.float32)
|
|
test_layerwise_casting(torch.float8_e4m3fn, torch.float32)
|
|
test_layerwise_casting(torch.float8_e5m2, torch.float32)
|
|
test_layerwise_casting(torch.float8_e4m3fn, torch.bfloat16)
|
|
|
|
@require_torch_accelerator
|
|
@torch.no_grad()
|
|
def test_layerwise_casting_memory(self):
|
|
MB_TOLERANCE = 0.2
|
|
LEAST_COMPUTE_CAPABILITY = 8.0
|
|
|
|
def reset_memory_stats():
|
|
gc.collect()
|
|
backend_synchronize(torch_device)
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
def get_memory_usage(storage_dtype, compute_dtype):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device, dtype=compute_dtype)
|
|
model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
|
|
|
|
reset_memory_stats()
|
|
model(**inputs_dict)
|
|
model_memory_footprint = model.get_memory_footprint()
|
|
peak_inference_memory_allocated_mb = backend_max_memory_allocated(torch_device) / 1024**2
|
|
|
|
return model_memory_footprint, peak_inference_memory_allocated_mb
|
|
|
|
fp32_memory_footprint, fp32_max_memory = get_memory_usage(torch.float32, torch.float32)
|
|
fp8_e4m3_fp32_memory_footprint, fp8_e4m3_fp32_max_memory = get_memory_usage(torch.float8_e4m3fn, torch.float32)
|
|
fp8_e4m3_bf16_memory_footprint, fp8_e4m3_bf16_max_memory = get_memory_usage(
|
|
torch.float8_e4m3fn, torch.bfloat16
|
|
)
|
|
|
|
compute_capability = get_torch_cuda_device_capability() if torch_device == "cuda" else None
|
|
self.assertTrue(fp8_e4m3_bf16_memory_footprint < fp8_e4m3_fp32_memory_footprint < fp32_memory_footprint)
|
|
# NOTE: the following assertion would fail on our CI (running Tesla T4) due to bf16 using more memory than fp32.
|
|
# On other devices, such as DGX (Ampere) and Audace (Ada), the test passes. So, we conditionally check it.
|
|
if compute_capability and compute_capability >= LEAST_COMPUTE_CAPABILITY:
|
|
self.assertTrue(fp8_e4m3_bf16_max_memory < fp8_e4m3_fp32_max_memory)
|
|
# On this dummy test case with a small model, sometimes fp8_e4m3_fp32 max memory usage is higher than fp32 by a few
|
|
# bytes. This only happens for some models, so we allow a small tolerance.
|
|
# For any real model being tested, the order would be fp8_e4m3_bf16 < fp8_e4m3_fp32 < fp32.
|
|
self.assertTrue(
|
|
fp8_e4m3_fp32_max_memory < fp32_max_memory
|
|
or abs(fp8_e4m3_fp32_max_memory - fp32_max_memory) < MB_TOLERANCE
|
|
)
|
|
|
|
@parameterized.expand([False, True])
|
|
@require_torch_accelerator
|
|
def test_group_offloading(self, record_stream):
|
|
if not self.model_class._supports_group_offloading:
|
|
pytest.skip("Model does not support group offloading.")
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
torch.manual_seed(0)
|
|
|
|
@torch.no_grad()
|
|
def run_forward(model):
|
|
self.assertTrue(
|
|
all(
|
|
module._diffusers_hook.get_hook("group_offloading") is not None
|
|
for module in model.modules()
|
|
if hasattr(module, "_diffusers_hook")
|
|
)
|
|
)
|
|
model.eval()
|
|
return model(**inputs_dict)[0]
|
|
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
output_without_group_offloading = run_forward(model)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
|
|
output_with_group_offloading1 = run_forward(model)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, non_blocking=True)
|
|
output_with_group_offloading2 = run_forward(model)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.enable_group_offload(torch_device, offload_type="leaf_level")
|
|
output_with_group_offloading3 = run_forward(model)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.enable_group_offload(
|
|
torch_device, offload_type="leaf_level", use_stream=True, record_stream=record_stream
|
|
)
|
|
output_with_group_offloading4 = run_forward(model)
|
|
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
|
|
|
|
@parameterized.expand([(False, "block_level"), (True, "leaf_level")])
|
|
@require_torch_accelerator
|
|
@torch.no_grad()
|
|
def test_group_offloading_with_layerwise_casting(self, record_stream, offload_type):
|
|
if not self.model_class._supports_group_offloading:
|
|
pytest.skip("Model does not support group offloading.")
