mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-10 14:34:55 +08:00
* ruff format * not need to use doc-builder's black styling as the doc is styled in ruff * make fix-copies * comment * use run_ruff
862 lines
37 KiB
Python
862 lines
37 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import abc
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from ...src.diffusers.models.attention import Attention
|
|
from ...src.diffusers.pipelines.stable_diffusion import StableDiffusionPipeline, StableDiffusionPipelineOutput
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
# rescale the results from guidance (fixes overexposure)
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|
|
|
|
|
|
class Prompt2PromptPipeline(StableDiffusionPipeline):
|
|
r"""
|
|
Args:
|
|
Prompt-to-Prompt-Pipeline for text-to-image generation using Stable Diffusion. This model inherits from
|
|
[`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for
|
|
all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler
|
|
([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
|
if `guidance_scale` is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
The keyword arguments to configure the edit are:
|
|
- edit_type (`str`). The edit type to apply. Can be either of `replace`, `refine`, `reweight`.
|
|
- n_cross_replace (`int`): Number of diffusion steps in which cross attention should be replaced
|
|
- n_self_replace (`int`): Number of diffusion steps in which self attention should be replaced
|
|
- local_blend_words(`List[str]`, *optional*, default to `None`): Determines which area should be
|
|
changed. If None, then the whole image can be changed.
|
|
- equalizer_words(`List[str]`, *optional*, default to `None`): Required for edit type `reweight`.
|
|
Determines which words should be enhanced.
|
|
- equalizer_strengths (`List[float]`, *optional*, default to `None`) Required for edit type `reweight`.
|
|
Determines which how much the words in `equalizer_words` should be enhanced.
|
|
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
|
using zero terminal SNR.
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
|
|
self.controller = create_controller(
|
|
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=self.device
|
|
)
|
|
self.register_attention_control(self.controller) # add attention controller
|
|
|
|
# 0. Default height and width to unet
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(prompt, height, width, callback_steps)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
# step callback
|
|
latents = self.controller.step_callback(latents)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
# 8. Post-processing
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
# 9. Run safety checker
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
def register_attention_control(self, controller):
|
|
attn_procs = {}
|
|
cross_att_count = 0
|
|
for name in self.unet.attn_processors.keys():
|
|
None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
|
|
if name.startswith("mid_block"):
|
|
self.unet.config.block_out_channels[-1]
|
|
place_in_unet = "mid"
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
list(reversed(self.unet.config.block_out_channels))[block_id]
|
|
place_in_unet = "up"
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
self.unet.config.block_out_channels[block_id]
|
|
place_in_unet = "down"
|
|
else:
|
|
continue
|
|
cross_att_count += 1
|
|
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
|
|
|
|
self.unet.set_attn_processor(attn_procs)
|
|
controller.num_att_layers = cross_att_count
|
|
|
|
|
|
class P2PCrossAttnProcessor:
|
|
def __init__(self, controller, place_in_unet):
|
|
super().__init__()
|
|
self.controller = controller
|
|
self.place_in_unet = place_in_unet
|
|
|
|
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
|
batch_size, sequence_length, _ = hidden_states.shape
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
is_cross = encoder_hidden_states is not None
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
|
|
# one line change
|
|
self.controller(attention_probs, is_cross, self.place_in_unet)
|
|
|
|
hidden_states = torch.bmm(attention_probs, value)
|
|
hidden_states = attn.batch_to_head_dim(hidden_states)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
def create_controller(
|
|
prompts: List[str], cross_attention_kwargs: Dict, num_inference_steps: int, tokenizer, device
|
|
) -> AttentionControl:
|
|
edit_type = cross_attention_kwargs.get("edit_type", None)
|
|
local_blend_words = cross_attention_kwargs.get("local_blend_words", None)
|
|
equalizer_words = cross_attention_kwargs.get("equalizer_words", None)
|
|
equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None)
|
|
n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4)
|
|
n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4)
|
|
|
|
# only replace
|
|
if edit_type == "replace" and local_blend_words is None:
|
|
return AttentionReplace(
|
|
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
|
|
)
|
|
|
|
# replace + localblend
|
|
if edit_type == "replace" and local_blend_words is not None:
|
|
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
|
|
return AttentionReplace(
|
|
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
|
|
)
|
|
|
|
# only refine
|
|
if edit_type == "refine" and local_blend_words is None:
|
|
return AttentionRefine(
|
|
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
|
|
)
|
|
|
|
# refine + localblend
|
|
if edit_type == "refine" and local_blend_words is not None:
|
|
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
|
|
return AttentionRefine(
|
|
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
|
|
)
|
|
|
|
# reweight
|
|
if edit_type == "reweight":
|
|
assert (
|
|
equalizer_words is not None and equalizer_strengths is not None
|
|
), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
|
|
assert len(equalizer_words) == len(
|
|
equalizer_strengths
|
|
), "equalizer_words and equalizer_strengths must be of same length."
