mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-13 07:54:45 +08:00
84 lines
2.6 KiB
Python
84 lines
2.6 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from diffusers import AutoencoderKLCosmos
|
|
|
|
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
from .testing_utils import AutoencoderTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderKLCosmosTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderKLCosmos
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_kl_cosmos_config(self):
|
|
return {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 4,
|
|
"encoder_block_out_channels": (8, 8, 8, 8),
|
|
"decode_block_out_channels": (8, 8, 8, 8),
|
|
"attention_resolutions": (8,),
|
|
"resolution": 64,
|
|
"num_layers": 2,
|
|
"patch_size": 4,
|
|
"patch_type": "haar",
|
|
"scaling_factor": 1.0,
|
|
"spatial_compression_ratio": 4,
|
|
"temporal_compression_ratio": 4,
|
|
}
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_frames = 9
|
|
num_channels = 3
|
|
height = 32
|
|
width = 32
|
|
|
|
image = floats_tensor((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 9, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 9, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_kl_cosmos_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {
|
|
"CosmosEncoder3d",
|
|
"CosmosDecoder3d",
|
|
}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
@unittest.skip("Not sure why this test fails. Investigate later.")
|
|
def test_effective_gradient_checkpointing(self):
|
|
pass
|