|
|
|
|
torch.manual_seed(0)
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
_ = model(**inputs_dict)[0]
|
|
|
|
torch.manual_seed(0)
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
storage_dtype, compute_dtype = torch.float16, torch.float32
|
|
inputs_dict = cast_maybe_tensor_dtype(inputs_dict, torch.float32, compute_dtype)
|
|
model = self.model_class(**init_dict)
|
|
model.eval()
|
|
additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": 1}
|
|
model.enable_group_offload(
|
|
torch_device, offload_type=offload_type, use_stream=True, record_stream=record_stream, **additional_kwargs
|
|
)
|
|
model.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
|
|
_ = model(**inputs_dict)[0]
|
|
|
|
@parameterized.expand([("block_level", False), ("leaf_level", True)])
|
|
@require_torch_accelerator
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def test_group_offloading_with_disk(self, offload_type, record_stream, atol=1e-5):
|
|
if not self.model_class._supports_group_offloading:
|
|
pytest.skip("Model does not support group offloading.")
|
|
|
|
if self.model_class.__name__ == "QwenImageTransformer2DModel":
|
|
pytest.skip(
|
|
"QwenImageTransformer2DModel doesn't support group offloading with disk. Needs to be investigated."
|
|
)
|
|
|
|
def _has_generator_arg(model):
|
|
sig = inspect.signature(model.forward)
|
|
params = sig.parameters
|
|
return "generator" in params
|
|
|
|
def _run_forward(model, inputs_dict):
|
|
accepts_generator = _has_generator_arg(model)
|
|
if accepts_generator:
|
|
inputs_dict["generator"] = torch.manual_seed(0)
|
|
torch.manual_seed(0)
|
|
return model(**inputs_dict)[0]
|
|
|
|
if self.__class__.__name__ == "AutoencoderKLCosmosTests" and offload_type == "leaf_level":
|
|
pytest.skip("With `leaf_type` as the offloading type, it fails. Needs investigation.")
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.eval()
|
|
model.to(torch_device)
|
|
output_without_group_offloading = _run_forward(model, inputs_dict)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.eval()
|
|
|
|
num_blocks_per_group = None if offload_type == "leaf_level" else 1
|
|
additional_kwargs = {} if offload_type == "leaf_level" else {"num_blocks_per_group": num_blocks_per_group}
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.enable_group_offload(
|
|
torch_device,
|
|
offload_type=offload_type,
|
|
offload_to_disk_path=tmpdir,
|
|
use_stream=True,
|
|
record_stream=record_stream,
|
|
**additional_kwargs,
|
|
)
|
|
has_safetensors = glob.glob(f"{tmpdir}/*.safetensors")
|
|
self.assertTrue(has_safetensors, "No safetensors found in the directory.")