|
|
equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
|
|
return AttentionReweight(
|
|
prompts,
|
|
num_inference_steps,
|
|
n_cross_replace,
|
|
n_self_replace,
|
|
tokenizer=tokenizer,
|
|
device=device,
|
|
equalizer=equalizer,
|
|
)
|
|
|
|
raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.")
|
|
|
|
|
|
class AttentionControl(abc.ABC):
|
|
def step_callback(self, x_t):
|
|
return x_t
|
|
|
|
def between_steps(self):
|
|
return
|
|
|
|
@property
|
|
def num_uncond_att_layers(self):
|
|
return 0
|
|
|
|
@abc.abstractmethod
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
|
if self.cur_att_layer >= self.num_uncond_att_layers:
|
|
h = attn.shape[0]
|
|
attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
|
|
self.cur_att_layer += 1
|
|
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
|
|
self.cur_att_layer = 0
|
|
self.cur_step += 1
|
|
self.between_steps()
|
|
return attn
|
|
|
|
def reset(self):
|
|
self.cur_step = 0
|
|
self.cur_att_layer = 0
|
|
|
|
def __init__(self):
|
|
self.cur_step = 0
|
|
self.num_att_layers = -1
|
|
self.cur_att_layer = 0
|
|
|
|
|
|
class EmptyControl(AttentionControl):
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
|
return attn
|
|
|
|
|
|
class AttentionStore(AttentionControl):
|
|
@staticmethod
|
|
def get_empty_store():
|
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
|
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
|
if attn.shape[1] <= 32**2: # avoid memory overhead
|
|
self.step_store[key].append(attn)
|
|
return attn
|
|
|
|
def between_steps(self):
|
|
if len(self.attention_store) == 0:
|
|
self.attention_store = self.step_store
|
|
else:
|
|
for key in self.attention_store:
|
|
for i in range(len(self.attention_store[key])):
|
|
self.attention_store[key][i] += self.step_store[key][i]
|
|
self.step_store = self.get_empty_store()
|
|
|
|
def get_average_attention(self):
|
|
average_attention = {
|
|
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
|
|
}
|
|
return average_attention
|
|
|
|
def reset(self):
|
|
super(AttentionStore, self).reset()
|
|
self.step_store = self.get_empty_store()
|
|
self.attention_store = {}
|
|
|
|
def __init__(self):
|
|
super(AttentionStore, self).__init__()
|
|
self.step_store = self.get_empty_store()
|
|
self.attention_store = {}
|
|
|
|
|
|
class LocalBlend:
|
|
def __call__(self, x_t, attention_store):
|
|
k = 1
|
|
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
|
|
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
|
|
maps = torch.cat(maps, dim=1)
|
|
maps = (maps * self.alpha_layers).sum(-1).mean(1)
|
|
mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
|
|
mask = F.interpolate(mask, size=(x_t.shape[2:]))
|
|
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
|
|
mask = mask.gt(self.threshold)
|
|
mask = (mask[:1] + mask[1:]).float()
|
|
x_t = x_t[:1] + mask * (x_t - x_t[:1])
|
|
return x_t
|
|
|
|
def __init__(
|
|
self, prompts: List[str], words: [List[List[str]]], tokenizer, device, threshold=0.3, max_num_words=77
|
|
):
|
|
self.max_num_words = 77
|
|
|
|
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
|
|
for i, (prompt, words_) in enumerate(zip(prompts, words)):
|
|
if isinstance(words_, str):
|
|
words_ = [words_]
|
|
for word in words_:
|
|
ind = get_word_inds(prompt, word, tokenizer)
|
|
alpha_layers[i, :, :, :, :, ind] = 1
|
|
self.alpha_layers = alpha_layers.to(device)
|
|
self.threshold = threshold
|
|
|
|
|
|
class AttentionControlEdit(AttentionStore, abc.ABC):
|
|
def step_callback(self, x_t):
|
|
if self.local_blend is not None:
|
|
x_t = self.local_blend(x_t, self.attention_store)
