* fix: update SkyReels-V2 documentation and moving into attn dispatcher
* Refactors SkyReelsV2's attention implementation
* style
* up
* Fixes formatting in SkyReels-V2 documentation
Wraps the visual demonstration section in a Markdown code block.
This change corrects the rendering of ASCII diagrams and examples, improving the overall readability of the document.
* Docs: Condense example arrays in skyreels_v2 guide
Improves the readability of the `step_matrix` examples by replacing long sequences of repeated numbers with a more compact `value×count` notation.
This change makes the underlying data patterns in the examples easier to understand at a glance.
* Add _repeated_blocks attribute to SkyReelsV2Transformer3DModel
* Refactor rotary embedding calculations in SkyReelsV2 to separate cosine and sine frequencies
* Enhance SkyReels-V2 documentation: update model loading for GPU support and remove outdated notes
* up
* up
* Update model_id in SkyReels-V2 documentation
* up
* refactor: remove device_map parameter for model loading and add pipeline.to("cuda") for GPU allocation
* fix: update copyright year to 2025 in skyreels_v2.md
* docs: enhance parameter examples and formatting in skyreels_v2.md
* docs: update example formatting and add notes on LoRA support in skyreels_v2.md
* refactor: remove copied comments from transformer_wan in SkyReelsV2 classes
* Clean up comments in skyreels_v2.md
Removed comments about acceleration helpers and Flash Attention installation.
* Add deprecation warning for `SkyReelsV2AttnProcessor2_0` class
17 KiB
SkyReels-V2: Infinite-length Film Generative model
SkyReels-V2 by the SkyReels Team from Skywork AI.
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at this https URL.
You can find all the original SkyReels-V2 checkpoints under the Skywork organization.
The following SkyReels-V2 models are supported in Diffusers:
- SkyReels-V2 DF 1.3B - 540P
- SkyReels-V2 DF 14B - 540P
- SkyReels-V2 DF 14B - 720P
- SkyReels-V2 T2V 14B - 540P
- SkyReels-V2 T2V 14B - 720P
- SkyReels-V2 I2V 1.3B - 540P
- SkyReels-V2 I2V 14B - 540P
- SkyReels-V2 I2V 14B - 720P
- SkyReels-V2 FLF2V 1.3B - 540P
Tip
Click on the SkyReels-V2 models in the right sidebar for more examples of video generation.
A Visual Demonstration
The example below has the following parameters:
base_num_frames=97num_frames=97num_inference_steps=30ar_step=5causal_block_size=5
With vae_scale_factor_temporal=4, expect 5 blocks of 5 frames each as calculated by:
num_latent_frames: (97-1)//vae_scale_factor_temporal+1 = 25 frames -> 5 blocks of 5 frames each
And the maximum context length in the latent space is calculated with base_num_latent_frames:
base_num_latent_frames = (97-1)//vae_scale_factor_temporal+1 = 25 -> 25//5 = 5 blocks
Asynchronous Processing Timeline:
┌─────────────────────────────────────────────────────────────────┐
│ Steps: 1 6 11 16 21 26 31 36 41 46 50 │
│ Block 1: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 2: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 3: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 4: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 5: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└─────────────────────────────────────────────────────────────────┘
For Long Videos (num_frames > base_num_frames):
base_num_frames acts as the "sliding window size" for processing long videos.
Example: 257-frame video with base_num_frames=97, overlap_history=17
┌──── Iteration 1 (frames 1-97) ────┐
│ Processing window: 97 frames │ → 5 blocks,
│ Generates: frames 1-97 │ async processing
└───────────────────────────────────┘
┌────── Iteration 2 (frames 81-177) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (81-97) from prev │ → 5 blocks,
│ Generates: frames 98-177 │ async processing
└─────────────────────────────────────────┘
┌────── Iteration 3 (frames 161-257) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (161-177) from prev │ → 5 blocks,
│ Generates: frames 178-257 │ async processing
└──────────────────────────────────────────┘
Each iteration independently runs the asynchronous processing with its own 5 blocks.
base_num_frames controls:
- Memory usage (larger window = more VRAM)
- Model context length (must match training constraints)
- Number of blocks per iteration (
base_num_latent_frames // causal_block_size)
Each block takes 30 steps to complete denoising.
Block N starts at step: 1 + (N-1) x ar_step
Total steps: 30 + (5-1) x 5 = 50 steps
Synchronous mode (ar_step=0) would process all blocks/frames simultaneously:
┌──────────────────────────────────────────────┐
│ Steps: 1 ... 30 │
│ All blocks: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└──────────────────────────────────────────────┘
Total steps: 30 steps
An example on how the step matrix is constructed for asynchronous processing:
Given the parameters: (num_inference_steps=30, flow_shift=8, num_frames=97, ar_step=5, causal_block_size=5)
- num_latent_frames = (97 frames - 1) // (4 temporal downsampling) + 1 = 25
- step_template = [999, 995, 991, 986, 980, 975, 969, 963, 956, 948,
941, 932, 922, 912, 901, 888, 874, 859, 841, 822,
799, 773, 743, 708, 666, 615, 551, 470, 363, 216]
The algorithm creates a 50x25 step_matrix where:
- Row 1: [999×5, 999×5, 999×5, 999×5, 999×5]
- Row 2: [995×5, 999×5, 999×5, 999×5, 999×5]
- Row 3: [991×5, 999×5, 999×5, 999×5, 999×5]
- ...
- Row 7: [969×5, 995×5, 999×5, 999×5, 999×5]
- ...