|
|
|
|
# For "leaf-level", there is a prefetching hook which makes this check a bit non-deterministic
|
|
# in nature. So, skip it.
|
|
if offload_type != "leaf_level":
|
|
is_correct, extra_files, missing_files = _check_safetensors_serialization(
|
|
module=model,
|
|
offload_to_disk_path=tmpdir,
|
|
offload_type=offload_type,
|
|
num_blocks_per_group=num_blocks_per_group,
|
|
)
|
|
if not is_correct:
|
|
if extra_files:
|
|
raise ValueError(f"Found extra files: {', '.join(extra_files)}")
|
|
elif missing_files:
|
|
raise ValueError(f"Following files are missing: {', '.join(missing_files)}")
|
|
|
|
output_with_group_offloading = _run_forward(model, inputs_dict)
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading, atol=atol))
|
|
|
|
def test_auto_model(self, expected_max_diff=5e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model = model.eval()
|
|
model = model.to(torch_device)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
|
|
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
|
|
auto_model = AutoModel.from_pretrained(tmpdirname)
|
|
if hasattr(auto_model, "set_default_attn_processor"):
|
|
auto_model.set_default_attn_processor()
|
|
|
|
auto_model = auto_model.eval()
|
|
auto_model = auto_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_original = model(**self.inputs_dict(0))
|
|
output_auto = auto_model(**self.inputs_dict(0))
|
|
else:
|
|
output_original = model(**inputs_dict)
|
|
output_auto = auto_model(**inputs_dict)
|
|
|
|
if isinstance(output_original, dict):
|
|
output_original = output_original.to_tuple()[0]
|
|
if isinstance(output_auto, dict):
|
|
output_auto = output_auto.to_tuple()[0]
|
|
|
|
max_diff = (output_original - output_auto).abs().max().item()
|
|
self.assertLessEqual(
|
|
max_diff,
|
|
expected_max_diff,
|
|
f"AutoModel forward pass diff: {max_diff} exceeds threshold {expected_max_diff}",
|
|
)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
(-1, "You can't pass device_map as a negative int"),
|
|
("foo", "When passing device_map as a string, the value needs to be a device name"),
|
|
]
|
|
)
|
|
def test_wrong_device_map_raises_error(self, device_map, msg_substring):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_pretrained(tmpdir)
|
|
with self.assertRaises(ValueError) as err_ctx:
|
|
_ = self.model_class.from_pretrained(tmpdir, device_map=device_map)
|
|
|
|
assert msg_substring in str(err_ctx.exception)
|
|
|
|
@parameterized.expand([0, torch_device, torch.device(torch_device)])
|
|
@require_torch_accelerator
|
|
def test_passing_non_dict_device_map_works(self, device_map):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).eval()
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_pretrained(tmpdir)
|
|
loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
|
|
_ = loaded_model(**inputs_dict)
|
|
|
|
@parameterized.expand([("", torch_device), ("", torch.device(torch_device))])
|
|
@require_torch_accelerator
|
|
def test_passing_dict_device_map_works(self, name, device):
|
|
# There are other valid dict-based `device_map` values too. It's best to refer to
|
|
# the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).eval()
|
|
device_map = {name: device}
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_pretrained(tmpdir)
|
|
loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
|
|
_ = loaded_model(**inputs_dict)
|
|
|
|
|
|
@is_staging_test
|
|
class ModelPushToHubTester(unittest.TestCase):
|
|
identifier = uuid.uuid4()
|
|
repo_id = f"test-model-{identifier}"
|
|
org_repo_id = f"valid_org/{repo_id}-org"
|
|
|
|
def test_push_to_hub(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.repo_id, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(token=TOKEN, repo_id=self.repo_id)
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(self.repo_id, token=TOKEN)
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.org_repo_id, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(self.org_repo_id, token=TOKEN)
|
|
|
|
@unittest.skipIf(
|
|
not is_jinja_available(),
|
|
reason="Model card tests cannot be performed without Jinja installed.",
|
|
)
|
|
def test_push_to_hub_library_name(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.repo_id, token=TOKEN)
|
|
|
|
model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
|
|
assert model_card.library_name == "diffusers"
|
|
|
|
# Reset repo
|
|
delete_repo(self.repo_id, token=TOKEN)
|
|
|
|
|
|
@require_torch_accelerator
|
|
@require_torch_2
|
|
@is_torch_compile
|
|
@slow
|
|
@require_torch_version_greater("2.7.1")
|
|
class TorchCompileTesterMixin:
|
|
different_shapes_for_compilation = None
|
|
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
torch.compiler.reset()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test in case of CUDA runtime errors
|
|
super().tearDown()
|
|
torch.compiler.reset()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_torch_compile_recompilation_and_graph_break(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model = torch.compile(model, fullgraph=True)
|
|
|
|
with (
|
|
torch._inductor.utils.fresh_inductor_cache(),
|
|
torch._dynamo.config.patch(error_on_recompile=True),
|
|
torch.no_grad(),
|
|
):
|
|
_ = model(**inputs_dict)
|
|
_ = model(**inputs_dict)
|
|
|
|
def test_torch_compile_repeated_blocks(self):
|
|
if self.model_class._repeated_blocks is None:
|
|
pytest.skip("Skipping test as the model class doesn't have `_repeated_blocks` set.")