|
|
return x_t
|
|
|
|
def replace_self_attention(self, attn_base, att_replace):
|
|
if att_replace.shape[2] <= 16**2:
|
|
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
|
|
else:
|
|
return att_replace
|
|
|
|
@abc.abstractmethod
|
|
def replace_cross_attention(self, attn_base, att_replace):
|
|
raise NotImplementedError
|
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
|
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
|
|
# FIXME not replace correctly
|
|
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
|
|
h = attn.shape[0] // (self.batch_size)
|
|
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
|
|
attn_base, attn_repalce = attn[0], attn[1:]
|
|
if is_cross:
|
|
alpha_words = self.cross_replace_alpha[self.cur_step]
|
|
attn_repalce_new = (
|
|
self.replace_cross_attention(attn_base, attn_repalce) * alpha_words
|
|
+ (1 - alpha_words) * attn_repalce
|
|
)
|
|
attn[1:] = attn_repalce_new
|
|
else:
|
|
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
|
|
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
|
|
return attn
|
|
|
|
def __init__(
|
|
self,
|
|
prompts,
|
|
num_steps: int,
|
|
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
|
|
self_replace_steps: Union[float, Tuple[float, float]],
|
|
local_blend: Optional[LocalBlend],
|
|
tokenizer,
|
|
device,
|
|
):
|
|
super(AttentionControlEdit, self).__init__()
|
|
# add tokenizer and device here
|
|
|
|
self.tokenizer = tokenizer
|
|
self.device = device
|
|
|
|
self.batch_size = len(prompts)
|
|
self.cross_replace_alpha = get_time_words_attention_alpha(
|
|
prompts, num_steps, cross_replace_steps, self.tokenizer
|
|
).to(self.device)
|
|
if isinstance(self_replace_steps, float):
|
|
self_replace_steps = 0, self_replace_steps
|
|
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
|
|
self.local_blend = local_blend # 在外面定义后传进来
|
|
|
|
|
|
class AttentionReplace(AttentionControlEdit):
|
|
def replace_cross_attention(self, attn_base, att_replace):
|
|
return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)
|
|
|
|
def __init__(
|
|
self,
|
|
prompts,
|
|
num_steps: int,
|
|
cross_replace_steps: float,
|
|
self_replace_steps: float,
|
|
local_blend: Optional[LocalBlend] = None,
|
|
tokenizer=None,
|
|
device=None,
|
|
):
|
|
super(AttentionReplace, self).__init__(
|
|
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
|
|
)
|
|
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
|
|
|
|
|
|
class AttentionRefine(AttentionControlEdit):
|
|
def replace_cross_attention(self, attn_base, att_replace):
|
|
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
|
|
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
|
|
return attn_replace
|
|
|
|
def __init__(
|
|
self,
|
|
prompts,
|
|
num_steps: int,
|
|
cross_replace_steps: float,
|
|
self_replace_steps: float,
|
|
local_blend: Optional[LocalBlend] = None,
|
|
tokenizer=None,
|
|
device=None,
|
|
):
|
|
super(AttentionRefine, self).__init__(
|
|
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
|
|
)
|
|
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
|
|
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
|
|
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
|
|
|
|
|
|
class AttentionReweight(AttentionControlEdit):
|
|
def replace_cross_attention(self, attn_base, att_replace):
|
|
if self.prev_controller is not None:
|
|
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
|
|
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
|
|
return attn_replace
|
|
|
|
def __init__(
|
|
self,
|
|
prompts,
|
|
num_steps: int,
|
|
cross_replace_steps: float,
