mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* init taylor_seer cache * make compatible with any tuple size returned * use logger for printing, add warmup feature * still update in warmup steps * refractor, add docs * add configurable cache, skip compute module * allow special cache ids only * add stop_predicts (cooldown) * update docs * apply ruff * update to handle multple calls per timestep * refractor to use state manager * fix format & doc * chores: naming, remove redundancy * add docs * quality & style * fix taylor precision * Apply style fixes * add tests * Apply style fixes * Remove TaylorSeerCacheTesterMixin from flux2 tests * rename identifiers, use more expressive taylor predict loop * torch compile compatible * Apply style fixes * Update src/diffusers/hooks/taylorseer_cache.py Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * update docs * make fix-copies * fix example usage. * remove tests on flux kontext --------- Co-authored-by: toilaluan <toilaluan@github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
359 lines
13 KiB
Python
359 lines
13 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, LlamaConfig, LlamaModel, LlamaTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKLHunyuanVideo,
|
|
FasterCacheConfig,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
HunyuanVideoPipeline,
|
|
HunyuanVideoTransformer3DModel,
|
|
)
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..test_pipelines_common import (
|
|
FasterCacheTesterMixin,
|
|
FirstBlockCacheTesterMixin,
|
|
PipelineTesterMixin,
|
|
PyramidAttentionBroadcastTesterMixin,
|
|
TaylorSeerCacheTesterMixin,
|
|
to_np,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class HunyuanVideoPipelineFastTests(
|
|
PipelineTesterMixin,
|
|
PyramidAttentionBroadcastTesterMixin,
|
|
FasterCacheTesterMixin,
|
|
FirstBlockCacheTesterMixin,
|
|
TaylorSeerCacheTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = HunyuanVideoPipeline
|
|
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
|
|
batch_params = frozenset(["prompt"])
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
|
|
# there is no xformers processor for Flux
|
|
test_xformers_attention = False
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
faster_cache_config = FasterCacheConfig(
|
|
spatial_attention_block_skip_range=2,
|
|
spatial_attention_timestep_skip_range=(-1, 901),
|
|
unconditional_batch_skip_range=2,
|
|
attention_weight_callback=lambda _: 0.5,
|
|
is_guidance_distilled=True,
|
|
)
|
|
|
|
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
|
|
torch.manual_seed(0)
|
|
transformer = HunyuanVideoTransformer3DModel(
|
|
in_channels=4,
|
|
out_channels=4,
|
|
num_attention_heads=2,
|
|
attention_head_dim=10,
|
|
num_layers=num_layers,
|
|
num_single_layers=num_single_layers,
|
|
num_refiner_layers=1,
|
|
patch_size=1,
|
|
patch_size_t=1,
|
|
guidance_embeds=True,
|
|
text_embed_dim=16,
|
|
pooled_projection_dim=8,
|
|
rope_axes_dim=(2, 4, 4),
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLHunyuanVideo(
|
|
in_channels=3,
|
|
out_channels=3,
|
|
latent_channels=4,
|
|
down_block_types=(
|
|
"HunyuanVideoDownBlock3D",
|
|
"HunyuanVideoDownBlock3D",
|
|
"HunyuanVideoDownBlock3D",
|
|
"HunyuanVideoDownBlock3D",
|
|
),
|
|
up_block_types=(
|
|
"HunyuanVideoUpBlock3D",
|
|
"HunyuanVideoUpBlock3D",
|
|
"HunyuanVideoUpBlock3D",
|
|
"HunyuanVideoUpBlock3D",
|
|
),
|
|
block_out_channels=(8, 8, 8, 8),
|
|
layers_per_block=1,
|
|
act_fn="silu",
|
|
norm_num_groups=4,
|
|
scaling_factor=0.476986,
|
|
spatial_compression_ratio=8,
|
|
temporal_compression_ratio=4,
|
|
mid_block_add_attention=True,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
|
|
|
llama_text_encoder_config = LlamaConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=16,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=2,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=8,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=2,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = LlamaModel(llama_text_encoder_config)
|
|
tokenizer = LlamaTokenizer.from_pretrained("finetrainers/dummy-hunyaunvideo", subfolder="tokenizer")
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModel(clip_text_encoder_config)
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "dance monkey",
|
|
"prompt_template": {
|
|
"template": "{}",
|
|
"crop_start": 0,
|
|
},
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 4.5,
|
|
"height": 16,
|
|
"width": 16,
|
|
# 4 * k + 1 is the recommendation
|
|
"num_frames": 9,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
|
|
|
|
# fmt: off
|
|
expected_slice = torch.tensor([0.3946, 0.4649, 0.3196, 0.4569, 0.3312, 0.3687, 0.3216, 0.3972, 0.4469, 0.3888, 0.3929, 0.3802, 0.3479, 0.3888, 0.3825, 0.3542])
|
|
# fmt: on
|
|
|
|
generated_slice = generated_video.flatten()
|
|
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
|
self.assertTrue(
|
|
torch.allclose(generated_slice, expected_slice, atol=1e-3),
|
|
"The generated video does not match the expected slice.",
|
|
)
|
|
|
|
def test_callback_inputs(self):
|
|
sig = inspect.signature(self.pipeline_class.__call__)
|
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
|
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
self.assertTrue(
|
|
hasattr(pipe, "_callback_tensor_inputs"),
|
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
|
)
|
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
|
for tensor_name in pipe._callback_tensor_inputs:
|
|
assert tensor_name in callback_kwargs
|
|
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Test passing in a subset
|
|
inputs["callback_on_step_end"] = callback_inputs_subset
|
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
|
output = pipe(**inputs)[0]
|
|
|
|
# Test passing in a everything
|
|
inputs["callback_on_step_end"] = callback_inputs_all
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
|
is_last = i == (pipe.num_timesteps - 1)
|
|
if is_last:
|
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
assert output.abs().sum() < 1e10
|
|
|
|
def test_attention_slicing_forward_pass(
|
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
|
):
|
|
if not self.test_attention_slicing:
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_slicing = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=1)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing1 = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=2)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing2 = pipe(**inputs)[0]
|
|
|
|
if test_max_difference:
|
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
|
self.assertLess(
|
|
max(max_diff1, max_diff2),
|
|
expected_max_diff,
|
|
"Attention slicing should not affect the inference results",
|
|
)
|
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
|
# Seems to require higher tolerance than the other tests
|
|
expected_diff_max = 0.6
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to("cpu")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# Without tiling
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_without_tiling = pipe(**inputs)[0]
|
|
|
|
# With tiling
|
|
pipe.vae.enable_tiling(
|
|
tile_sample_min_height=96,
|
|
tile_sample_min_width=96,
|
|
tile_sample_stride_height=64,
|
|
tile_sample_stride_width=64,
|
|
)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_with_tiling = pipe(**inputs)[0]
|
|
|
|
self.assertLess(
|
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
|
expected_diff_max,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
# TODO(aryan): Create a dummy gemma model with smol vocab size
|
|
@unittest.skip(
|
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
|
)
|
|
def test_inference_batch_consistent(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
|
)
|
|
def test_inference_batch_single_identical(self):
|
|
pass
|