mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
731 lines
32 KiB
Python
731 lines
32 KiB
Python
from diffusers.utils import is_accelerate_available, logging
|
|
|
|
|
|
if is_accelerate_available():
|
|
pass
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
|
|
"""
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
"""
|
|
if controlnet:
|
|
unet_params = original_config.model.params.control_stage_config.params
|
|
else:
|
|
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
|
|
unet_params = original_config.model.params.unet_config.params
|
|
else:
|
|
unet_params = original_config.model.params.network_config.params
|
|
|
|
vae_params = original_config.model.params.first_stage_config.params.encoder_config.params
|
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
|
|
|
down_block_types = []
|
|
resolution = 1
|
|
for i in range(len(block_out_channels)):
|
|
block_type = (
|
|
"CrossAttnDownBlockSpatioTemporal"
|
|
if resolution in unet_params.attention_resolutions
|
|
else "DownBlockSpatioTemporal"
|
|
)
|
|
down_block_types.append(block_type)
|
|
if i != len(block_out_channels) - 1:
|
|
resolution *= 2
|
|
|
|
up_block_types = []
|
|
for i in range(len(block_out_channels)):
|
|
block_type = (
|
|
"CrossAttnUpBlockSpatioTemporal"
|
|
if resolution in unet_params.attention_resolutions
|
|
else "UpBlockSpatioTemporal"
|
|
)
|
|
up_block_types.append(block_type)
|
|
resolution //= 2
|
|
|
|
if unet_params.transformer_depth is not None:
|
|
transformer_layers_per_block = (
|
|
unet_params.transformer_depth
|
|
if isinstance(unet_params.transformer_depth, int)
|
|
else list(unet_params.transformer_depth)
|
|
)
|
|
else:
|
|
transformer_layers_per_block = 1
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
|
use_linear_projection = (
|
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
|
)
|
|
if use_linear_projection:
|
|
# stable diffusion 2-base-512 and 2-768
|
|
if head_dim is None:
|
|
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
|
|
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
|
|
|
|
class_embed_type = None
|
|
addition_embed_type = None
|
|
addition_time_embed_dim = None
|
|
projection_class_embeddings_input_dim = None
|
|
context_dim = None
|
|
|
|
if unet_params.context_dim is not None:
|
|
context_dim = (
|
|
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
|
|
)
|
|
|
|
if "num_classes" in unet_params:
|
|
if unet_params.num_classes == "sequential":
|
|
addition_time_embed_dim = 256
|
|
assert "adm_in_channels" in unet_params
|
|
projection_class_embeddings_input_dim = unet_params.adm_in_channels
|
|
|
|
config = {
|
|
"sample_size": image_size // vae_scale_factor,
|
|
"in_channels": unet_params.in_channels,
|
|
"down_block_types": tuple(down_block_types),
|
|
"block_out_channels": tuple(block_out_channels),
|
|
"layers_per_block": unet_params.num_res_blocks,
|
|
"cross_attention_dim": context_dim,
|
|
"attention_head_dim": head_dim,
|
|
"use_linear_projection": use_linear_projection,
|
|
"class_embed_type": class_embed_type,
|
|
"addition_embed_type": addition_embed_type,
|
|
"addition_time_embed_dim": addition_time_embed_dim,
|
|
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
|
|
"transformer_layers_per_block": transformer_layers_per_block,
|
|
}
|
|
|
|
if "disable_self_attentions" in unet_params:
|
|
config["only_cross_attention"] = unet_params.disable_self_attentions
|
|
|
|
if "num_classes" in unet_params and isinstance(unet_params.num_classes, int):
|
|
config["num_class_embeds"] = unet_params.num_classes
|
|
|
|
if controlnet:
|
|
config["conditioning_channels"] = unet_params.hint_channels
|
|
else:
|
|
config["out_channels"] = unet_params.out_channels
|
|
config["up_block_types"] = tuple(up_block_types)
|
|
|
|
return config
|
|
|
|
|
|
def assign_to_checkpoint(
|
|
paths,
|
|
checkpoint,
|
|
old_checkpoint,
|
|
attention_paths_to_split=None,
|
|
additional_replacements=None,
|
|
config=None,
|
|
mid_block_suffix="",
|
|
):
|
|
"""
|
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
|
attention layers, and takes into account additional replacements that may arise.
|
|
|
|
Assigns the weights to the new checkpoint.