|
|
self_replace_steps: float,
|
|
equalizer,
|
|
local_blend: Optional[LocalBlend] = None,
|
|
controller: Optional[AttentionControlEdit] = None,
|
|
tokenizer=None,
|
|
device=None,
|
|
):
|
|
super(AttentionReweight, self).__init__(
|
|
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
|
|
)
|
|
self.equalizer = equalizer.to(self.device)
|
|
self.prev_controller = controller
|
|
|
|
|
|
### util functions for all Edits
|
|
def update_alpha_time_word(
|
|
alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor] = None
|
|
):
|
|
if isinstance(bounds, float):
|
|
bounds = 0, bounds
|
|
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
|
|
if word_inds is None:
|
|
word_inds = torch.arange(alpha.shape[2])
|
|
alpha[:start, prompt_ind, word_inds] = 0
|
|
alpha[start:end, prompt_ind, word_inds] = 1
|
|
alpha[end:, prompt_ind, word_inds] = 0
|
|
return alpha
|
|
|
|
|
|
def get_time_words_attention_alpha(
|
|
prompts, num_steps, cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], tokenizer, max_num_words=77
|
|
):
|
|
if not isinstance(cross_replace_steps, dict):
|
|
cross_replace_steps = {"default_": cross_replace_steps}
|
|
if "default_" not in cross_replace_steps:
|
|
cross_replace_steps["default_"] = (0.0, 1.0)
|
|
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
|
|
for i in range(len(prompts) - 1):
|
|
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
|
|
for key, item in cross_replace_steps.items():
|
|
if key != "default_":
|
|
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
|
|
for i, ind in enumerate(inds):
|
|
if len(ind) > 0:
|
|
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
|
|
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
|
|
return alpha_time_words
|
|
|
|
|
|
### util functions for LocalBlend and ReplacementEdit
|
|
def get_word_inds(text: str, word_place: int, tokenizer):
|
|
split_text = text.split(" ")
|
|
if isinstance(word_place, str):
|
|
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
|
elif isinstance(word_place, int):
|
|
word_place = [word_place]
|
|
out = []
|
|
if len(word_place) > 0:
|
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
|
cur_len, ptr = 0, 0
|
|
|
|
for i in range(len(words_encode)):
|
|
cur_len += len(words_encode[i])
|
|
if ptr in word_place:
|
|
out.append(i + 1)
|
|
if cur_len >= len(split_text[ptr]):
|
|
ptr += 1
|
|
cur_len = 0
|
|
return np.array(out)
|
|
|
|
|
|
### util functions for ReplacementEdit
|
|
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
|
|
words_x = x.split(" ")
|
|
words_y = y.split(" ")
|
|
if len(words_x) != len(words_y):
|
|
raise ValueError(
|
|
f"attention replacement edit can only be applied on prompts with the same length"
|
|
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
|
|
)
|
|
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
|
|
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
|
|
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
|
|
mapper = np.zeros((max_len, max_len))
|
|
i = j = 0
|
|
cur_inds = 0
|
|
while i < max_len and j < max_len:
|
|
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
|
|
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
|
|
if len(inds_source_) == len(inds_target_):
|
|
mapper[inds_source_, inds_target_] = 1
|
|
else:
|
|
ratio = 1 / len(inds_target_)
|
|
for i_t in inds_target_:
|
|
mapper[inds_source_, i_t] = ratio
|
|
cur_inds += 1
|
|
i += len(inds_source_)
|
|
j += len(inds_target_)
|
|
elif cur_inds < len(inds_source):
|
|
mapper[i, j] = 1
|
|
i += 1
|
|
j += 1
|
|
else:
|
|
mapper[j, j] = 1
|
|
i += 1
|
|
j += 1
|
|
|
|