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model.compile_repeated_blocks(fullgraph=True)
|
|
|
|
recompile_limit = 1
|
|
if self.model_class.__name__ == "UNet2DConditionModel":
|
|
recompile_limit = 2
|
|
|
|
with (
|
|
torch._inductor.utils.fresh_inductor_cache(),
|
|
torch._dynamo.config.patch(recompile_limit=recompile_limit),
|
|
torch.no_grad(),
|
|
):
|
|
_ = model(**inputs_dict)
|
|
_ = model(**inputs_dict)
|
|
|
|
def test_compile_with_group_offloading(self):
|
|
if not self.model_class._supports_group_offloading:
|
|
pytest.skip("Model does not support group offloading.")
|
|
|
|
torch._dynamo.config.cache_size_limit = 10000
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.eval()
|
|
# TODO: Can test for other group offloading kwargs later if needed.
|
|
group_offload_kwargs = {
|
|
"onload_device": torch_device,
|
|
"offload_device": "cpu",
|
|
"offload_type": "block_level",
|
|
"num_blocks_per_group": 1,
|
|
"use_stream": True,
|
|
"non_blocking": True,
|
|
}
|
|
model.enable_group_offload(**group_offload_kwargs)
|
|
model.compile()
|
|
with torch.no_grad():
|
|
_ = model(**inputs_dict)
|
|
_ = model(**inputs_dict)
|
|
|
|
@require_torch_version_greater("2.7.1")
|
|
def test_compile_on_different_shapes(self):
|
|
if self.different_shapes_for_compilation is None:
|
|
pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
|
|
torch.fx.experimental._config.use_duck_shape = False
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model = torch.compile(model, fullgraph=True, dynamic=True)
|
|
|
|
for height, width in self.different_shapes_for_compilation:
|
|
with torch._dynamo.config.patch(error_on_recompile=True), torch.no_grad():
|
|
inputs_dict = self.prepare_dummy_input(height=height, width=width)
|
|
_ = model(**inputs_dict)
|
|
|
|
|
|
@slow
|
|
@require_torch_2
|
|
@require_torch_accelerator
|
|
@require_peft_backend
|
|
@require_peft_version_greater("0.14.0")
|
|
@require_torch_version_greater("2.7.1")
|
|
@is_torch_compile
|
|
class LoraHotSwappingForModelTesterMixin:
|
|
"""Test that hotswapping does not result in recompilation on the model directly.
|
|
|
|
We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
|
|
tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
|
|
recompilation.
|
|
|
|
See
|
|
https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
|
|
for the analogous PEFT test.
|
|
|
|
"""
|
|
|
|
different_shapes_for_compilation = None
|
|
|
|
def tearDown(self):
|
|
# It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
|
|
# there will be recompilation errors, as torch caches the model when run in the same process.
|
|
super().tearDown()
|
|
torch.compiler.reset()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_lora_config(self, lora_rank, lora_alpha, target_modules):
|
|
# from diffusers test_models_unet_2d_condition.py
|
|
from peft import LoraConfig
|
|
|
|
lora_config = LoraConfig(
|
|
r=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=target_modules,
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
return lora_config
|
|
|
|
def get_linear_module_name_other_than_attn(self, model):
|
|
linear_names = [
|
|
name for name, module in model.named_modules() if isinstance(module, nn.Linear) and "to_" not in name
|
|
]
|
|
return linear_names[0]
|
|
|
|
def check_model_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
|
|
"""
|
|
Check that hotswapping works on a small unet.
|
|
|
|
Steps:
|
|
- create 2 LoRA adapters and save them
|
|
- load the first adapter
|
|
- hotswap the second adapter
|
|
- check that the outputs are correct
|
|
- optionally compile the model
|
|
- optionally check if recompilations happen on different shapes
|
|
|
|
Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
|
|
fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
|
|
fine.