- Row 21: [799×5, 888×5, 941×5, 975×5, 999×5]
- ...
- Row 35: [ 0×5, 216×5, 666×5, 822×5, 901×5]
- ...
- Row 42: [ 0×5, 0×5, 0×5, 551×5, 773×5]
- ...
- Row 50: [ 0×5, 0×5, 0×5, 0×5, 216×5]
Detailed Row 6 Analysis:
- step_matrix[5]: [ 975×5, 999×5, 999×5, 999×5, 999×5]
- step_index[5]: [ 6×5, 1×5, 0×5, 0×5, 0×5]
- step_update_mask[5]: [True×5, True×5, False×5, False×5, False×5]
- valid_interval[5]: (0, 25)
Key Pattern: Block i lags behind Block i-1 by exactly ar_step=5 timesteps, creating the
staggered "diffusion forcing" effect where later blocks condition on cleaner earlier blocks.
Text-to-Video Generation
The example below demonstrates how to generate a video from text.
Refer to the Reduce memory usage guide for more details about the various memory saving techniques.
From the original repo:
You can use --ar_step 5 to enable asynchronous inference. When asynchronous inference, --causal_block_size 5 is recommended while it is not supposed to be set for synchronous generation... Asynchronous inference will take more steps to diffuse the whole sequence which means it will be SLOWER than synchronous mode. In our experiments, asynchronous inference may improve the instruction following and visual consistent performance.
import torch
from diffusers import AutoModel, SkyReelsV2DiffusionForcingPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
model_id = "Skywork/SkyReels-V2-DF-1.3B-540P-Diffusers"
vae = AutoModel.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingPipeline.from_pretrained(
model_id,
vae=vae,
torch_dtype=torch.bfloat16,
)
pipeline.to("cuda")
flow_shift = 8.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
output = pipeline(
prompt=prompt,
num_inference_steps=30,
height=544, # 720 for 720P
width=960, # 1280 for 720P
num_frames=97,
base_num_frames=97, # 121 for 720P
ar_step=5, # Controls asynchronous inference (0 for synchronous mode)
causal_block_size=5, # Number of frames in each block for asynchronous processing
overlap_history=None, # Number of frames to overlap for smooth transitions in long videos; 17 for long video generations
addnoise_condition=20, # Improves consistency in long video generation
).frames[0]
export_to_video(output, "video.mp4", fps=24, quality=8)
First-Last-Frame-to-Video Generation
The example below demonstrates how to use the image-to-video pipeline to generate a video using a text description, a starting frame, and an ending frame.
import numpy as np
import torch
import torchvision.transforms.functional as TF
from diffusers import AutoencoderKLWan, SkyReelsV2DiffusionForcingImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video, load_image
model_id = "Skywork/SkyReels-V2-DF-1.3B-720P-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingImageToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
flow_shift = 5.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
first_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png")
last_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png")
def aspect_ratio_resize(image, pipeline, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipeline.vae_scale_factor_spatial * pipeline.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
def center_crop_resize(image, height, width):
# Calculate resize ratio to match first frame dimensions
resize_ratio = max(width / image.width, height / image.height)
# Resize the image
width = round(image.width * resize_ratio)
height = round(image.height * resize_ratio)
size = [width, height]
image = TF.center_crop(image, size)
return image, height, width
first_frame, height, width = aspect_ratio_resize(first_frame, pipeline)
if last_frame.size != first_frame.size:
last_frame, _, _ = center_crop_resize(last_frame, height, width)
prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
output = pipeline(
image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.0
).frames[0]
export_to_video(output, "video.mp4", fps=24, quality=8)
Video-to-Video Generation
SkyReelsV2DiffusionForcingVideoToVideoPipeline extends a given video.
import numpy as np
import torch
import torchvision.transforms.functional as TF
from diffusers import AutoencoderKLWan, SkyReelsV2DiffusionForcingVideoToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video, load_video
model_id = "Skywork/SkyReels-V2-DF-1.3B-720P-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingVideoToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
flow_shift = 5.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
video = load_video("input_video.mp4")
prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
output = pipeline(
video=video, prompt=prompt, height=720, width=1280, guidance_scale=5.0, overlap_history=17,
num_inference_steps=30, num_frames=257, base_num_frames=121#, ar_step=5, causal_block_size=5,
).frames[0]
export_to_video(output, "video.mp4", fps=24, quality=8)
# Total frames will be the number of frames of the given video + 257
Notes
- SkyReels-V2 supports LoRAs with [
~loaders.SkyReelsV2LoraLoaderMixin.load_lora_weights].
SkyReelsV2Pipeline and SkyReelsV2ImageToVideoPipeline are also available without Diffusion Forcing framework applied.
SkyReelsV2DiffusionForcingPipeline
autodoc SkyReelsV2DiffusionForcingPipeline
- all
- call
SkyReelsV2DiffusionForcingImageToVideoPipeline
autodoc SkyReelsV2DiffusionForcingImageToVideoPipeline
- all
- call
SkyReelsV2DiffusionForcingVideoToVideoPipeline
autodoc SkyReelsV2DiffusionForcingVideoToVideoPipeline
- all
- call
SkyReelsV2Pipeline
autodoc SkyReelsV2Pipeline
- all
- call
SkyReelsV2ImageToVideoPipeline
autodoc SkyReelsV2ImageToVideoPipeline
- all
- call
SkyReelsV2PipelineOutput
autodoc pipelines.skyreels_v2.pipeline_output.SkyReelsV2PipelineOutput