mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* start overhauling the benchmarking suite. * fixes * fixes * checking. * checking * fixes. * error handling and logging. * add flops and params. * add more models. * utility to fire execution of all benchmarking scripts. * utility to push to the hub. * push utility improvement * seems to be working. * okay * add torchprofile dep. * remove total gpu memory * fixes * fix * need a big gpu * better * what's happening. * okay * separate requirements and make it nightly. * add db population script. * update secret name * update secret. * population db update * disable db population for now. * change to every monday * Update .github/workflows/benchmark.yml Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * quality improvements. * reparate hub upload step. * repository * remove csv * check * update * update * threading. * update * update * updaye * update * update * update * remove peft dep * upgrade runner. * fix * fixes * fix merging csvs. * push dataset to the Space repo for analysis. * warm up. * add a readme * Apply suggestions from code review Co-authored-by: Luc Georges <McPatate@users.noreply.github.com> * address feedback * Apply suggestions from code review * disable db workflow. * update to bi weekly. * enable population * enable * updaye * update * metadata * fix --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# this script dumps information about the environment
|
|
|
|
import os
|
|
import platform
|
|
import sys
|
|
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
print("Python version:", sys.version)
|
|
|
|
print("OS platform:", platform.platform())
|
|
print("OS architecture:", platform.machine())
|
|
try:
|
|
import psutil
|
|
|
|
vm = psutil.virtual_memory()
|
|
total_gb = vm.total / (1024**3)
|
|
available_gb = vm.available / (1024**3)
|
|
print(f"Total RAM: {total_gb:.2f} GB")
|
|
print(f"Available RAM: {available_gb:.2f} GB")
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
import torch
|
|
|
|
print("Torch version:", torch.__version__)
|
|
print("Cuda available:", torch.cuda.is_available())
|
|
if torch.cuda.is_available():
|
|
print("Cuda version:", torch.version.cuda)
|
|
print("CuDNN version:", torch.backends.cudnn.version())
|
|
print("Number of GPUs available:", torch.cuda.device_count())
|
|
device_properties = torch.cuda.get_device_properties(0)
|
|
total_memory = device_properties.total_memory / (1024**3)
|
|
print(f"CUDA memory: {total_memory} GB")
|
|
|
|
print("XPU available:", hasattr(torch, "xpu") and torch.xpu.is_available())
|
|
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
|
print("XPU model:", torch.xpu.get_device_properties(0).name)
|
|
print("XPU compiler version:", torch.version.xpu)
|
|
print("Number of XPUs available:", torch.xpu.device_count())
|
|
device_properties = torch.xpu.get_device_properties(0)
|
|
total_memory = device_properties.total_memory / (1024**3)
|
|
print(f"XPU memory: {total_memory} GB")
|
|
|
|
|
|
except ImportError:
|
|
print("Torch version:", None)
|
|
|
|
try:
|
|
import transformers
|
|
|
|
print("transformers version:", transformers.__version__)
|
|
except ImportError:
|
|
print("transformers version:", None)
|