|
|
"""
|
|
different_shapes = self.different_shapes_for_compilation
|
|
# create 2 adapters with different ranks and alphas
|
|
torch.manual_seed(0)
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
alpha0, alpha1 = rank0, rank1
|
|
max_rank = max([rank0, rank1])
|
|
if target_modules1 is None:
|
|
target_modules1 = target_modules0[:]
|
|
lora_config0 = self.get_lora_config(rank0, alpha0, target_modules0)
|
|
lora_config1 = self.get_lora_config(rank1, alpha1, target_modules1)
|
|
|
|
model.add_adapter(lora_config0, adapter_name="adapter0")
|
|
with torch.inference_mode():
|
|
torch.manual_seed(0)
|
|
output0_before = model(**inputs_dict)["sample"]
|
|
|
|
model.add_adapter(lora_config1, adapter_name="adapter1")
|
|
model.set_adapter("adapter1")
|
|
with torch.inference_mode():
|
|
torch.manual_seed(0)
|
|
output1_before = model(**inputs_dict)["sample"]
|
|
|
|
# sanity checks:
|
|
tol = 5e-3
|
|
assert not torch.allclose(output0_before, output1_before, atol=tol, rtol=tol)
|
|
assert not (output0_before == 0).all()
|
|
assert not (output1_before == 0).all()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
# save the adapter checkpoints
|
|
model.save_lora_adapter(os.path.join(tmp_dirname, "0"), safe_serialization=True, adapter_name="adapter0")
|
|
model.save_lora_adapter(os.path.join(tmp_dirname, "1"), safe_serialization=True, adapter_name="adapter1")
|
|
del model
|
|
|
|
# load the first adapter
|
|
torch.manual_seed(0)
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if do_compile or (rank0 != rank1):
|
|
# no need to prepare if the model is not compiled or if the ranks are identical
|
|
model.enable_lora_hotswap(target_rank=max_rank)
|
|
|
|
file_name0 = os.path.join(os.path.join(tmp_dirname, "0"), "pytorch_lora_weights.safetensors")
|
|
file_name1 = os.path.join(os.path.join(tmp_dirname, "1"), "pytorch_lora_weights.safetensors")
|
|
model.load_lora_adapter(file_name0, safe_serialization=True, adapter_name="adapter0", prefix=None)
|
|
|
|
if do_compile:
|
|
model = torch.compile(model, mode="reduce-overhead", dynamic=different_shapes is not None)
|
|
|
|
with torch.inference_mode():
|
|
# additionally check if dynamic compilation works.
|
|
if different_shapes is not None:
|
|
for height, width in different_shapes:
|
|
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
|
|
_ = model(**new_inputs_dict)
|
|
else:
|
|
output0_after = model(**inputs_dict)["sample"]
|
|
assert torch.allclose(output0_before, output0_after, atol=tol, rtol=tol)
|
|
|
|
# hotswap the 2nd adapter
|
|
model.load_lora_adapter(file_name1, adapter_name="adapter0", hotswap=True, prefix=None)
|
|
|
|
# we need to call forward to potentially trigger recompilation
|
|
with torch.inference_mode():
|
|
if different_shapes is not None:
|
|
for height, width in different_shapes:
|
|
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
|
|
_ = model(**new_inputs_dict)
|
|
else:
|
|
output1_after = model(**inputs_dict)["sample"]
|
|
assert torch.allclose(output1_before, output1_after, atol=tol, rtol=tol)
|
|
|
|
# check error when not passing valid adapter name
|
|
name = "does-not-exist"
|
|
msg = f"Trying to hotswap LoRA adapter '{name}' but there is no existing adapter by that name"
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
model.load_lora_adapter(file_name1, adapter_name=name, hotswap=True, prefix=None)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
|
|
def test_hotswapping_model(self, rank0, rank1):
|
|
self.check_model_hotswap(
|
|
do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
|
|
)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
|
|
def test_hotswapping_compiled_model_linear(self, rank0, rank1):
|
|
# It's important to add this context to raise an error on recompilation
|
|
target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
|
|
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
|
|
self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
|
|
def test_hotswapping_compiled_model_conv2d(self, rank0, rank1):
|
|
if "unet" not in self.model_class.__name__.lower():
|
|
pytest.skip("Test only applies to UNet.")