|
|
"""
|
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
|
|
|
# Splits the attention layers into three variables.
|
|
if attention_paths_to_split is not None:
|
|
for path, path_map in attention_paths_to_split.items():
|
|
old_tensor = old_checkpoint[path]
|
|
channels = old_tensor.shape[0] // 3
|
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
|
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
|
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
|
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
|
|
|
if mid_block_suffix is not None:
|
|
mid_block_suffix = f".{mid_block_suffix}"
|
|
else:
|
|
mid_block_suffix = ""
|
|
|
|
for path in paths:
|
|
new_path = path["new"]
|
|
|
|
# These have already been assigned
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
|
continue
|
|
|
|
# Global renaming happens here
|
|
new_path = new_path.replace("middle_block.0", f"mid_block.resnets.0{mid_block_suffix}")
|
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
|
new_path = new_path.replace("middle_block.2", f"mid_block.resnets.1{mid_block_suffix}")
|
|
|
|
if additional_replacements is not None:
|
|
for replacement in additional_replacements:
|
|
new_path = new_path.replace(replacement["old"], replacement["new"])
|
|
|
|
if new_path == "mid_block.resnets.0.spatial_res_block.norm1.weight":
|
|
print("yeyy")
|
|
|
|
# proj_attn.weight has to be converted from conv 1D to linear
|
|
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
|
|
shape = old_checkpoint[path["old"]].shape
|
|
if is_attn_weight and len(shape) == 3:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
|
elif is_attn_weight and len(shape) == 4:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
|
else:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]]
|
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
|
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
|
|
|
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
|
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
|
|
|
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
new_item = new_item.replace("time_stack", "temporal_transformer_blocks")
|
|
|
|
new_item = new_item.replace("time_pos_embed.0.bias", "time_pos_embed.linear_1.bias")
|
|
new_item = new_item.replace("time_pos_embed.0.weight", "time_pos_embed.linear_1.weight")
|
|
new_item = new_item.replace("time_pos_embed.2.bias", "time_pos_embed.linear_2.bias")
|
|
new_item = new_item.replace("time_pos_embed.2.weight", "time_pos_embed.linear_2.weight")
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1):
|
|
"""
|
|
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
|
"""
|
|
if n_shave_prefix_segments >= 0:
|
|
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
|
else:
|
|
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
new_item = new_item.replace("time_stack.", "")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def convert_ldm_unet_checkpoint(
|
|
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
|
|
):
|
|
"""
|
|
Takes a state dict and a config, and returns a converted checkpoint.
|
|
"""
|
|
|
|
if skip_extract_state_dict:
|
|
unet_state_dict = checkpoint
|
|
else:
|
|
# extract state_dict for UNet
|
|
unet_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
|
|
unet_key = "model.diffusion_model."
|
|
|
|
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
|
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
|
logger.warning(
|
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
|
)
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model"):
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
|
else:
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
|
logger.warning(
|
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
|
)
|
|
|
|
for key in keys:
|
|
if key.startswith(unet_key):
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
|
|
|
if config["class_embed_type"] is None:
|
|
# No parameters to port
|
|
...
|
|
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
|
|
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
|
|
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
|
|
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
|
|
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
|
|
else:
|
|
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
|
|
|
|
# if config["addition_embed_type"] == "text_time":
|
|
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
|
|
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
|
|
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
|
|
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
|
input_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_input_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
|
middle_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
|
for layer_id in range(num_middle_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
|
output_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_output_blocks)
|
|
}
|
|
|
|
for i in range(1, num_input_blocks):
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
spatial_resnets = [
|
|
key
|
|
for key in input_blocks[i]
|
|
if f"input_blocks.{i}.0" in key
|
|
and (
|
|
f"input_blocks.{i}.0.op" not in key
|
|
and f"input_blocks.{i}.0.time_stack" not in key
|
|
and f"input_blocks.{i}.0.time_mixer" not in key
|
|
)
|
|
]
|
|
temporal_resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0.time_stack" in key]
|
|
# import ipdb; ipdb.set_trace()
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.weight"
|
|
)
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.bias"
|
|
)
|
|
|
|
paths = renew_resnet_paths(spatial_resnets)
|
|
meta_path = {
|
|
"old": f"input_blocks.{i}.0",
|
|
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
paths = renew_resnet_paths(temporal_resnets)
|
|
meta_path = {
|
|
"old": f"input_blocks.{i}.0",
|
|
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
# TODO resnet time_mixer.mix_factor
|
|
if f"input_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
|
|
new_checkpoint[f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = (
|
|
unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"]
|
|
)
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
|
# import ipdb; ipdb.set_trace()
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
attentions = middle_blocks[1]
|
|
resnet_1 = middle_blocks[2]
|
|
|
|
resnet_0_spatial = [key for key in resnet_0 if "time_stack" not in key and "time_mixer" not in key]
|
|
resnet_0_paths = renew_resnet_paths(resnet_0_spatial)
|
|
# import ipdb; ipdb.set_trace()
|
|
assign_to_checkpoint(
|
|
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
|
|
)
|
|
|
|
resnet_0_temporal = [key for key in resnet_0 if "time_stack" in key and "time_mixer" not in key]
|
|
resnet_0_paths = renew_resnet_paths(resnet_0_temporal)