return torch.from_numpy(mapper).float()
|
|
|
|
|
|
def get_replacement_mapper(prompts, tokenizer, max_len=77):
|
|
x_seq = prompts[0]
|
|
mappers = []
|
|
for i in range(1, len(prompts)):
|
|
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
|
|
mappers.append(mapper)
|
|
return torch.stack(mappers)
|
|
|
|
|
|
### util functions for ReweightEdit
|
|
def get_equalizer(
|
|
text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer
|
|
):
|
|
if isinstance(word_select, (int, str)):
|
|
word_select = (word_select,)
|
|
equalizer = torch.ones(len(values), 77)
|
|
values = torch.tensor(values, dtype=torch.float32)
|
|
for word in word_select:
|
|
inds = get_word_inds(text, word, tokenizer)
|
|
equalizer[:, inds] = values
|
|
return equalizer
|
|
|
|
|
|
### util functions for RefinementEdit
|
|
class ScoreParams:
|
|
def __init__(self, gap, match, mismatch):
|
|
self.gap = gap
|
|
self.match = match
|
|
self.mismatch = mismatch
|
|
|
|
def mis_match_char(self, x, y):
|
|
if x != y:
|
|
return self.mismatch
|
|
else:
|
|
return self.match
|
|
|
|
|
|
def get_matrix(size_x, size_y, gap):
|
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
|
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
|
|
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
|
|
return matrix
|
|
|
|
|
|
def get_traceback_matrix(size_x, size_y):
|
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
|
matrix[0, 1:] = 1
|
|
matrix[1:, 0] = 2
|
|
matrix[0, 0] = 4
|
|
return matrix
|
|
|
|
|
|
def global_align(x, y, score):
|
|
matrix = get_matrix(len(x), len(y), score.gap)
|
|
trace_back = get_traceback_matrix(len(x), len(y))
|
|
for i in range(1, len(x) + 1):
|
|
for j in range(1, len(y) + 1):
|
|
left = matrix[i, j - 1] + score.gap
|
|
up = matrix[i - 1, j] + score.gap
|
|
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
|
|
matrix[i, j] = max(left, up, diag)
|
|
if matrix[i, j] == left:
|
|
trace_back[i, j] = 1
|
|
elif matrix[i, j] == up:
|
|
trace_back[i, j] = 2
|
|
else:
|
|
trace_back[i, j] = 3
|
|
return matrix, trace_back
|
|
|
|
|
|
def get_aligned_sequences(x, y, trace_back):
|
|
x_seq = []
|
|
y_seq = []
|
|
i = len(x)
|
|
j = len(y)
|
|
mapper_y_to_x = []
|
|
while i > 0 or j > 0:
|
|
if trace_back[i, j] == 3:
|
|
x_seq.append(x[i - 1])
|
|
y_seq.append(y[j - 1])
|
|
i = i - 1
|
|
j = j - 1
|
|
mapper_y_to_x.append((j, i))
|
|
elif trace_back[i][j] == 1:
|
|
x_seq.append("-")
|
|
y_seq.append(y[j - 1])
|
|
j = j - 1
|
|
mapper_y_to_x.append((j, -1))
|
|
elif trace_back[i][j] == 2:
|
|
x_seq.append(x[i - 1])
|
|
y_seq.append("-")
|
|
i = i - 1
|
|
elif trace_back[i][j] == 4:
|
|
break
|
|
mapper_y_to_x.reverse()
|
|
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
|
|
|
|
|
|
def get_mapper(x: str, y: str, tokenizer, max_len=77):
|
|
x_seq = tokenizer.encode(x)
|
|
y_seq = tokenizer.encode(y)
|
|
score = ScoreParams(0, 1, -1)
|
|
matrix, trace_back = global_align(x_seq, y_seq, score)
|
|
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
|
|
alphas = torch.ones(max_len)
|
|
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
|
|
mapper = torch.zeros(max_len, dtype=torch.int64)
|
|
mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
|
|
mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
|
|
return mapper, alphas
|
|
|
|
|
|
def get_refinement_mapper(prompts, tokenizer, max_len=77):
|
|
x_seq = prompts[0]
|
|
mappers, alphas = [], []
|
|
for i in range(1, len(prompts)):
|
|
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
|
|
mappers.append(mapper)
|
|
alphas.append(alpha)
|
|
return torch.stack(mappers), torch.stack(alphas)
|