|
|
|
|
# It's important to add this context to raise an error on recompilation
|
|
target_modules = ["conv", "conv1", "conv2"]
|
|
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
|
|
self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
|
|
def test_hotswapping_compiled_model_both_linear_and_conv2d(self, rank0, rank1):
|
|
if "unet" not in self.model_class.__name__.lower():
|
|
pytest.skip("Test only applies to UNet.")
|
|
|
|
# It's important to add this context to raise an error on recompilation
|
|
target_modules = ["to_q", "conv"]
|
|
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
|
|
self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
|
|
def test_hotswapping_compiled_model_both_linear_and_other(self, rank0, rank1):
|
|
# In `test_hotswapping_compiled_model_both_linear_and_conv2d()`, we check if we can do hotswapping
|
|
# with `torch.compile()` for models that have both linear and conv layers. In this test, we check
|
|
# if we can target a linear layer from the transformer blocks and another linear layer from non-attention
|
|
# block.
|
|
target_modules = ["to_q"]
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
target_modules.append(self.get_linear_module_name_other_than_attn(model))
|
|
del model
|
|
|
|
# It's important to add this context to raise an error on recompilation
|
|
with torch._dynamo.config.patch(error_on_recompile=True):
|
|
self.check_model_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
|
|
|
|
def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
|
|
# ensure that enable_lora_hotswap is called before loading the first adapter
|
|
lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model.add_adapter(lora_config)
|
|
|
|
msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
model.enable_lora_hotswap(target_rank=32)
|
|
|
|
def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
|
|
# ensure that enable_lora_hotswap is called before loading the first adapter
|
|
from diffusers.loaders.peft import logger
|
|
|
|
lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model.add_adapter(lora_config)
|
|
msg = (
|
|
"It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
|
|
)
|
|
with self.assertLogs(logger=logger, level="WARNING") as cm:
|
|
model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
|
|
assert any(msg in log for log in cm.output)
|
|
|
|
def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
|
|
# check possibility to ignore the error/warning
|
|
lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model.add_adapter(lora_config)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always") # Capture all warnings
|
|
model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
|
|
self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")
|
|
|
|
def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
|
|
# check that wrong argument value raises an error
|
|
lora_config = self.get_lora_config(8, 8, target_modules=["to_q"])
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
model.add_adapter(lora_config)
|
|
msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
|
|
|
|
def test_hotswap_second_adapter_targets_more_layers_raises(self):
|
|
# check the error and log
|
|
from diffusers.loaders.peft import logger
|
|
|
|
# at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
|
|
target_modules0 = ["to_q"]
|
|
target_modules1 = ["to_q", "to_k"]
|
|
with self.assertRaises(RuntimeError): # peft raises RuntimeError
|
|
with self.assertLogs(logger=logger, level="ERROR") as cm:
|
|
self.check_model_hotswap(
|
|
do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
|
|
)
|
|
assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)
|
|
|
|
@parameterized.expand([(11, 11), (7, 13), (13, 7)])
|
|
@require_torch_version_greater("2.7.1")
|
|
def test_hotswapping_compile_on_different_shapes(self, rank0, rank1):
|
|
different_shapes_for_compilation = self.different_shapes_for_compilation
|
|
if different_shapes_for_compilation is None:
|
|
pytest.skip(f"Skipping as `different_shapes_for_compilation` is not set for {self.__class__.__name__}.")
|
|
# Specifying `use_duck_shape=False` instructs the compiler if it should use the same symbolic
|
|
# variable to represent input sizes that are the same. For more details,
|
|
# check out this [comment](https://github.com/huggingface/diffusers/pull/11327#discussion_r2047659790).
|
|
torch.fx.experimental._config.use_duck_shape = False
|
|
|
|
target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
|
|
with torch._dynamo.config.patch(error_on_recompile=True):
|
|
self.check_model_hotswap(
|
|
do_compile=True,
|
|
rank0=rank0,
|
|
rank1=rank1,
|
|
target_modules0=target_modules,
|
|
)
|