|
|
assign_to_checkpoint(
|
|
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
|
|
)
|
|
|
|
resnet_1_spatial = [key for key in resnet_1 if "time_stack" not in key and "time_mixer" not in key]
|
|
resnet_1_paths = renew_resnet_paths(resnet_1_spatial)
|
|
assign_to_checkpoint(
|
|
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
|
|
)
|
|
|
|
resnet_1_temporal = [key for key in resnet_1 if "time_stack" in key and "time_mixer" not in key]
|
|
resnet_1_paths = renew_resnet_paths(resnet_1_temporal)
|
|
assign_to_checkpoint(
|
|
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
|
|
)
|
|
|
|
new_checkpoint["mid_block.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
|
|
"middle_block.0.time_mixer.mix_factor"
|
|
]
|
|
new_checkpoint["mid_block.resnets.1.time_mixer.mix_factor"] = unet_state_dict[
|
|
"middle_block.2.time_mixer.mix_factor"
|
|
]
|
|
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
for i in range(num_output_blocks):
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
output_block_list = {}
|
|
|
|
for layer in output_block_layers:
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
if layer_id in output_block_list:
|
|
output_block_list[layer_id].append(layer_name)
|
|
else:
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
if len(output_block_list) > 1:
|
|
spatial_resnets = [
|
|
key
|
|
for key in output_blocks[i]
|
|
if f"output_blocks.{i}.0" in key
|
|
and (f"output_blocks.{i}.0.time_stack" not in key and "time_mixer" not in key)
|
|
]
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
temporal_resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0.time_stack" in key]
|
|
|
|
paths = renew_resnet_paths(spatial_resnets)
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.0",
|
|
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
paths = renew_resnet_paths(temporal_resnets)
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.0",
|
|
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
if f"output_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
|
|
new_checkpoint[f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = (
|
|
unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"]
|
|
)
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.weight"
|
|
]
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.bias"
|
|
]
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
if len(attentions) == 2:
|
|
attentions = []
|
|
|
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and "conv" not in key]
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
# import ipdb; ipdb.set_trace()
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.1",
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
else:
|
|
spatial_layers = [
|
|
layer for layer in output_block_layers if "time_stack" not in layer and "time_mixer" not in layer
|
|
]
|
|
resnet_0_paths = renew_resnet_paths(spatial_layers, n_shave_prefix_segments=1)
|
|
# import ipdb; ipdb.set_trace()
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(
|
|
["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "spatial_res_block", path["new"]]
|
|
)
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
temporal_layers = [
|
|
layer for layer in output_block_layers if "time_stack" in layer and "time_mixer" not in key
|
|
]
|
|
resnet_0_paths = renew_resnet_paths(temporal_layers, n_shave_prefix_segments=1)
|
|
# import ipdb; ipdb.set_trace()
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(
|
|
["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "temporal_res_block", path["new"]]
|
|
)
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
new_checkpoint["up_blocks.0.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
|
|
f"output_blocks.{str(i)}.0.time_mixer.mix_factor"
|
|
]
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint):
|
|
keys = list(checkpoint.keys())
|
|
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
|
|
for key in keys:
|
|
if ".".join(key.split(".")[-2:]) in attn_keys:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
|
elif "proj_attn.weight" in key:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key][:, :, 0]
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0, is_temporal=False):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
# Temporal resnet
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
new_item = new_item.replace("time_stack.", "temporal_res_block.")
|
|
|
|
# Spatial resnet
|
|
new_item = new_item.replace("conv1", "spatial_res_block.conv1")
|
|
new_item = new_item.replace("norm1", "spatial_res_block.norm1")
|
|
|
|
new_item = new_item.replace("conv2", "spatial_res_block.conv2")
|
|
new_item = new_item.replace("norm2", "spatial_res_block.norm2")
|
|
|
|
new_item = new_item.replace("nin_shortcut", "spatial_res_block.conv_shortcut")
|
|
|
|
new_item = new_item.replace("mix_factor", "spatial_res_block.time_mixer.mix_factor")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
|
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight")
|
|
new_item = new_item.replace("q.bias", "to_q.bias")
|
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight")
|
|
new_item = new_item.replace("k.bias", "to_k.bias")
|
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight")
|
|
new_item = new_item.replace("v.bias", "to_v.bias")
|
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config):
|
|
# extract state dict for VAE
|
|
vae_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
vae_key = "first_stage_model." if any(k.startswith("first_stage_model.") for k in keys) else ""
|
|
for key in keys:
|
|
if key.startswith(vae_key):
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
|
new_checkpoint["decoder.time_conv_out.weight"] = vae_state_dict["decoder.time_mix_conv.weight"]
|
|
new_checkpoint["decoder.time_conv_out.bias"] = vae_state_dict["decoder.time_mix_conv.bias"]
|
|
|
|
# new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
# new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
# new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
# new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
|
down_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
|
up_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
|
}
|
|
|
|
for i in range(num_down_blocks):
|
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.weight"
|
|
)
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.bias"
|
|
)
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for i in range(num_up_blocks):
|
|
block_id = num_up_blocks - 1 - i
|
|
|
|
resnets = [
|
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
]
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.weight"
|
|
]
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.bias"
|
|
]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
return new_checkpoint
|